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Nematicity and fractional magnetization plateaus induced by spin-lattice coupling in the classical
kagome-lattice Heisenberg antiferromagnet

Masaki Gen 1 and Hidemaro Suwa 2,*

1Department of Advanced Materials Science, University of Tokyo, Kashiwa 277-8561, Japan
2Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan

(Received 7 February 2022; revised 27 April 2022; accepted 9 May 2022; published 20 May 2022)

We investigate the effect of spin-lattice coupling (SLC) on the magnetic properties of the classical kagome-
lattice Heisenberg antiferromagnet (KHAF) using improved Monte Carlo updates. The lattice modes are
represented by Einstein site phonons, which introduce effective further-neighbor spin interactions in addition to
the nearest-neighbor biquadratic interactions. In the weak SLC, the macroscopically degenerate coplanar ground
state remains at zero field, while a

√
3 × √

3 ordered phase accompanied by a 1/3-magnetization plateau appears
in external magnetic fields. In the strong SLC, we find a nematic order at zero field and a 1/9-magnetization
plateau associated with a 3 × 3 collinear order. Near the phase transition between the 1/9- and 1/3-plateau
states, the ergodicity in the single spin flip is practically broken, and slow dynamics appear. We propose that
relevant KHAFs with strong SLC would be realized in spinel-based materials.
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I. INTRODUCTION

Over the past three decades, the kagome-lattice
Heisenberg antiferromagnet (KHAF) has been a central
playground for exploring exotic magnetic states introduced
by geometrical frustration. The ground state of the classical
KHAF is infinitely degenerate, while thermal fluctuations
partially lift it and favor a disordered coplanar spin state [1–3].
In the spin-1/2 case, the ground state is believed to be a
quantum spin liquid, the nature of which has been actively
discussed [4–12]. For both cases, even small perturbations,
such as the Dzyaloshinskii-Moriya (DM) interaction [13–15]
and further-neighbor (FN) interactions [16–19], can induce
various magnetic long-range orders (LROs).

Also in external magnetic fields, the KHAF can exhibit
rich magnetic phases dressed with fractional magnetization
plateaus. The typical one is a 1/3-magnetization plateau in-
duced by the quantum effect for arbitrary spin values [20–28].
Even in the classical limit, a 1/3-magnetization plateau
with a collinear spin-liquid state is stabilized by thermal
fluctuations due to the order-by-disorder effect [29,30]. Of
particular interest is a series of magnon crystals localized on
hexagons of the kagome lattice [9,24–28], which was impres-
sively evidenced by multistep magnetization jumps observed
in Cd-kapellasite [31]. Furthermore, a 1/9-magnetization
plateau has been predicted for spin-1/2 by the density ma-
trix renormalization group method [9] and tensor network
algorithms [12,26,31]. However, exact diagonalization studies
have challenged the presence of it [21,23]. There has been
no experimental evidence of the 1/9-magnetization plateau
in Cd-kapellasite and herbertsmithite [31,32], which are the
most likely materials for the ideal spin-1/2 KHAF [33,34].

Most previous theoretical works on the KHAF did not
take the phonon contribution into account. In highly frus-
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trated magnets, spin-lattice coupling (SLC) often plays
an essential role in the determination of the mag-
netic state: e.g., the zero-field zigzag order and the
1/5-magnetization plateau in a triangular-lattice antiferro-
magnet CuFeO2 [35,36], the 2-up–2-down Néel order, and
the 1/2-magnetization plateau in pyrochlore-based chromium
spinels [37–44], and more complex field-induced phases in a
ferrimagnetic spinel MnCr2S4 [45–47]. It has been revealed
that the microscopic magnetoelastic theories assuming local
bond-phonon [46,48–50] and site-phonon modes [44,50–53]
successfully account for these SLC-induced LROs. For the
kagome lattice, however, the theoretical investigation on the
effect of SLC exists only for the spin ice model [54], whereas
one for the Heisenberg model is lacking apart from a brief
remark found in Ref. [53].

In this paper, we reveal comprehensive phase diagrams
of the classical KHAF coupled to local site-phonon modes,
using the Monte Carlo (MC) method and advanced sam-
pling techniques. In the weak SLC, the 120◦ coplanar ground
state at zero field remains, while a sequence of field-induced
phase transitions takes place, exhibiting a 1/3-magnetization
plateau associated with a

√
3 × √

3 collinear order [Fig. 1(d)].
In the strong but physically reasonable SLC, we find a ne-
matically ordered ground state at zero field and a novel
1/9-magnetization plateau associated with a 3 × 3 collinear
order [Fig. 1(e)] in the low-field region.

II. MODEL

We consider the spin Hamiltonian of the KHAF with the
elastic and the Zeeman terms:

H =
∑
〈i, j〉

Ji jSi · S j + c

2

∑
i

|ui|2 − h
∑

i

Sz
i , (1)

where 〈i, j〉 runs over all the nearest-neighbor (NN) sites,
Ji j (> 0) is the antiferromagnetic exchange coupling, Si is the
classical spin at site i normalized to |Si| = 1, c (> 0) is the
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FIG. 1. (a) Local spin configurations of the 120◦ coplanar state
characterized by two corner-sharing triangles with (I) the identi-
cal chirality and (II) the opposite chirality. (b) Four relevant local
spin configurations of the observed collinear states. (c) Ground-state
phase diagram at zero field with respect to the SLC parameter b.
Twelve-sublattice 2 × 2 LRO exists in the “Néel” phase, whereas
macroscopic degeneracy remains in the 120◦ coplanar and the ne-
matic phases. Typical spin configurations in these degenerate phases
are illustrated. (d) Magnetic structure of the 1/3-magnetization
plateau state. (e) Magnetic structure of the 1/9-magnetization plateau
state. In (b)–(e), the red solid (blue open) circles represent up (down)
spins. In (d) and (e), the magnetic unit cell is illustrated by a parallel-
ogram background. Flipping the spins of the orange clusters shown
in (e) connects the two plateau states.

spring constant, ui is the displacement at site i from its original
position r0

i , and h is the strength of an external magnetic field
applied along the z axis. The exchange striction is introduced
assuming Ji j linearly modulated by the bond-length change
provided that |ui|/|r0

i | � 1: Ji j ≡ J (|r0
i j + ui − u j |) ≈ J +

(dJ/dr)|r=|r0
i j |ei j · (ui − u j ), where J ≡ J (|r0

i j |), r0
i j ≡ r0

i −
r0

j , and ei j ≡ r0
i j/|r0

i j |. We also assume J and (dJ/dr)|r=|r0
i j |

independent of the site. For the lattice degrees of freedom, the
displacements ui are independent of each other in the absence
of the SLC, i.e., Einstein site phonons [51]. The Hamiltonian
is invariant under the simultaneous sign reversal of the deriva-
tive (dJ/dr)|r=|r0

i j | and the lattice displacements ui for all i.
Thus, the sign of (dJ/dr)|r=|r0

i j | is irrelevant to the physics of
this system.

In this model, the exchange coupling depends only on
the distance in the direction of the interatomic vector. This
approximation is justified if |ui|/|r0

i | � 1. The shift in the
direction perpendicular to the interatomic vector changes
the distance by O(|ui|2/|r0

i |), while the shift in the direction
of the interatomic vector does by O(|ui|). The effect of the
shift in the perpendicular direction should be negligible.

Let us next consider the effective spin model. The
Hamiltonian (1) can be expressed by

H = J
∑
〈i, j〉

Si · S j + c

2

∑
i

|ui − ūi|2 − c

2

∑
i

|ūi|2

− h
∑

i

Sz
i , (2)

where

ūi =
√

Jb

c

∑
j∈N (i)

ei j (Si · S j ) (3)

is the average displacement given the spin state. We here
adopt the canonical ensemble and exactly integrate out the
lattice degrees of freedom ui using the standard Gaus-
sian integration [51]. The effective spin Hamiltonian is
given by

Heff = J
∑
〈i, j〉

[Si · S j − b(Si · S j )
2] +HFN − h

∑
i

Sz
i , (4)

HFN = −Jb

2

∑
j 
=k∈N (i)

ei j · eik (Si · S j )(Si · Sk ), (5)

where the dimensionless parameter b represents the strength
of the SLC defined by b ≡ (1/cJ )[(dJ/dr)|r=|r0

i j |]
2 (>0),

and N (i) is the set of the NN sites of site i. Evidently,
the SLC produces the biquadratic terms and the three-body
quartic terms HFN. The former favors collinear spin config-
urations, while the latter acts as effective FN interactions.
The energies of HFN for several local spin configurations
appearing in the 120◦ coplanar state and the relevant collinear
states are E (I) = E (II) = Jb/2, E (III) = E (IV) = 0, E (V) =
2Jb, and E (VI) = −4Jb, where the supersubscripts represent
the corresponding spin configurations shown in Figs. 1(a)
and 1(b).

To study the thermodynamic properties of this system,
we performed classical MC simulations for N = 3L2 sites
up to L = 72 with periodic boundaries. Combining the
replica-exchange MC [55], we introduce a microcanoni-
cal update [56,57] and a multi-spin-flip in addition to the
conventional updates. Our MC update is more than 40
times as efficient as the previously proposed ones [50,58].
Readers are referred to the Appendices for details of our
simulations.

III. ZERO-FIELD CASE

The ground-state phase diagram at zero field with respect
to the SLC parameter b is shown in Fig. 1(c) (also presented in
Ref. [53]). To obtain the phase diagram, we first ran MC sim-
ulations at low enough temperatures varying b and confirmed
that the ground state changed from the 120◦ coplanar state
to collinear states. We then considered all the local collinear
configurations and calculated their energies. The ground-state
phase diagram was obtained by minimizing the total energy
among all the collinear states and comparing it to the energy
of the 120◦ coplanar state.

In the weak SLC region (b < 1/6), the ground state is
the 120◦ coplanar state, which satisfies the local condition
of

∑
i∈� Si = 0, where � denotes the triangular unit of the
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FIG. 2. (a),(e) Specific heat C; (b),(f) spin stiffness ρs; and (c),(g)
nematic order parameter Q2 as a function of temperature at zero
field for b = 0.1 [(a)–(c)] and b = 0.2 [(e)–(g)]. The dashed line
in (a) indicates the expected value 11/12 in T/J → 0. The inset
of (f) shows the finite-size scaling of the vortex-binding transition
point (see text for details). (d),(h) Spin structure factor for L = 36
and b = 0.1 at T/J = 0.001 (d) and for b = 0.2 at T/J = 0.02 (h).
The ground state is the 120◦ coplanar spin state for b = 0.1 and the
nematically ordered state for b = 0.2.

kagome lattice. The macroscopic degeneracy remains in this
state because the spin configurations I and II [Fig. 1(a)] have
the same energy even with the SLC. In the strong SLC region
(b > 1/6), on the other hand, collinear states become stable
due to the dominant biquadratic terms, breaking the local
condition of

∑
i∈� Si = 0. For 1/6 < b < 1/3, the ground

state is nematically ordered, in which the spin configura-
tions with the same energy, III, IV, and their flipped (up ↔
down) counterparts, are randomly arranged. For b > 1/3, the
ground state has a 12-sublattice 2 × 2 LRO, in which the
spin configurations III and VI are regularly arranged in the
same ratio.

Figure 2 shows the temperature dependence of the
specific heat C, the spin stiffness ρs, and the nematic or-
der parameter Q2 at zero field for b = 0.1 [(a)–(c)] and
b = 0.2 [(e)–(g)]. Figures 2(d) and 2(h) show the spin
structure factor S(q) at T/J = 0.001 for b = 0.1 and at
T/J = 0.02 for b = 0.2. Each physical quantity can be

calculated by

C = 〈Heff
2〉 − 〈Heff〉2

NT 2
= 1

N

d〈Heff〉
dT

, (6)

ρs = −
√

3

4N

∑
〈i, j〉

〈
Ji j

(
Sx

i Sx
j + Sy

i Sy
j

)〉

− 2
√

3

NT

〈[∑
〈i, j〉

Ji j
(
Sx

i Sy
j − Sy

i Sx
j

)
e · r0

i j

]2〉
, (7)

Q2 = 1

N2

∑
〈i, j〉

〈
(Si · S j )

2
〉 − 1

3
, (8)

S(q) = 1

N

〈∣∣∣∣∣
∑

j

S je
iq·r0

j

∣∣∣∣∣
2〉

, (9)

where e is a unit twist vector, whose direction is arbitrary
in the two-dimensional (2D) system [30], and Ji j depends on
local lattice displacements. The specific heat was obtained by
computing d〈Heff〉/dT numerically.

For b = 0.1, the specific heat exhibits two broad peaks
around two crossover temperatures Ts/J ≈ 0.04 and Tc/J ≈
0.004 [Fig. 2(a)], as in the classical KHAF without the
SLC [3]. The spin-liquid state satisfying the local condition
of

∑
i∈� Si = 0 appears below Ts, and the coplanar state is

further selected below Tc due to the additional zero modes [1].
The correlation length of the magnetic and nematic orders ex-
ponentially diverges in T → 0. In finite-size systems, ρs and
Q2 become nonzero at a temperature such that the correlation
length reaches the system length. The ordering temperature
caused by the finite-size effect logarithmically decreases as L
increases, as shown in Figs. 2(b) and 2(c). As seen in Fig. 2(a),
a shoulder appears in the specific heat at this ordering tem-
perature, expected to disappear in the thermodynamic limit.
We also confirmed that the

√
3 × √

3 magnetic order starts
to develop at the same temperature (not shown). The spin
structure factor, shown in Fig. 2(d), is consistent with the 120◦
coplanar state [3]. These features imply that the zero-field
magnetism inherent in the classical KHAF is robust to the
weak SLC.

For b = 0.2, the specific heat exhibits a prominent peak
around T/J ≈ 0.04 [Fig. 2(e)]. The spin state at low temper-
atures breaks the local condition of

∑
i∈� Si = 0 and has a

nematic order, as shown in Fig. 2(g). The spin structure factor,
shown in Fig. 2(h), exhibits the characteristic structure of the
nematically ordered state in the kagome lattice. The order-
parameter space of the nematic order is the real projective
plane RP2, and its first homotopy group is π1(RP2) = Z2.
Thus, a Z2 vortex emerges from the nematically ordered state
as a point defect, called a disclination point.

In analogy to the Berezinskii-Kosterlitz-Thouless (BKT)
transition, the topological transition at which Z2 vortex pairs
are bound has been arguably discussed [59–62]. Numerical
studies showed that several nematic models exhibited univer-
sal scaling functions [62]. However, renormalization group
analyses pointed out that the fixed point dictated by the Z2

vortex binding might be out of the physical parameter space,
resulting in a sharp crossover [63,64]. Whether it is a phase
transition or a crossover, the spin correlation length ξ becomes
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FIG. 3. Magnetic-field induced phase transitions for b = 0.1
[(a)–(c)] and b = 0.2 [(d)–(f)]: (a),(d) h-T phase diagrams; (b),(e)
magnetization curves; and (c),(f) their field derivatives for several
temperatures. The contour map in (a) and (d) displays the value of
J (dm/dh). The inset of (d) shows an enlarged view of the phase
boundary between the

√
3 × √

3 and the 3 × 3 LRO phases. The
inset of (e) shows an enlarged view of the 1/9-magnetization plateau.

enormous at the transition and much longer than the numeri-
cally accessible system sizes, ξ ∼ 109 for an RP2 model [63].
This is consistent with the seemingly converging behavior
of ρs shown in Fig. 2(f) even though ρs → 0 eventually in
L → ∞ at T/J > 0. As in the standard BKT transition, we es-
timate the transition or the crossover temperature Tv assuming
the scaling Tv(L) − Tv(∞) ∝ 1

(ln L)2 , where Tv(L) satisfies the

Nelson-Kosterlitz formula ρs(L, Tv(L)) = 2
πv2 Tv(L) [65] for

each L with v = 1/2 being the vorticity of the Z2 vortex. This
scaling should be valid for 1 � L � ξ , and the extrapolation
yields Tv/J = 0.032 94(8), as shown in the inset of Fig. 2(f).
Note that as in the case for b = 0.1, a shoulder in the specific
heat [Fig. 2(e)] is barely seen at the temperature at which the
correlation length reaches the system length and expected to
disappear in the thermodynamic limit.

IV. IN-FIELD CASE

Next, we focus on the in-field properties. Figures 3(a)
and 3(d) show the h-T phase diagrams for b = 0.1 and b =
0.2, respectively. The first-order transition points were ex-
trapolated from the peak position of the specific heat, and
the other transition points were estimated using the stochastic
approximation [66]. For b = 0.1, the spins form a Y shape in
low fields, a 2-up–1-down state in intermediate fields, and a

V shape in high fields, with the
√

3 × √
3 LRO [Fig. 3(a)],

and a robust 1/3-magnetization plateau accompanies the
2-up–1-down state. The magnetization m and its field
derivative J (dm/dh) are plotted for several temperatures in
Figs. 3(b) and 3(c), respectively. Figure 1(d) illustrates the
threefold degenerate 1/3-plateau state, comprised of the spin
configurations III and V in the ratio of 2:1 [Fig. 1(b)]. The
phase transition to the

√
3 × √

3 LRO phase is characterized
by the 2D q-state Potts universality class with q = 3 describ-
ing the Z3 symmetry breaking. At higher fields above the
1/3-magnetization plateau, the BKT transition occurs in the
spin xy components, turning into the first-order transition near
the saturation below T/J ≈ 0.03.

The phase diagram for b = 0.2 is qualitatively similar
to that for b = 0.1, except in the low-field region. Notably,
the macroscopically degenerate nematic state at zero field
includes a 5-up–4-down state. Thus, a 1/9-magnetization
plateau appears under an infinitesimal magnetic field, found
robust to thermal fluctuations. Figure 1(e) illustrates the
18-fold degenerate 1/9-plateau state, which breaks a Z3 × Z6

symmetry and possesses a 3 × 3 LRO, comprised of the spin
configurations III, IV, and spin-flip (up ↔ down) IV, in the
ratio of 3:4:2 [Fig. 1(b)]. While the Z3 symmetry corresponds
to the translation by (1, 0) in units of the lattice constant,
the Z6 = Z2 × Z3 symmetry consists of the Z2 for the in-
version (x ↔ −x) and the Z3 for the translation by ( 3

2 ,
√

3
2 ).

In higher fields, the magnetization jumps from m = 1/9 to
1/3 [Fig. 3(e)]. The energy densities of the 1/9- and 1/3-
plateau states are Em=1/9 = − 2

3 J (1 + 3b) − h
9 and Em=1/3 =

− 2
3 J (1 + 2b) − h

3 , respectively, so that the first-order transi-
tion occurs at h/J = 3b for T/J = 0.

We carefully investigate the phase transition from the√
3 × √

3 to the 3 × 3 LRO phase occurring at a finite tem-
perature for 0.46 � h/J < 0.6 [inset of Fig. 3(d)]. In the single
spin flip, the ergodicity is practically broken near the transition
temperature. The z components of the spins in the

√
3 ×√

3 and the 3 × 3 LRO phases are approximately consistent
with the 1/3- and 1/9-plateau states illustrated in Figs. 1(d)
and 1(e), respectively. It is evident that a significant energy
barrier exists between these ordered states at low temperatures
in the single spin flip. We found the autocorrelation time
diverging as the temperature approaches the transition point,
indicating a dynamical phase transition into a glassy phase.
There is an infinite number of local minima in the glassy
phase, at which the local configurations of the two ordered
states are randomly arranged. We here focus on the clusters
highlighted by the orange area in Fig. 1(e) and introduce a
multi-spin-flip update to avoid the dynamical transition and
study the thermodynamic properties of the system. Neverthe-
less, slow dynamics and the glassy phase would be of great
interest in experimental studies.

Figure 4 shows the temperature dependence of the spe-
cific heat C and the Binder cumulant of the 3 × 3 order
parameter at h/J = 0.59 for b = 0.2. The Binder cumulant
of an n-component order parameter can be defined as U2 =
n+2

2 ( 〈S(Q)〉2

〈S(Q)2〉 − n
n+2 ), and we here set Q = (0, 4π

3
√

3
) and n = 6

because of the three-dimensional complex vector. Note that
in L → ∞, U2 → 1 and 0 in the ordered and disordered
phases, respectively. Upon cooling, the Z3 symmetry is bro-
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FIG. 4. (a) Specific heat C and (b) Binder cumulant of the 3 × 3
order parameter U2 as a function of temperature at h/J = 0.59 for
b = 0.2. The inset of (a) shows the finite-size scaling of the peak
position of the specific heat.

ken in the intermediate-temperature
√

3 × √
3 LRO phase,

and subsequently the remaining Z6 symmetry is further bro-
ken in the low-temperature 3 × 3 LRO phase. In 2D, there are
three scenarios of the Z6 symmetry breaking [67,68]: (i) two
phase transitions describing the Z2 and Z3 symmetry break-
ing, (ii) a two-step melting through an intermediate critical
phase, and (iii) a direct first-order transition. The specific heat
shows a single peak below the

√
3 × √

3 ordering temperature
[Fig. 4(a)]. The Binder cumulant becomes significantly nega-
tive right above the transition temperature [Fig. 4(b)], showing
no sign of a critical phase in which U2 will be independent of
the system size [69]. These results presumably indicate the
scenario (iii) [68]. Using the scaling T ∗(L) − T ∗(∞) ∝ L−θ ,
where T ∗(L) is the peak position of the specific heat, we
estimate T ∗/J = 0.007 076(4) and θ ≈ 1.8. The exponent is
reasonably consistent with the case of the first-order transition
θ = d = 2, where d is the system dimension. We therefore
conclude that this transition is of weakly first order.

V. COMPARISON WITH THE PYROCHLORE SYSTEM

We here compare the effects of SLC on the kagome- and
pyrochlore-lattice Heisenberg antiferromagnets. For the py-
rochlore case, the bond-phonon model, in which the SLC only
produces the effective biquadratic terms −b(Si · S j )2 between
the NN sites, induces a nematically ordered 2-up–2-down
state at zero field [49,50]. The site-phonon model, in which
the additional three-body terms HFN expressed by Eq. (5)
are effectively produced, lifts the macroscopic degeneracy
remaining in the bond-phonon model [51,52]. For the kagome
case, by contrast, the macroscopic degeneracy remains in
the zero-field coplanar (collinear) ground states even in the
site-phonon model because the energies of HFN for the spin
configurations I and II (III and IV) are accidentally identical
[Figs. 1(a) and 1(b)]. The difference in the ground-state nature
between the kagome and pyrochlore systems is due to the
different ratio of the numbers of the second- and third-NN
exchange paths: i.e., 1:1 in the kagome lattice, whereas 2:1 in
the pyrochlore lattice.

On the other hand, common features can be seen in field-
induced magnetization plateau states. For the pyrochlore case,
the 16-sublattice 3-up–1-down state (called the R state) with
m = 1/2 rather than the four-sublattice q = 0 one is stabi-
lized in the site-phonon model [50,51]. This is because the
site-phonon model favors a down-up-down spin configuration
on a bent path as shown in the configuration III [Fig. 1(b)]

(the “bending rule”) rather than one on a straight path [51].
It has been proven that the R state is a unique solution
that can maximize the number of such bent paths for the
pyrochlore lattice [51]. Indeed, the R state was experimen-
tally confirmed in the pyrochlore-based chromium spinels
CdCr2O4 and HgCr2O4 [38,41]. The bending rule also holds
for the kagome case; the

√
3 × √

3 ordered 2-up–1-down state
[Fig. 1(d)] is clearly a unique solution with the maximum
number of the down-up-down bent paths for m = 1/3. The
newly found 3 × 3 ordered 5-up–4-down state with m = 1/9
[Fig. 1(e)] also consists of local spin configurations with as
many bent paths as possible. This universality of the mag-
netization plateau nature, regardless of the dimensionality of
the underlying triangular network, is an important property of
the antiferromagnet described by the combination of highly
symmetric geometrical frustration and SLC.

VI. SUMMARY AND PERSPECTIVE

In summary, we have thoroughly investigated the effect of
SLC on the magnetic properties of the classical KHAF using
the microscopic magnetoelastic model. We found a nemati-
cally ordered state at zero field and a robust 1/9-magnetization
plateau in the strong SLC (b > 1/6). The thermodynamic
properties were investigated in detail by means of the classical
MC simulations.

Finally, we discuss the relevance of our results to experi-
ments. The zero-field ground states of KHAF compounds (in
a structurally perfect kagome lattice) have been intensively
studied to this time; some of them are proposed to be the
120◦ coplanar state stabilized by the DM interaction [70–72]
while others a possible quantum spin liquid [73–75]. In either
case, the SLC does not seem to affect the magnetic states,
which is consistent with our result showing that the weak
SLC has a minor effect on the low-temperature magnetism at
zero field. This may be the reason why the effect of SLC has
been overlooked in many studies of magnetism on the kagome
lattice. However, the SLC can play an essential role in the
magnetization process. For several KHAF compounds, the ap-
pearance of a 1/3-magnetization plateau has been confirmed
by pulsed high-field magnetization measurements [31,32,76].
Even though such observations have been attributed to ther-
mal or quantum fluctuations in the literature, our calculation
suggests that the SLC can further stabilize the magnetization
plateau.

We note that most of the previously reported KHAF com-
pounds are Cu-based S = 1/2 quantum magnets, where SLC
tends to be relatively weak because the ligand anion medi-
ates the antiferromagnetic (AFM) exchange coupling between
the NN Cu sites, and the relative strength of SLC to the
exchange coupling is proportional to the square of the spin
length S2. The parameter b = 0.1–0, 2 studied in the present
paper is plausible in real systems with a larger spin length,
such as chromium spinels [37,39,42,43], where S = 3/2 Cr3+

ions govern the magnetism, and the AFM direct exchange
interaction between the NN Cr sites is dominant. Relevant
KHAFs could be created by partial ion substitution of these
pyrochlore-lattice compounds [77]. We hope our work en-
courages the search for new KHAF compounds that realize
our theoretical predictions.
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APPENDIX A: MONTE CARLO UPDATES

We here describe the details of our MC updates. To achieve
efficient computation, we introduce a microcanonical update
in addition to the conventional updates: the random update
and the over-relaxation-like update [50,58]. In the random
update, a spin direction is randomly proposed for each spin,
and the proposed configuration is accepted or rejected using
the Metropolis algorithm for the effective model, Eq. (4).
In the over-relaxation-like update, the spin configuration
π rotated about a molecular field from the current config-
uration is proposed for each spin. The molecular field is
calculated only taking into account the bilinear and the Zee-
man terms in Eq. (4). The proposed state is then accepted or
rejected like the random update.

In addition to these conventional updates, we implement
a microcanonical update with the total energy conserved, re-
turning back to the original Hamiltonian (1) with the lattice
degrees of freedom. Because this Hamiltonian is quadratic in
terms of the spin and the lattice displacement, we can perform
perfect over-relaxation updates for spins and lattice displace-
ments without changing the total energy [56,57]. Specifically,
the next spin configuration and displacement for site i are
given by

S′
i = 2(Si · hi )hi

|hi|2 − Si, (A1)

u′
i = 2ūi − ui, (A2)

respectively, where

hi = hext −
∑

j∈N (i)

Ji jS j (A3)

with hext = (0, 0, h)t . Note that Ji j depends on local lattice
displacements. We update spins and displacements sequen-
tially. To perform this microcanonical update, the lattice
degrees of freedom can be restored generating a displacement
ui for each site from the Gaussian distribution whose mean is
ūi, and the variance is T/c, where T is the temperature.

The random or the over-relaxation-like update step alter-
nately follows several microcanonical update steps in our
simulation. The single MC step in our simulation is composed
of N = 3L2 local updates for spins and displacements sweep-
ing all sites sequentially in one of the updates mentioned
above: the random, the over-relaxation-like, or the micro-
canonical update. More than 224 MC steps were run, and the
latter half was used to calculate the averages of the physical
quantities.

The microcanonical update we introduce significantly re-
duces the autocorrelation time. We calculated the integrated

autocorrelation time τint of the energy for b = 0.2, h/J = 0,
T/J = 0.04, and L = 12 and estimated τint ≈ 2.4 × 103 and
1.0 × 105 with and without the microcanonical update, re-
spectively. Thus, the sampling efficiency of our approach is
approximately 42 times as high as that of the previous ap-
proach.

As discussed in Sec. IV, the ergodicity in the local updates
is practically broken near the finite-temperature transition
from the

√
3 × √

3 to the 3 × 3 LRO phase. We found the au-
tocorrelation time diverging as the temperature approaches the
transition point, indicating a dynamical transition into a glassy
phase in which the local configurations of the two ordered
states are randomly arranged. In addition to the local updates,
we further introduce a multi-spin-flip update to avoid the
dynamical transition, which allows us to study the thermody-
namic properties of the system. Flipping the spins highlighted
by the orange area in Fig. 1(e) connects the 1/3- and
1/9-plateau states. We focus on a nine-spin cluster consisting
of the highlighted neighboring spins around a hexagon of the
kagome lattice as a minimal cluster. We sequentially choose
a nine-spin cluster and perform the z-component flip of the
cluster, using the Metropolis algorithm. Although the accep-
tance probability of the multispin update may be fractional,
this update process significantly helps the system escape from
local minima and thermalize. We successfully calculated the
thermodynamic quantities and obtained the phase boundary
thanks to the introduced microcanonical and the multispin
updates.

APPENDIX B: DYNAMIC TEMPERATURE
OPTIMIZATION FOR EFFICIENT REPLICA EXCHANGE

We used the replica-exchange MC [55] to reduce the
autocorrelation further. The temperature exchange process
followed each MC step explained above. Because the original
model, Eq. (1), has the additional energy fluctuations of the
lattice displacements, the effective model, Eq. (4), is preferred
to the original model for increasing the exchange probability.
We consider the original model when performing the micro-
canonical update; we use the effective model for the other
updates, including the replica-exchange process. The number
of the temperatures in the replica-exchange MC was typically
several hundreds in the present simulations.

We here discuss the optimization of the temperature set for
efficient computation. It has been argued that the exchange
probability is desired to be independent of the tempera-
ture [78]. In accordance with this criterion, we aim at the flat
distribution of the exchange probability given the temperature
bounds and the number of temperatures. We dynamically
optimize the set of inverse temperatures {βi} in a manner
similar to the stochastic approximation [66]. Specifically, we
set the distance of the adjacent inverse temperatures larger if
the exchange process is accepted and smaller otherwise. The
modification factor gradually decreases with time, that is, the
number of preceding exchange steps. Given the number of
temperatures n and the maximum and the minimum inverse
temperatures βmax and βmin, respectively, the optimization
procedure is described as follows:

(1) Set an initial set of β, βmin ≡ β1 < β2 < · · · < βn ≡
βmax with �βi = βi+1 − βi.
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(2) For each exchange step t = 1, 2, . . . , topt, exchange
the replicas with βi and βi+1 with a probability p =
min{1, exp(�βi�Ei )}, where �Ei = Ei+1 − Ei, and Ei and
Ei+1 are the energies of the corresponding replicas. The
replica index i runs over odd integers when t is odd and even
integers when t is even. If the exchange is accepted, calculate

�β ′
i = �βi + a

βmax − βmin

t
; (B1)

otherwise

�β ′
i = �βi − min

{
�βi

2
, a

βmax − βmin

t

}
, (B2)

where a is a parameter. For even i at odd t and odd i at
even t , �β ′

i = �βi. After calculating all �β ′
i , update �βi by

normalizing �β ′
i , that is,

�βi = �β ′
i

βmax − βmin∑
j �β ′

j

, (B3)

and set βi = β1 + ∑i−1
j=1 �β j for 1 < i < n.

In the present simulations, we set a = 10 and the optimiza-
tion period topt to be half of the total number of MC steps in the
thermalization process. After the temperature optimization,
we fixed the temperature set and calculated the mean accep-
tance probability for each temperature during the sampling.
The resultant probability was successfully almost independent
of the temperature: the maximum deviation of the acceptance
probability from the average was typically only a few percent
of the probability averaged over the temperatures.

APPENDIX C: STOCHASTIC APPROXIMATION

We used the stochastic approximation (SA) [66] to obtain
the phase boundaries on which the continuous or the BKT
transition occurs. The SA is a useful approach to finding
a root of a function in the presence of stochastic errors in
the function evaluation. A control parameter, which is the
temperature in our application, is dynamically optimized to
find a solution. The feedback factor to the control parameter
gradually decreases with time, or the number of steps, which
makes the estimation robust to the stochastic error.

To locate the phase transition point to the
√

3 × √
3 LRO

phase, we optimize the temperature for each system size L to
satisfy the condition

f (T ) ≡ R − ξ

L
= 0, (C1)

where T is the temperature, R > 0 is a parameter, and
ξ is the corresponding correlation length, which can be
calculated by the second (or the higher-order) moment

method [79]:

ξ = 1

|δ|

√
S(Q)

S(Q + δ)
− 1, (C2)

S(Q) = 1

N

〈∣∣∣∣∣
∑

j

O je
iQ·r j

∣∣∣∣∣
2〉

, (C3)

with O j = S j or ū j and Q being the ordering wave vector.
The choice of R is arbitrary in principle, but setting R close
to the critical amplitude is practical [66]. We set R = 0.5 in
the present simulations. To detect the

√
3 × √

3 order in the
kagome lattice, we used Q = ( 4π

3 , 0) and δ = ( 2π
L , 2π√

3L
) for

each L. In practice, we found more efficient using O j = S j

for small h and O j = ū j for large h because of the smaller
finite-size corrections.

For t = 1, 2, . . . , tSA, the temperature is dynamically up-
dated during the simulation:

T (t+1) = T (t ) − p

t
f
(
T (t )

)
, (C4)

where T (t ) is the temperature in the t th step of the SA, and
p is a parameter. We roughly set p ∼ 1

f ′(Tc ) to achieve the
fastest convergence, where f ′(Tc) is the derivative at the so-
lution (critical point) [66]. An optimized temperature Tc(L)
for each L was obtained such that Eq. (C1) was approxi-
mately satisfied. We extrapolated the phase transition point
from the optimized temperatures Tc(L), using the asymptotic
scaling form

Tc(L) − Tc(∞) ∝ L−1/ν, (C5)

where ν is the critical exponent of the correlation length.
The condition to satisfy in the SA can be selected for

each phase transition. For detecting the BKT transition of the
integer charged vortex, we used the Nelson-Kosterlitz formula
ρs(TBKT) = 2

πv2 TBKT [65] with v = 1, where ρs is the spin
stiffness. Thus, we set

f (T ) = 2

π
T − ρs. (C6)

The asymptotic scaling of the optimized transition tempera-
ture TBKT(L) is given by

TBKT(L) − TBKT(∞) ∝ (log L)−2 (C7)

because the correlation length exponentially diverges, ξ ∼
eA/

√
T −TBKT with a constant A.

We typically ran 215 MC steps for each SA step to calculate
the physical quantity and set tSA ∼ 103. We averaged the
obtained Tc(L) and TBKT(L) over more than ten independent
SA simulations.
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