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The stationary state of the spin Hall bar is studied in the framework of a variational approach that includes
nonequilibrium screening effects at the edges. The minimization of the power dissipated in the system is
performed taking into account the spin-flip relaxation and the global constraints due to the electric generator
and global charge conservation. The calculation is performed within the approximations of negligible spin-flip
scattering and strong spin-flip scattering. In both cases, simple expressions of the spin accumulation and the
longitudinal and transverse pure spin currents are derived analytically. In usual conditions, the maximum
amplitude of the spin accumulation is expected to be of the order of 1% of the equilibrium density carriers.
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I. INTRODUCTION

Spin accumulation can be produced at the edges of a
conducting bar at zero external magnetic field by injecting
an electric current into a nonmagnetic material with high
spin-orbit coupling [1–9]. This effect is called spin Hall ef-
fect (SHE). It has been predicted some decades ago [10]
and described in the framework of various theoretical mod-
els [11–19]. However, a description that takes into account the
nonequilibrium nature of the electric screening occurring in
the SHE is still an open problem. One of the main difficulties
is the same as for the classical Hall effect [20–29]; it is due
to the fact that the values of the charge and spin accumu-
lation at the edges of the Hall bar are not directly imposed
by the external constraints. Instead, for the stationary state,
the accumulation of electric charges and spins at the edges is
generated by the system itself, in reaction to the action of the
magnetic field (the spin-orbit effective magnetic field in the
case of SHE), together with stationary current injected from
the electric generator. As a consequence, the determination of
a unique solution to the spin-dependent drift-diffusion equa-
tions at stationary state—which necessitates local boundary
conditions—is problematic [14].

It is, however, possible to take into account the nonequi-
librium nature of the electric screening in the case of a ideal
Hall bar [30–35] on the basis of the least dissipation prin-
ciple [36–38]. The global constraints applied to the system
(current injection, global charge conservation, and geometry)
are used instead of the local boundary conditions. The usual
physical picture of the Hall effect without spin is then slightly
modified. Indeed, it can be shown [33] that the charges ac-
cumulated at the edges of the usual Hall bar are not static
but generate a nonuniform longitudinal current δJx(y). Phys-
ically, this surface current is responsible for the well-known
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robustness of the Hall voltage, which can be measured while
using a good or a bad voltmeter (i.e., with huge variations of
the electric leakage at the edges [39]), because the electric
charges accumulated are renewed permanently despite the
zero transverse current. Furthermore, if a secondary passive
circuit is contacted at the two edges of the Hall bar, the varia-
tional method shows that the electric current injected is mainly
carried by the longitudinal surface currents δJx(y) instead of
the transverse current Jy [35].

The question then arises about the application of this vari-
ational approach to the SHE in a spin Hall bar. Is the physical
picture modified? Is it possible to calculate the amplitude
of the spin accumulation and that of the pure spin currents
without assuming arbitrary values for the boundary conditions
at the edges? The goal of the present work is to answer to
these questions. The analysis is based on the two spin channel
model, which has been intensively used in the context of
giant magnetoresistance [40–45], spin-injection [46–48], and
SHE [12–15,17,49].

The paper is organized in six sections. In Sec. II be-
low, we introduce the system under study and the formalism
used for the model. For the sake of clarity the derivation of
the spin accumulation and currents is first performed in the
case of negligible spin-flip scattering in Sec. III. The Joule
functional is minimized under the global constraints, and the
stationarity condition for the electric current �J is obtained.
The spin accumulation is then derived by integration of the
Maxwell-Gauss equation. In Sec. IV, the same derivation for
the currents and the spin accumulation is performed taking
into account the spin-flip dissipation under the assumption
of strong spin-flip scattering. It is shown that the spin-flip
scattering imposes a transverse pure spin current, and the
profile of the spin accumulation is now composed of a linear
part and an exponential part. In Sec. V, the expressions for the
spin accumulation and the charge accumulation are discussed
from a quantitative viewpoint. Surprisingly, the quantitative
analysis seems to show that the exponential part of the spin
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FIG. 1. Schematic representation of the two channel model (cor-
responding to spin ↑ and spin ↓) for a spin Hall bar. The device
is contacted to an electric generator that imposes a longitudinal
stationary current J0

x (not shown). The charge accumulations ±δn�
and the inhomogeneous part of the longitudinal currents δJx�(y) =
Jx�(y) − J0

x are represented at both edges for each channel together
with the transverse current Jy� flowing from one edge to the other.

accumulation is negligible with respect to the linear part in
usual conditions. The main results are summarized in the
conclusion (Sec. VI).

II. THE MODEL

Before introducing the formalism, we first present an intu-
itive physical picture of the system under study as sketched
in Figs. 1 and 2. As pointed out in the Introduction, the
model is based on the two-channel approximation, which is
a convenient description that assumes the separation of the
typical timescales between the slow spin-flip relaxation rate
(internal variable described by the index � below) and the
fast spin-conserved electronic relaxation rates. In other terms,
the two spin channels ↑ and ↓ are well defined because the

FIG. 2. Superimposition of the two channels represented for the
symmetric device and environment (CE = 0 in the text). The electric
generator and the injected current J0

x are not shown for clarity. The
system is characterized by the absence of the total charge accumula-
tion, the spin accumulation nSp(y) = δn↑(y) − δn↓(y) with opposite
directions at the two edges, the inhomogeneous part of the longitu-
dinal spin currents JSp

x (y) = Jx↑(y) − Jx↓(y), and the transverse spin
current JSp

y = Jy↑(y) − Jy↓(y).

interchannel relaxation time is much larger than the intra-
channel relaxation times. In particular, the electric charges
relax toward the local equilibrium state inside each spin chan-
nel before spin-flip relaxation occurs. As a consequence, the
nonzero stationary charge-accumulation δn� �= 0 is generated
separately inside each spin channel, even if the total density
of the electric charges at the surface is homogeneous.

Without spin-flip scattering, the spin Hall bar is then equiv-
alent to a superimposition of two classical Hall bars submitted
to an effective spin-orbit magnetic field acting in opposite
directions but equal amplitudes (see Figs. 1 and 2). The typ-
ical behavior due to the screening observed in the usual Hall
bar [33–35] could then be extrapolated also for the spin Hall
bar (with the presence of longitudinal pure spin current near
the edges). However, the coupling between the two channels
due to both the electrostatic interaction [see Eq. (2) below] and
the spin-flip scattering renders the problem less intuitive. The
minimization of the dissipation functional is then necessary in
order to obtain analytical expressions. This is the reason why
we apply the variational method to the SHE with neglecting
the spin-flip scattering in a first step (the next section), and
we study the effects due to the addition of a strong spin-flip
scattering in a second step (Sec. IV).

The system is a long bar of width 2� and thickness d
composed of a thin layer of a nonmagnetic material with
strong spin-orbit coupling contacted to an electric generator.
We assume that the bar is invariant by translation along its
longitudinal axis x (i.e., we do not take into account the
region close to the generator nor the perturbation caused by
possible lateral contacts), that the lateral edges are symmetric,
that the device is planar (no charge transport in the z direc-
tion) and that the polarization axis of the spins is oriented
along the z direction. In the framework of the two-channel
model, the charge carriers are separated into two populations
that are the charge carriers of spin up ↑ and the charge carriers
of spin down ↓ with the respective charge-densities n↑ and n↓.

The conductor is characterized by a density of charge-
carriers nQ ≡ n↑ + n↓ = 2n0 + δnQ, where 2n0 is the density
defined by electroneutrality at equilibrium (i.e., without cur-
rent injected). Accordingly, n0 is uniform and does not
depend on the spin channel. On the other hand, δnQ(y) is the
charge accumulation, which is not a function of x due to the
invariance by translation and is the sum of the charge accumu-
lation for each spin channel: δnQ(y) = δn↑(y) + δn↓(y). The
Coulomb interaction is described by the electric potential V
that follows the Poisson law ∇2V = −qδnQ/ε, where q is the
charge of the carriers, ε is the permittivity of the material, and
�∇ = {∂x, ∂y} is the gradient operator in 2D.

The energy of the system is then defined by the two chem-
ical potentials μ↑ and μ↓ such that

μ� = kT

q
ln

(
n�
n0

)
+ V + μch

� , (1)

where k is the Boltzmann constant, T is equal to the
temperature of the material in the case of nondegenerate semi-
conductors, or T is equal to the Fermi temperature T ≡ TF in
the case of degenerate semiconductors and metals [50]. The
first term on the right-hand side accounts for the diffusion
of the carriers (this term is justified in the framework of the
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local equilibrium approximation [49,51]). The second term
describes the electric potential V . The third term μch

� is the
pure chemical potential that accounts for the spin-flip scat-
tering and is the main parameter for the description of giant
magnetoresistance effects [40–42,44–46]. In the following,
we assume that μch

� is uniform in order to treat uniquely the
spin accumulation due to the SHE in a homogeneous Hall bar.
The electric field reads �E = −�∇V = E0

x �ex + Ey �ey, where the
x-component E0

x is constant (due to the invariance along x), so
that the Poisson law is reduced to ∂yEy = qδnQ/ε. Note that
the electric field does not depend on the spin channel, so that
the electric potential V couples the two channels in Eq. (1).
We can rewrite the Poisson law with the help of the chemical
potential Eq. (1) as follows:

∇2μ� − λ2
D

qn0

ε
∇2 ln

(
n�
n0

)
+ qδnQ

ε
= 0, (2)

where λD =
√

kT ε
q2n0

is the well-known Debye-Fermi screening

length.
On the other hand, the transport equations for the charge

carriers are given by the Ohm’s law for each channel,

�J� = −σ̂� �∇μ� = −qn�η̂� �∇μ�, (3)

where σ̂� ≡ qn�η̂� is the spin-dependent conductivity tensor,
and η� is by definition the electric mobility tensor. As a
consequence of both the Onsager reciprocity relations [52]
and the property of the spin-orbit effective fields, the mobil-
ity tensor takes the following form in the orthonormal basis
{�ex↑ , �ey↑ , �ex↓ , �ey↓} (see Fig. 1):

η̂� = η

⎛
⎜⎜⎜⎝

1 θso 0 0

−θso 1 0 0

0 0 1 −θso

0 0 θso 1

⎞
⎟⎟⎟⎠,

where η is the mobility of the material and θso is the spin Hall
angle. The two diagonal submatrices are not coupled; this is
due to the fact that the two spin channels are well defined, as
discussed above. Note that the description holds whatever the
underlaying microscopic spin Hall mechanism (intrinsic, ex-
trinsic, orbital, etc.), as long as an internal effective magnetic
field can be defined. In usual conditions, the amplitude of the
spin Hall mobility ηθso is proportional to the amplitude of the
effective magnetic field. The transport equation reads

�J� = −qn�η( �∇μ� ∓ θso �ez × �∇μ�), (4)

where the symbols ∓ refer to spin channel ↑ for the upper
sign and spin channel ↓ for the lower sign. This equation is
equivalent to the Dyakonov-Perel equation of the SHE if one
considers only the projection of the spins over the perpendicu-
lar axis [49]. It is convenient to rewrite Eq. (4) in the following
forms:

−qn�η
(
1 + θ2

so

)
∂xμ� = Jx� ∓ θsoJy� (5)

−qn�η
(
1 + θ2

so

)
∂yμ� = Jy� ± θsoJx� (6)

‖ �J�‖2 ≡ J2
x� + J2

y� = (qn�η)2
(
1 + θ2

so

) ‖ �∇μ�‖2. (7)

The power dissipated by the charge carriers in each spin
channel is the Joule power,

PJ� = Slat

∫ �

−�

qn�η‖ �∇μ�‖2dy

= Slat

qn0η
(
1 + θ2

so

) ∫ �

−�

n0

n�
‖ �J�‖2dy,

where we have introduced the lateral surface Slat = Lx d ,
where Lx is the length of the Hall bar along the x direction.

On the other hand, the power dissipated by the spin-flip
scattering (i.e., the transition of an electric charge from one
spin channel to the other) per unit of volume reads L
μ2,
where 
μ = μ↑ − μ↓ and L is the Onsager transport coeffi-
cient describing the spin-flip relaxation rate in the framework
of the two-channel model [31,41,42,44,49]. The coefficient L
is a property of the material which is related to the measured
spin-flip scattering length lsf by the relation [49]

L = σ0

2l2
sf

, (8)

where σ0 is the conductivity. In the framework of the vari-
ational approach, and ignoring temperature gradient, the
stationary state is defined by the principle of least power
dissipation [37,38]. In other terms, the distribution of charge
densities and currents is determined by the state of minimum
power production, taking into account the global constraints
applied to the system. These constraints are due to the pres-
ence of the electric generator, the electrostatic boundary
conditions, and the symmetries of the device [30,31,33–35].
Due to the electroneutrality and the fact that the device is
symmetric, the integral of the total charge accumulated in the
two channels cancels out

∫ �

−�
(δn↑ + δn↓)dy = 0, or, in other

terms,

1

2�

∫ �

−�

(n↑(y) + n↓(y))dy = 2n0. (9)

On the other hand, the generator injects a constant current
through the device, so that the integrated current density is
constant,

1

2�

∫ �

−�

(Jx↑(y) + Jx↓(y))dy = 2J0
x . (10)

III. SHE WITH NEGLIGIBLE SPIN-FLIP SCATTERING

The approximation of negligible spin-flip scattering corre-
sponds to the case lsf � � where � is the width of the spin Hall

bar. Let use define the reduced power, P̃J� = qη(1+θ2
so )

Slat
PJ� =∫ �

−�

J2
x�+J2

y�
n�

dy. We shall use the Lagrange multipliers λJ and
λn in order to take into account the constraints, respectively,
Eq. (9) and Eq. (10) in the minimization of the functional F ,

FJ�[Jx�, Jy�, n�]

=
∫ �

−�

(
J2

x� + J2
y�

n�
− λJ (Jx↑ + Jx↓) − λn (n↑ + n↓)

)
dy.

(11)
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The minimum of the reduced Joule power FJ = P̃J↑ + P̃J↓
corresponds to

δFJ�
δJx�

= 0 ⇐⇒ 2Jx� = n�λJ , (12)

δFJ�
δJy�

= 0 ⇐⇒ Jy� = 0, (13)

δFJ�
δ(n�)

= 0 ⇐⇒ J2
x� + J2

y� = −λnn2
�. (14)

Using Eqs.(9), Eqs.(10), and Eq. (12) leads to λJ = 2J0
x

n0
so

that Jx� = n�
n0

J0
x . The stationarity conditions for the currents

are then defined by the two relations

Jx�(y) = J0
x

n�(y)

n0
and Jy� = 0. (15)

Similar to the usual Hall effect, there is no transverse current
in the device for łsf � �. The explicit expression of Jx�(y) is
obtained if we know the expression of the densities n�(y); this
is the aim of the following paragraph.

Inserting the stationarity conditions Eq. (15) into Eq. (5)

and Eq. (6), we deduce ∂xμ� = ∂xμ = −J0
x

qn0η(1+θ2
so ) and ∂yμ� =

∓ θsoJ0
x

qn0η(1+θ2
so ) . These two terms are constant so that ∇2μ� = 0

and the chemical potentials μ� are harmonic functions. Equa-
tion (2) reduces to

λ2
D∂2

y ln

(
1 + δn�

n0

)
= δnQ

n0
. (16)

In order to evaluate the global boundary conditions for the
electric field, we have to integrate the Maxwell equation
�∇ · �E = ∂yEy = q

ε
δnQ at a given point y0 inside the material

Ey(y0) = −∂yV (y0) = E∞

2
− q

2ε

∫ �

−�

δnQ(y)sgn(y − y0)dy,

(17)
where E∞ accounts for possible electric charges in the envi-
ronment of the spin Hall bar (this is the case if a conducting
or insulating layer is deposited on one side of the spin Hall
bar). Inserting the chemical potential Eq. (1), the transport
equation Eq. (6), and the stationary conditions Eq. (15) yields

± λ0
SH + λ2

D∂y ln

(
n�
n0

)
(y0) − CE

2

+ 1

2n0

∫ �

−�

δnQ(y)sgn(y − y0)dy = 0, (18)

where the asymmetry of the electric environment is described
by the characteristic length CE = εE∞

qn0
. We have also intro-

duced the spin Hall characteristic length proportional to the
injected current,

λ0
SH = ε

q2n2
0η

θso

1 + θ2
so

J0
x = λ2

D

kT

(
θso

1 + θ2
so

)
J0

x

n0η
. (19)

The three typical length scales λSH , λD, and CE in Eq. (18)
characterize the system. However, the difference of both spin
channels in Eq. (18) gives a simple expression of the spin
accumulation nSp = δn↑ − δn↓ across the spin Hall bar; at the

first order in δn�/n0, this is a line with a slope defined by the
ratio λ0

SH/λ2
D only. We have

nSp(y)

n0
= −2

λ0
SH

λ2
D

y = −2

(
θso

1 + θ2
so

)(
q
V

kT

)
y

L
, (20)

where we have introduced the longitudinal voltage 
V on the
right-hand side in order to compare the energy imposed by
the generator q
V with the thermal energy kT , as illustrated
in Fig. 3(b). The voltage 
V is measured along the axis x
over the distance L and is given by the relation 
V = E0

x L =
L J0

x /σ0. Note that at the first order in θso, the temperature
dependence has the form θso/kT where the spin Hall angle θso

is proportional to the amplitude of the effective magnetic field.
This is Curie’s law that describes the paramagnetic behavior
of the spin accumulation.

In order to summarize, we see that three main properties
of the spin accumulation are derived in the limit lsf � �: (a)
The linearity with y, (b) the linearity with the applied voltage

V , and (c) the proportionality with 1/T for nondegenerate
conductors. From a more quantitative viewpoint, the spin ac-
cumulation at the border is of the order of nSp(y = �)/n0 ≈
θso q
V/kT . The magnitude of the relative spin accumulation
is expected to be of the order of 1% for a applied electric field
of 5 mV/μm at 30 K with θSH ≈ 10−4.

Furthermore, if both the device and its environment are
symmetric, we have CE = 0. The sum of the two Eqs. (18)
at the first order in δn�/n0 gives

δnQ(y)

n0
= 0, (21)

and the relation δn↑ = −δn↓ is verified. Let us define the in-
homogeneous part of the longitudinal current δJx� = Jx� − J0

x
produced by the spin-orbit field. According to the expression
Eq. (15), δJx� is a pure spin current in the sense that the
inhomogeneous part of the current of electric charges δJQ

x is
zero and the current of spins JSp

x is proportional to the spin
accumulation nSp(y),

δJQ
x = δJx↑ + δJx↓ = 0 and

JSp
x = δJx↑ − δJx↓ = J0

x

nSp

n0
. (22)

This stationary state corresponds to symmetric SHE devices
as sketched in Fig. 1 and Fig. 2. Note that, according to
Eq. (20), the spin current JSp

x [Eq. (22)] is proportional to the
square of the injected current density ±(J0

x )2. The Joule heat-
ing is thus expected to be a power four of the injected current,
which is not without consequence for the heat produced inside
the device [53].

However, if the device or its environment is not symmetric
(typically if a supplementary layer is deposited on one side of
the device), the typical length CE defined in Eq. (18) is not
zero and there is an asymmetry of the charge accumulation
and spin polarization between the two edges. The following
charge accumulation appears:

δnQ(y)

n0
= CE

λD

√
2

sh
(√

2
λD

y
)

ch
(√

2
λD

�
) , (23)
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(a) (b)

FIG. 3. (a) Transverse pure spin current JSp
y [Eq. (37) in the text] as a function the ratio �/lsf of the width of the spin Hall bar over the

spin-flip scattering length [Eq. (37) and Eq. (36)]. (b) Longitudinal pure spin current JSp
x as a function of the temperature [Eq. (39)] and

[Eq. (20)] for different values of the injected voltage q
V , expressed in meV . The amplitude is calculated for y = L = �. The currents are
normalized by the product of the injected current 2J0

x by the spin Hall angle θso at the first order in θso.

and residual spin Hall voltage is generated. This result seems
to be in agreement with the discussion developed in Ref. [54].

IV. APPROXIMATION OF LOCALIZED SPIN-FLIP
SCATTERING AT THE EDGES (lsf � �)

The previous section describes the case of negligible spin-
flip scattering, i.e., large spin-diffusion length with respect to
the width of the spin Hall bar. In this section we will explore
the opposite limit, for short spin-diffusion length with respect
to the spin Hall bar lsf � �. This situation can be described
by a spin-flip scattering that occurs locally at the edges. This
approximation is usual in practice, since the spin Hall bar
should be large enough for magneto-optic measurements.

Let us first define 
μ0 such that


μ0 =
∫ +�

−�

dy ∂yμ↑ −
∫ +�

−�

dy ∂yμ↓. (24)

The subscript 0 points out that the potential difference is
evaluated between y = +� and y = −�. Note that due to the
translation invariance along x we have ∂x
μ = 0 and ∂xμ↑ =
∂xμ↓. In the framework of our approximation, the power dis-
sipated by the spin-flip scattering is a constant given by Psf =
v L
μ2

0, where v = 2Slat� is the volume of the device. Insert-
ing the transport equations (5) and (6) into Eq. (24) gives


μ0 = −
A

qη
(
1 + θ2

so

) , (25)

where 
A is given by the integrals


A =
∫ +�

−�

dy
Jy↑ + θsoJx↑

n↑
−

∫ +�

−�

dy
Jy↓ − θsoJx↓

n↓
. (26)

The reduced dissipated power P̃ = qη(1+θ2
so )

Slat
P then reads

P̃ = P̃J + P̃sf

=
∫ +�

−�

(
J2

x↑ + J2
y↑

n↑
+ J2

x↓ + J2
y↓

n↓

)
dy + α (
A)2 (27)

expressed as a function of the control parameter α, defined by

α = L 2�n0

σ0
(
1 + θ2

so

) = n0�

l2
sf

(
1 + θ2

so

) . (28)

We used Eq. (8) for the expression of α as a function of
the spin-flip scattering length lsf , which is well known in the
context of the giant magnetoresistance effects. The functional
of the dissipated power now reads

F[Jx�, Jy�, n�]

=
∫ �

−�

[(
J2

x↑ + J2
y↑

n↑
+ J2

x↓ + J2
y↓

n↓

)

− λJ (Jx↑ + Jx↓) − λn (n↑ + n↓)

]
dy + α(
A)2, (29)

and its minimization leads to the stationarity conditions. The
functional derivation as a function of Jx� gives

δF
δJx�

= 0 ⇐⇒ ±2 α θso
A + 2Jx� = n�λJ . (30)

The Lagrange coefficient λJ is determined using the global
conditions Eq. (9) and Eq. (10) on currents and charges for
the sum of the two channels,

λJ = 2J0
x

n0
. (31)

Reinserting Eq. (31) into Eq. (30) gives the longitudinal cur-
rents as a function of the spin-dependent density of electric
charges,

Jx�(y) = n�(y)

n0
J0

x ∓ αθso 
A. (32)

On the other hand, the minimization as a function of Jy� gives
the current across the spin Hall bar,

δF
δJy↑

= 0 ⇐⇒ Jy� = ∓α
A. (33)
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Equation (33) shows that the transverse current Jy� is constant.
Furthermore, Jy� is a pure spin current, in agreement with the
results known from the direct resolution of the spin-dependent
drift-diffusion equations [10,13–15,18]. Indeed, the charge
current vanishes JQ

y ≡ J0
y↑ + J0

y↓ = 0, and the spin current

reads JSp
y ≡ J0

y↑ − J0
y↓ = 2J0

y↑.
Inserting the expression of the transverse current Eq. (33)

into the expressions of the longitudinal current Eq. (32) di-
vided by the density n�, the sum over the two channels then
reads

Jx↑
n↑

+ Jx↓
n↓

= 2J0
x

n0
+ θsoJ0

y

(
1

n↑
− 1

n↓

)
. (34)

In order to simplify as much as possible the physical inter-
pretation, we continue the derivation at the first order in the
accumulation δn�/n0 (which is a realistic case). This approx-
imation leads also to the first order in δJx�/J0

x . Equation (26)
then becomes 
A ≈ 4�

n0
(J0

y + θsoJ0
x ) so that the stationarity

condition Eq. (33) reads

Jy� = ∓ α̃

1 + α̃
θsoJ0

x , (35)

where we have introduced the dimensionless parameter

α̃ = 4�α

n0
= 4�2

l2
sf

(
1 + θ2

so

) . (36)

The curve JSp
y [Eq. (35) with Eq. (36)] is plotted in Fig. 3(a)

as a function of the ratio �/lsf . We see that the current J0
y is

composed of the same current as that expected in a Corbino
disk of the same material [32,55], i.e., JCorbino

y� = ∓θsoJ0
x , but

weighted by the coefficient α̃/(α̃ + 1), where the control pa-
rameter α̃ is given by Eq. (36).

(1) Note that in the case of small spin-flip scattering,
i.e., lsf/� > 1, the control parameter α̃ goes to zero and
Jy� → 0, which is indeed the result obtained in the approx-
imation treated in the previous section.

(2) In the other limit of strong spin-flip scattering, i.e.,
small spin-diffusion length lsf/� � 1, the ratio α̃/(1 + α̃) is
close to 1, and the spin currents Jy� are maximum, like in the
Corbino disk. The presence of this transverse pure spin current
with α̃ = 1 is the major feature of the SHE as described in
previous theories (i.e., without taking into account the out-of-
equilibrium electric screening).

The transverse charge and spin currents then read

JQ
y (y) = 0 and JSp

y (y) = 2J0
y = −2

α̃

1 + α̃
θso J0

x , (37)

where J0
y = J0

y↑ = −J0
y↓.

The longitudinal spin currents Eq. (32) with Eq. (33) now
read

Jx�(y) =
(

n�(y)

n0
∓ α̃

1 + α̃
θ2

so

)
J0

x . (38)

The solution Eq. (15) found for Jx� in the case without spin
flip is now corrected by a small term proportional to θ2

so. The
longitudinal charge current and the longitudinal spin current

are given by the expressions

JQ
x (y) = J0

x

(
2 + δnQ(y)

n0

)
and

JSp
x (y) = J0

x

(
nSp(y)

n0
− 2

α̃

1 + α̃
θ2

so

)
. (39)

In conclusion, the stationary state for the spin Hall bar for
lsf � � and at the first order in δn�/n is simply defined by
Eq. (35) and Eq. (38), where the expression of n� is given by
the solution of the Poisson law Eq. (2). At the first order in θso,
the stationary states obtained in the previous section are recov-
ered; there is a solution of continuity between the two opposite
approximations used in this study. The following paragraphs
are devoted to the calculation of the densities n�(y).

Injecting Eq. (35) and Eq. (38) into Eq. (6) in order to
obtain ∂yμ, the Poisson law Eq. (2) reads now at the first order
in δn�/n0

∂2
y (δn�) ∓ λSH

λ2
D

(
1 ± θ2

so

)
∂y(δn�) − δnQ

λ2
D

= 0, (40)

where we have define the spin Hall characteristic length under
spin-flip scattering as

λSH ≡ ε

q2ηn2
0

J0
y

1 + θ2
so

= − α̃

1 + α̃
λ0

SH , (41)

where λ0
SH is the spin Hall length with negligible spin-flip

scattering defined in Eq. (19). Since the measured spin-
Hall angle verifies θso � 1, Eq. (40) can be approximated
at the first order in θso. Summing and subtracting the equa-
tions Eq. (40) for the two channels, we have the coupled
equations

∂2
y nSp

n0
− λSH

λ2
D

∂yδnQ

n0
= 0, (42)

∂2
y δnQ

n0
− λSH

λ2
D

∂ynSp

n0
− 2

λ2
D

δnQ

n0
= 0. (43)

In the case of symmetrical device and electrical environ-
ment (CE = 0), the spin accumulation is an odd function of y,
and the solutions of Eq. (42) and Eq. (43) are

nSp(y)

n0
= a y + b sh

(
y

λm

)
(44)

and

δnQ(y)

n0
= c + d ch

(
y

λm

)
, (45)

where a, b, c, and d are the integration constants defined by the
global constraints and symmetries (see the next section). The
typical spin Hall diffusion length λm is given by the expression

λm = λD√
2 + (

α̃
1+α̃

λ0
SH

λD

)2
. (46)

Note that the charge accumulation δnQ(y) is an even function
of y. The voltage difference 
V = 0 is zero between the two
edges of the device like in the case without spin flip (for
CE = 0).

174419-6



SCREENING EFFECT IN SPIN HALL DEVICES PHYSICAL REVIEW B 105, 174419 (2022)

V. DISCUSSION

From a more quantitative viewpoint, the expression
Eq. (46) can be simplified due to the small value of the Debye-
Fermi length λD. Indeed, the maximal value is of the order
of some few microns, λ2

D < 10−10 m2. On the other hand, the
quantitative evaluation of the ratio λ0

SH/λ2
D ≈ θso ( q
V

kT ) 1
L , typ-

ically smaller than the unity (in m−1), has been performed in
the previous section below Eq. (20). This quantity depends on
the intensity of the voltage 
V imposed by the generator, but
it is limited for experimental reasons (especially the limit of
electromigration) and is also due to the limit of validity of our
model (semiclassical diffusive process for which nSp/n0 < 1).
As a consequence, the product (λ0

SH/λ2
D)2 λ2

D is negligible
with respect to 2 in Eq. (46). Since we have α̃/(1 + α̃) � 1,
we expect λm ≈ λD/

√
2 whatever the value of the ratio lsf/�.

Furthermore, if we apply the global condition Eq. (9)∫
δnQ(y)dy = 0, we obtain a relation between a and b. A

supplementary condition is necessary for the full determina-
tion of the coefficients a and b (see below). However, we
have already a surprising result that should be pointed out
about the stationary solution [Eq. (44)]. Indeed, the ratio of
the hyperbolic term over the linear term in Eq. (44) is now
univocally defined, and we have

b sh(y/λm)

ay
� b sh(�/λm)

a�
= 1

2

(
α̃

1 + α̃

)2 (
λ0

SH

λD

)2

. (47)

According to the above discussion, λ0
SH/λ2

D is upper bounded
by one so that the ratio is below or of the order of λ2

D and the
contribution of the hyperbolic term seems to be negligible in
usual conditions. Equation (44) thus reduces to nSp(y)

n0
≈ a y.

Furthermore, the parameter b is proportional to ( α̃
1+α̃

)2 that
tends to zero for lsf/� � 1: The stationary state under spin-
flip converges to the stationary state defined without spin-flip
calculates in Sec. III.

The condition of a continuity solution for all values of lsf

leads to the determination of the coefficients a and b,

a = −4
λ2

m

λ2
D

(
λ0

SH

λ2
D

)
≈ −2

λ0
SH

λ2
D

, (48)

and

b = −2
�λ2

m

sh
(

�
λm

) (
λ0

SH

λ2
D

)3 (
α̃

1 + α̃

)2

. (49)

The spin accumulation Eq. (44) is plotted in Fig. 4. On the
other hand, the constant for the charge accumulation Eq. (45)
is

c = −2
α̃

1 + α̃
λ2

m

(
λ0

SH

λ2
D

)2

, (50)

whose maximum value is of the order of λ2
Da2, i.e., small, and

d = 2
λm�

sh
(

�
λm

) (
λ0

SH

λ2
D

)2 ( α̃

1 + α̃

)
, (51)

so that the maximum value of the second term dch(y/λm) in
the right-hand side of Eq. (45) is of the order λDa2. The linear
part of the charge accumulation is negligible and the profile is
hyperbolic, as for the case without spin-flip treated in Sec. III.

FIG. 4. Spin accumulation nSp [Eq. (20) in the text] as a func-
tion the ratio y/� for different values of the ratio q
V/kT , from
q
V/kT = 2 to q
V/kT = 12. The spin accumulation is normal-
ized by the product of the density of carriers at equilibrium 2n0 by the
spin Hall angle θso. The curve for q
V/kT = −12 shows that revers-
ing the electric polarity reverses the sign of the spin accumulation.

Accordingly, it seems that the role of the spin-flip scat-
tering is negligible for both spin accumulation and charge
accumulation. In usual conditions, the unique qualitative ef-
fect of spin-flip scattering in the SHE is the generation of
the transverse spin current JSp

y . The result of the linear de-
pendence on y is confirmed by the observations performed by
Bottegoni et al. [9] on devices for which the spin-diffusion
length lsf is large in absolute value but still smaller or of the
same order than the width � of the spin Hall bar. The mea-
surements indeed show that the spin accumulation is linear in
y, linear in 
V , and inversely proportional to the temperature,
in agreement with our results.

VI. CONCLUSION

The stationary state of the spin Hall bar has been stud-
ied in the framework of a variational approach that includes
nonequilibrium screening effects. It is shown that the mini-
mization of the heat power under the global constraints (global
galvanostatic conditions and global electroneutrality) then al-
lows the stationary state to be defined univocally. Indeed, the
values of the current density and carrier density at the edges
are imposed by the system itself in reaction to both the current
injected by the generator and the static effective magnetic
field. These values at the edges can thus hardly be used as
fixed boundary conditions in order to solve the spin-dependent
drift-diffusion equation.

Since the nonequilibrium screening effect modifies the cur-
rent densities [generating a pure spin current JSp

x (y) �= 0], it
appears to be one of the main properties to be considered in
order to define the stationary state. Note, however, that due to
the small values of the Debye-Fermi length λD with respect
to the other typical length scales, the amplitude of the spin
accumulation nSp(y) does not seem to depend crucially on λD.

The calculation is performed within the two limiting cases
that are the negligible spin-flip scattering limit lsf/� � 1 and
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the strong spin-flip scattering limit lsf/� � 1 (where lsf is the
spin-flip scattering length and � is the width of the spin Hall
bar). In both cases, the profile of the spin accumulation nSp(y)
and the spin currents �J�(y) can be described analytically. The
two limits coincide, and simple expressions are given at the
first order in the spin accumulation.

In the approximation of negligible spin-flip scattering, the
main result is the absence of transverse currents Jy� = 0 with
a longitudinal spin current JSp

x (y) proportional to the spin
accumulation nSp(y). The spin accumulation nSp(y) is shown
to be linear in y (across the device), linear in the electric field
imposed by the generator along the x axis (i.e., linear to the
injected current J0

x ), and inversely proportional to the tem-
perature for nondegenerate conductors. The maximal order of
magnitude expected for the spin accumulation is nSp/n0 ≈ 1%
for θSH ≈ 10−4 in an electric field of the order of 5 mV/μm
at 30 K .

In the case of strong spin-flip scattering, the main differ-
ence with the case of negligible spin-flip is the presence of a
transverse pure spin current JSp

y , which flows across the sam-

ple, as predicted by the usual spin-dependent drift-diffusion
model. However, this current is weighted by the factor α̃/(1 +
α̃) [Eq. (35)], where α̃ ≈ (2�/lsf )2 [Eq. (36)]. This multi-
plying factor describes the transition from a strong spin-flip
scattering regime to a weak spin-flip scattering regime for
which the transverse spin current vanishes.

Furthermore, it is shown that if the spin Hall bar is asym-
metric, a voltage is generated between the two edges described
by the parameter CE [Eq. (23)]. This voltage should be present
if a material is deposited on one side of the spin Hall bar.
A more detailed description of a spin-dependent effect due
to the deposition of a magnetic layer will be the object of
forthcoming developments.
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