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The control of spin waves in periodic magnetic structures has facilitated the realization of many functional
magnonic devices, such as band stop filters and magnonic transistors, where the geometry of the crystal structure
plays an important role. Here, we report on the magnetostatic mode formation in an artificial magnetic structure,
going beyond the crystal geometry to a fractal structure, where the mode formation is related to the geometric
scaling of the fractal structure. Specifically, the precessional dynamics was measured in samples with structures
going from simple geometric structures toward a Sierpinski carpet and a Sierpinski triangle. The experimentally
observed evolution of the precessional motion could be linked to the progression in the geometric structures
that results in a modification of the demagnetizing field. Furthermore, we have found sets of modes at the
ferromagnetic resonance frequency that form a scaled spatial distribution following the geometric scaling. Based
on this, we have determined the two conditions for such mode formation to occur. One condition is that the
associated magnetic boundaries must scale accordingly, and the other condition is that the region where the mode
occurs must not coincide with the regions for the edge modes. This established relationship between the fractal
geometry and the mode formation in magnetic fractals provides guiding principles for their use in magnonics
applications.
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I. INTRODUCTION

In solid state physics, materials are often described in the
context of crystals that consist of periodic arrays of atoms.
However, there are many materials that do not belong to this
category [1,2]. Some materials have ordered structures but do
not possess translation symmetry, such as quasicrystal and
fractal structures [1,3,4]. For example, for porous materials,
the pores form a fractal structure and can be effectively de-
scribed by the fractal theory [5,6]. Fractals, by definition,
are composed of self-similar structures across different length
scales, which look similar under different magnifications. This
property is commonly referred to as dilation symmetry, which
is the most distinctive feature of fractals [4]. There are many
examples of fractals in nature, such as snowflakes, Romanesco
broccoli, and coastlines. In addition, the geometry of frac-
tals has been exploited in many artificial metamaterials for
manipulating material properties [7–10]. For example, fractal
cavities have been used to localize electromagnetic waves [7],
and microwave fractal antennas can exhibit multiband behav-
ior [8]. Additionally, many emergent phenomena in different
physical systems exhibit fractal-like behaviors, such as the
Hofstadter butterfly [11], and dynamic fractals generated from
optical and spin-wave solitons [12–15].
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The fractal geometry can also be implemented in mag-
netic systems to modify the magnetic properties, such as
the hysteresis loop [16], the magnonic band structure, and
the spin-wave localization. Various ferromagnetic structures
with crystal geometries have been successfully exploited to
engineer different spin-wave band structures [17–24], while
the localization of spin waves and self-similarity in the spin-
wave spectra have been observed in magnonic quasicrystals
[25–29]. In a similar way, the fractal geometry should mod-
ify the corresponding spin-wave properties. Moreover, fractal
structures possess a noninteger dimension, which is com-
monly referred to as the Hausdorff dimension or fractal
dimension [30]. This dimension confines the magnetic in-
teractions to between 1D and 2D, and hence fractals can
modify the spin-wave dispersion in a unique way [31]. Early
works on magnetic fractals were focused on diluted antifer-
romagnets, where the magnetic ions can form a percolating
structure that is a statistical fractal [32]. Recently, the spin-
wave spectra in square-based ferromagnetic Sierpinski carpet
structures were also reported [33,34]. In Ref. [33], devil’s
staircase spin-wave spectra, remaining at all iteration steps
in the exchange approximation, were theoretically predicted.
The experimental realization of the square Sierpinski carpet
up to the third iteration level with broadband ferromagnetic
resonance measurements showed an increase of quantized
spin-wave modes with the increase of the iteration level [34].
However, how the origin of the spin-wave modes depends
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FIG. 1. (a) SEM image of the square (SQ) and triangular (TRI) structures. (b) Schematic of the TRSKM setup and the sample.
(c), (d) TRSKM measurements of the sample TRI-0 at B = 15 mT and fRF = 3.7 GHz. (c) Normalized time-resolved Kerr rotation. (d) Five
normalized scanning Kerr rotation images, in the range [−1, 1], measured from t1 to t5 at 360, 465, 570, 675, and 780 ps, respectively, which
are indicated by the solid lines in (c).

on the scaling of the fractal geometry as well as experimen-
tal visualization of the spin-wave modes have not yet been
reported.

In this paper, we demonstrate a method for analyzing the
magnetostatic spin-wave modes in magnetic fractals with the
increase of the iteration level of the fractal structure. We
have observed a complex evolution of the spin-wave modes
when a simple square is evolved toward a Sierpinski square
whereas a single uniform spin-wave mode is observed when
a simple triangle is developed toward a Sierpinski triangle
[35]. By comparing the evaluation of spin-wave modes in
the square structures when going from the first to third it-
eration, we confirmed experimentally the trend of the mode
formation in magnetic fractals, which is directly related to
the geometric scaling. To explain the experimental results, we
have performed micromagnetic simulations, which show good
agreement with the experimental observations. We found an
important influence of the boundaries on the spin-wave spec-
tra. In particular, if the magnetic boundaries are similar, the
amplitude distribution of the spin-wave mode follows the ge-
ometric scaling to form scaled mode patterns in fractal-like
structures with a change of the iteration level. Our obser-
vations point at the potential of 2D fractal structures to be
implemented in novel types of functional magnonic devices.

II. EXPERIMENTAL DETAILS

A. Sample fabrication and design

Two sets of 20 nm thick Ni83Fe17 (Permalloy) samples with
square and triangle shaped elements were fabricated on top of
a microstrip transmission line using electron-beam (e-beam)
lithography combined with DC magnetron sputtering with a
base pressure of ∼3 × 10−8 mbar, followed by a liftoff pro-
cess. To prevent oxidation, a 2-nm Al layer was deposited on
top of the ferromagnetic layer. The transmission line was fab-
ricated on top of a high-resistivity Si substrate, using e-beam

lithography in conjunction with e-beam evaporation, followed
by a liftoff process. The composition of the transmission line
is Cr(2 nm)/Cu(100 nm)/Cr(2 nm), and its width is 20 μm.

For square structures [see Fig. 1(a)], the simplest is SQ-0,
a featureless square whose side length is 9 μm. To generate
the next structure SQ-1, a 3 μm × 3 μm square is removed at
the center of SQ-0. SQ-1 is defined as the base structure with
iteration number 1. This base structure can be considered to
be made up of eight similar squares, each with a side length
1/3 of SQ-0. For the next structure, SQ-1 is scaled by a factor
of 1/3, and repeated 8 times following the pattern of SQ-1
to generate SQ-2, with iteration number 2. Following this
iteration, SQ-3 is generated based on SQ-2 and has an iteration
number 3. This iteration process can in principle be continued
to go to infinity to create an ideal fractal, which is commonly
referred to as a Sierpinski carpet. However, experimentally
this is limited by the smallest feature size that can be created
with electron beam lithography.

For triangular samples [see Fig. 1(a)], TRI-0 is an equi-
lateral triangle with the side length of 10 μm. To generate
TRI-1, an equilateral triangle is removed, whose vertices are
at the centers of the three sides of TRI-0. Similar to the
square samples, TRI-1 is defined as the base structure for the
triangular sample set, and TRI-1 can also be considered as
three triangles with a side length of 5 μm. To further generate
TRI-2 and TRI-3, a similar iteration process to that used for
the square fractals can be used, but with a scaling factor of
1/2. The details are given in the Supplemental Material [36].

B. Time-resolved precessional dynamics

To characterize the precessional dynamics, a time-resolved
scanning Kerr microscope (TRSKM) setup was employed
to obtain both time and spatially resolved images with
magnetic contrast, taking advantage of the magneto-optical
Kerr effect (MOKE) [37,38], as shown in Fig. 1(b). It
is based on an electrical excitation and optical detection
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pump-probe setup with an ultrafast fiber laser system having
a central wavelength of 1030 nm, pulse width of ∼50 fs,
and repetition rate of 200 kHz [37,38]. The laser beam
is guided through a variable delay stage, and subsequently
focused on to the sample using a long working distance mi-
croscope objective with numerical aperture of 0.55 to probe
the precessional dynamics using the polar MOKE geometry.
As shown in Fig. 1(b), a radio-frequency (RF) signal from the
synthesizer (ADF5355, Analog Devices), which is synchro-
nized with the laser pulse, is passed through the microstrip
transmission line to generate the RF magnetic field for exci-
tation of the precession of the magnetization in the magnetic
structures. To retrieve the signal, a lock-in detection scheme is
used (HF2, Zurich Instruments), where the ∼2 kHz reference
signal from the lock-in amplifier is used to drive an RF switch
to modulate the RF current.

For each sample, the time-resolved precession was mea-
sured in the frequency range fRF = 2.0–5.5 GHz, with a step
size of 0.1 GHz. For these measurements, the laser beam
was slightly defocused in order to fully cover the geomet-
ric structures. The precessional amplitude for each excitation
frequency was subsequently extracted in order to obtain a
complete frequency spectrum. Next, the peaks in the fre-
quency spectra were chosen at which the 2D scanning Kerr
images were measured. For these measurements, the laser
beam was completely focused to the spot size ∼1.1 μm. For
all the scanning Kerr images, the samples were scanned in
steps of 400 nm, and measurements were taken at a spe-
cific time instant where the corresponding phase value of the
sinusoidal oscillation was π/2. For example, for TRI-0 at
3.7 GHz, the delay stage was moved to t5 [see Fig. 1(c)]. It
should be noted that this time value is different for different
frequencies.

An external magnetic field that is sufficient to saturate the
samples (15 mT) is applied parallel to the transmission line
(see the hysteresis loops in the Supplemental Material [39]),
which provides the RF signal to excite spin waves. Subse-
quently, the spatial distribution of the out-of-plane component
of the magnetization mz at different times is acquired using
the TRSKM technique as shown in Figs. 1(c) and 1(d).

III. RESULTS AND DISCUSSION

A. Precessional dynamics of the samples

First looking at the precessional dynamics observed for
the triangular samples, as shown in Fig. 2, we find that there
is one mode for each sample, indicated by the red marker,
where a uniform distribution of mz in each triangle is present.
For TRI-0, two modes at 3.2 GHz and 3.7 GHz are observed
whereas for TRI-1 and TRI-2, only a single mode at 3.7 GHz
is present. It is observed from the scanning Kerr images
[see Fig. 2(c)] that the modes are quite uniformly distributed
throughout the triangular structures. The observed dynamics
is isolated in the individual subtriangles since each triangular
substructure has only point contacts with its neighbors at
the vertices. However, the same frequencies on the last two
iteration levels point at in-phase oscillations in all triangles,
and lack of the structural effects above the TRI-1 level for

FIG. 2. TRSKM measurements of triangular structures. (a) Fre-
quency spectra of the triangular structures TRI-0 to TRI-2. (b) SEM
images of structures TRI-0 to TRI-2, with the magnetic field direc-
tion indicated next to TRI-2. (c) Normalized scanning Kerr images
measured for the three samples. The mode is indicated by red mark-
ers in (a).

this detected mode. For TRI-3, the scanning Kerr image is
not well resolved due to the limited spatial resolution (see the
Supplemental Material [40]), and hence no conclusions can be
obtained.

For square samples, the precessional dynamics becomes
more complex when going from SQ-0 to SQ-2, in terms of
both the frequency spectra [see Fig. 3(a)] and scanning Kerr
images [see Fig. 3(c)]. For SQ-0, a broad peak is observed
in the frequency spectrum. For the corresponding scanning
Kerr image at 3.7 GHz, it can be seen that mz is uniformly
distributed across the whole square. For SQ-1, the frequency
peak has a small redshift, compared with that of SQ-0 and,
for the mode at 3.1 GHz, the mz distribution is more con-
centrated at the upper and lower parts of SQ-1. Moving
to SQ-2, the dynamics becomes complex. In the frequency
spectrum, multiple peaks are present, which are indicated
by the three different colored markers in Fig. 3(a). For a
better description, several geometric substructures are defined
for SQ-2, as shown in Fig. 3(b). L1–L4 are the four edges
with width of 9 μm, s1 is the central 3 μm × 3 μm square
hole, and s2 corresponds to the eight 1 μm × 1 μm square
holes. For the mode at 3.4 GHz, the distribution of mz in
the scanning Kerr image is concentrated along the periph-
eries of the eight s2 voids. When the frequency is increased
to 3.7 GHz, it can be seen that the higher intensity parts
of the mz distribution form several patches next to the s2
voids. When the excitation frequency is further increased to
4.4 GHz, the patches start to merge together, forming four
slightly curved wormlike structures that are oriented at 45◦
and 135◦ with respect to the applied field. Moving to SQ-3,
the dynamics should be in principle more complex than SQ-2,
since it has 64 smaller square voids with width ∼333 nm.
However, since the size of the smallest structures is below the
size of the laser spot, 1.1 μm, the spatial distribution of the
dynamics becomes difficult to resolve (see the Supplemental
Material [40]).
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FIG. 3. TRSKM measurements of square structures. (a) Frequency spectra of square structures SQ-0 to SQ-2. (b) SEM images of structures
SQ-0 to SQ-2. For SQ-2, L1–L4 are the four edges with width of 9 μm, s1 is the central 3 μm × 3 μm square hole, and s2 corresponds
to the eight 1 μm × 1 μm square holes. (c) Normalized scanning Kerr images of the different modes for the three structures. The modes
corresponding to different frequencies are indicated by different colored markers in (a).

B. Mode analysis for SQ-2

To understand the dynamics, micromagnetic simulations
based on the Landau-Lifshitz-Gilbert (LLG) equation were
performed using MuMax3 [41]. The parameters used in the
simulations were damping α = 0.02, exchange constant 1.3 ×
10−12 J/m, magnetocrystalline anisotropy constant K = 0,
saturation magnetization μ0MS = 0.956 T, and cell size 2 ×
2 × 20 nm3. To match the experimentally observed scan-
ning Kerr images, a single-frequency excitation of the form
A sin(2π f t ) is used, where f and A are the excitation fre-
quency and amplitude. To simulate broad band spin wave
frequency spectra, another set of micromagnetic simulations
are performed, using an external microwave magnetic field of
the form A sinc(2π fcutt ) = A sin(2π f t )/(2π fcutt ) where A is
5.0 × 10−5 T and fcut (cutoff frequency) is 15 GHz.

For the triangular structure, the micromagnetic simulations
confirm the presence of a single mode and the mode-profile
calculation also demonstrates the discrete dynamics of the
individual subtriangles shown in the Supplemental Material
[42]. The spin-wave dynamics for the triangular structure is
relatively simple compared to the complex dynamics observed
in the square structure. Therefore, extended micromagnetic
simulations are performed for the square structure to obtain
an in-depth understanding of the complex dynamics.

For the square structure, initially the system is excited
using a single-frequency sinusoidal excitation with two sim-
ulation frequencies of 3.66 and 4.56 GHz, which are close
to the experimental values as shown in Fig. 4. For both
frequencies, in order to be consistent with the experimental
conditions, the snapshots of the simulated spatial distributions
of mz are taken at the two times indicated by the red dashed
lines in Fig. 4(a), which correspond to the phase value close
to π/2 for each sinusoidal oscillation. In Fig. 4(b), it can be
seen that, for 3.66 GHz, there are eight lobelike structures
located in between the s2 structures and, for 4.56 GHz, there

are four wormlike structures at the corners of the s1 structure,
demonstrating good agreement with the experimental results
in Fig. 4(c) for SQ-2. The small discrepancies between the
experimental and simulation frequency and phase values may
be due to a variety of effects, such as edge roughness and a
possible difference in the saturation magnetization values.

The simulated frequency spectrum, excited using a sinc
function to give a complete overview of the precessional dy-
namics for SQ-2, is shown in Fig. 5(a). As indicated by the
different color shaded areas, the observed modes are classified
into three categories, namely the edge mode (E), the first-order
localized mode (M), and the higher-order mode (HO). The
complete mode profiles with amplitude and phase distribu-
tions are shown in the Supplemental Material [43]. Here,
we focus on the three first-order localized modes, M1, M2,
and M3, with frequency values of 3.66, 4.18, and 5.08 GHz,
respectively, as shown in Fig. 5(b). For M1, the mode forms
four vertically orientated lobelike structures, each located in
between the two vertical edges of s2. For M2, the mode
forms four rounded structures, each located in between the
two horizontal edges of s2. For M3, the mode forms a rather
different pattern, which contains eight barlike structures, four
in the upper part, and four in the lower part of SQ-2. Since the
amplitudes of these three modes are concentrated at locations
near the s2 structures and each local precession is almost
uniform with a phase variation smaller than 0.07π (see the
Supplemental Material [43]), we refer to these three modes as
the first-order localized modes.

To ascertain the origin of these modes, the total internal
field distribution Btot for the static magnetic system is cal-
culated, which consists of three contributions: the applied
magnetic field, the demagnetizing field, and the exchange
field. As shown in Fig. 5(c), it can be seen that the modes M1
to M3 appear at the regions with Btot ∼ 15 mT, which is the
value of the applied magnetic field. In these regions, the total
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FIG. 4. Comparison between the simulated and experimental results for SQ-2. (a) Simulated time-resolved precession using two single-
frequency excitations at 3.66 and 4.56 GHz. (b) Simulated mz distributions that are taken at the time indicated by the red dashed lines in (a).
The color maps are set to optimize the image contrast for the spatial distribution. (c) Experimental scanning Kerr images at the phase value of
π/2 for the corresponding sinusoidal oscillation at frequencies of 3.7 and 4.4 GHz. The color scale for (c) is similar to that used in Fig. 3(c).

internal field is dominated by the applied magnetic field. As a
result, the local precessional dynamics is similar to the ferro-
magnetic resonance of a thin film. However, due to structuring
and the local demagnetizing field, the uniform precession

becomes confined and splits into different frequencies. To
quantify the influence of the locally varying demagnetizing
field, five line profiles of Btot at five different regions are taken,
as indicated by the dotted lines in Fig. 5(c). According to the

FIG. 5. Analysis of simulated modes for SQ-2. (a) Frequency spectrum of SQ-2 at 15 mT, with the edge modes (E), the first-order localized
modes (M), and the higher-order modes (HO) indicated with different color shaded areas. (b) Amplitude distributions of the three modes M1
(3.66 GHz), M2 (4.18 GHz) and M3 (5.08 GHz). (c) Total field distribution Btot within the magnetic structure of SQ-2. The external magnetic
field is applied along the horizontal direction, as indicated by the arrow. (d) Five line profiles of the total field distribution along the horizontal
direction, with positions indicated by dashed lines in (c).
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average Btot value at the plateaus [see Fig. 5(d)], the fives
regions are classified into three groups a, b, and c1–c3. For the
line profiles at c1–c3, the Btot values are within the same range
16–19 mT, and hence they are ascribed to the same group.
It can be seen that the relationship of the Btot value at these
regions is

Bc1,c2,c3
tot > Bb

tot > Ba
tot. (1)

This relationship is in exact agreement with the frequency
relationship of the three modes M1 to M3, which is

fM3 > fM2 > fM1. (2)

The agreement between the two relationships again con-
firms the first-order localized nature of the three modes, and
provides a semiquantitative explanation for their frequency
relationship.

Having analyzed the three modes for SQ-2, we look back
at the experimental observations shown in Fig. 4(c). Now, the
experimentally observed three modes should be ascribed to
the category of the first-order localized mode. It is difficult to
predict which mode (M1 or M2) corresponds to the experi-
mentally observed mode at 3.7 GHz and 4.4 GHz. It seems
to be a combination of M1 and M2 (see the Supplemental
Material [44]).

C. Mode formation in magnetic fractals

To reveal the role of the fractal geometry, we performed
micromagnetic simulations for SQ-3, again using a sinc ex-
citation similar to that used for SQ-2. From the simulated
results, the three first-order localized modes at 4.30 (M1′),
6.04, and 7.55 (M3′) GHz are selected, whose amplitude and
phase distribution are shown in Fig. 6(a) and the Supplemental
Material [45], respectively. First, we note that there is a scaling
relation between samples SQ-3 and SQ-2; namely, SQ-3 is
composed of eight scaled SQ-2( j) substructures with a scaling
factor of 1/3 [see Fig. 6(d)]. Next, we compare the modes
shown in Figs. 6(a) and 6(b). It can be observed that M1 and
M1′, and M3 and M3′, have some geometric similarities in
the amplitude distribution. In particular, as shown in Fig. 6(a),
the amplitude distributions of M1′ and M3′ within the two
substructures SQ-2(2) and SQ-2(6) are exactly two scaled
patterns of the amplitude distributions of M1 and M3, respec-
tively. For the other six scaled SQ-2( j) substructures, they
either exhibit part of the scaled patterns from M1 and M3, or
exhibit no modes. From these observations, we infer that M1
and M3 evolve into M1′ and M3′, respectively, and exhibit
scaled amplitude distributions in the corresponding scaled
SQ-2( j) substructures but with certain modifications. In con-
trast, for the mode at 6.04 GHz, the amplitude distribution is
not located within the eight scaled substructures SQ-2( j), but
at the center locations where SQ-2(4) and SQ-2(8) connect
with their neighboring substructures.

In order to explain the observed formation of the different
modes, we need to find the necessary conditions for a scaled
mode pattern to occur in the scaled SQ-2( j) substructures of
SQ-3. As shown in Fig. 6(b), the formation of modes M1 to
M3 is associated with different geometric edges L1–L4 in the
SQ-2 structure (see Fig. 6(d) and the Supplemental Material
[46] for the definition of the edges). When SQ-2 is scaled

FIG. 6. Simulated mode evolution from SQ-1 to SQ-3. (a) Am-
plitude distributions of the three modes for SQ-3 at 4.30 GHz (M1′),
7.55 GHz (M3′), and 6.04 GHz. The white boxes indicate the regions
where the edge modes occur. (b) Amplitude distributions of the three
modes M1 to M3 for SQ-2. (c) Amplitude distributions of the two
modes at 3.10 and 4.00 GHz for SQ-1. (d) Schematics of structures
SQ-2 and SQ-3, with different color shaded areas indicating the eight
scaled SQ-2 structures SQ-2( j), j = 1–8.

into the SQ-2( j) substructures in SQ-3, some edges of the
square substructures associated with L1 to L4 disappear, and
the other edges are scaled accordingly. Therefore, we identify
the contributions from the edges to these three modes, which
are L1 and L3 edges for both M1 and M3, and L2 and L4
for M2. Accordingly, we can explain the evolution of M1 to
M1′, because for SQ-2(2) and SQ-2(6), both L1 and L3 are
present, and hence two scaled patterns of M1 are observed.
Such observations lead to the first necessary condition for a
scaled mode pattern to occur, which is the presence of the
associated structural edges from the SQ-2 structure within the
SQ-2( j) substructure.

We can carry out a similar analysis of the evolution of M3
to M3′ by considering the L1 and L3 edges. However, here
a difference can be also seen; namely, a part of the scaled
patterns is missing at the regions indicated by the white boxes
in Fig. 6(a). To understand this difference, it should be noted
that these regions correspond to those where the edge modes
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occur. Therefore, at 7.55 GHz (the frequency of M3′), no
first-order modes can be observed in these regions. Thus, we
find the second condition for a scaling of the modes, which is
to exclude the regions of the edge mode localizations. After
evaluating these two conditions for M2, it can be seen that
none of the SQ-2( j) substructures can fulfill the two condi-
tions simultaneously. Therefore, M2 cannot evolve to a mode
in SQ-3 with a self-similar amplitude distribution.

To further confirm our findings, we examine the mode
evolution from SQ-1 to SQ-2, as shown in Figs. 6(b) and 6(c).
Similarly, SQ-2 can be viewed as 8 scaled SQ-1( j) substruc-
tures. In this way, it can be seen that the mode at 4.00 GHz
evolves into M3 in a similar fashion to the evolution of M1
into M1′, with the associated magnetic boundaries being L1
and L3. Therefore, the mode M3′ can actually be traced back
to the mode at 4.00 GHz in SQ-1. In contrast, the mode at
3.10 GHz in SQ-1 does not evolve into a mode in SQ-2 in the
same way that M2 does not evolve into a mode in SQ-3.

Finally, we extend our argument to the most general case,
i.e., the mode evolution from SQ-i to SQ-(i + 1), where i is
the iteration number. We can infer that, for any fractal-like
structure with iteration number i + 1, the mode profiles can be
analyzed using the mode profiles of the structure with iteration
number i. Our argument is valid as long as the dominating
interaction in these structures is magnetostatic since, follow-
ing Maxwell’s equations, the distribution of the magnetostatic
field can remain geometrically self-similar after scaling, if
all the boundary conditions are scaled accordingly. These
findings provide a new perspective for analyzing the magne-
tostatic modes in fractal-like structures, which is effectively
a “reversal” of the iteration process of the fractal generation.
This perspective can be extremely important when analyzing
a fractal structure with a large iteration number, since it is now
possible to reduce the complexity of the analysis by consider-
ing the mode profiles from the structure with a lower iteration.

IV. CONCLUSION

To conclude, we have determined the evolution of the mag-
netostatic spin-wave modes from a simple geometric structure
toward a Sierpinski carpet and Sierpinski triangle by imaging
the precessional dynamics using TRSKM. In particular, we
have measured the frequency spectra of spin-wave oscillations
excited by the RF magnetic field and also imaged the mz

distribution at a particular time for the different spin-wave
modes. To the best of our knowledge, the imaging of spin

waves in magnetic fractals, namely the Sierpinski square and
triangle, has not been explored yet. In general, we find a sim-
ple evolution for the Sierpinski triangle from TRI-0 to TRI-2
whereas the observed dynamics in the Sierpinski square from
SQ-0 to SQ-2 evolves from a single-frequency spectrum into
a multiple-frequency spectrum with different spatial distribu-
tions. To obtain the complete mode profiles and explain the
experimental results, further micromagnetic simulations were
performed for SQ-2 and SQ-3. For SQ-2, the precessional
dynamics is analyzed in the context of the total field distri-
bution. Using this method, the formation of the three different
types of modes in SQ-2, as well as the frequency relation-
ship for the three first-order localized modes, is explained.
For SQ-3, the simulated dynamics is found to be related to
the modes in SQ-2 via the scaling relation. We find that the
amplitude distribution of the magnetostatic mode follows the
geometric scaling to form scaled mode patterns in fractal-like
structures with one more iteration. However, for this to occur,
we need to consider the associated magnetic boundaries and
to exclude the regions where the edge modes exist. Finally, we
provided a method to predict the distribution of the spin wave
modes within the fractal structure by only considering their
magnetic boundaries. In contrast to the precessional dynamics
in magnonic crystals where the dynamics is dominated by
the eigenmodes in the unit cell due to translation symmetry
[17,18,20–24], magnetic fractals exhibit a more complex am-
plitude distribution that is defined by the geometric scaling
and resembles all the features of the geometric structures
on different length scales. Such complex dynamics inherits
the geometric hierarchy of the fractal structures, and can be
exploited to build functional magnonic systems that require a
hierarchical architecture.

The data that support this study are available via the
Zenodo repository [47].
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