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Multiple-Q magnetic orderings represent magnetic textures composed of superpositions of multiple spin den-
sity waves or spin spirals, as represented by two-dimensional skyrmion crystals and three-dimensional hedgehog
lattices. Such magnetic orderings have been observed in various magnetic materials in recent years, and attracted
enormous attention, especially from the viewpoint of topology and emergent electromagnetic fields originating
from noncoplanar magnetic structures. Although they often exhibit successive phase transitions among different
multiple-Q states while changing temperature and an external magnetic field, it is not straightforward to elucidate
the phase diagrams, mainly due to the lack of concise theoretical tools as well as appropriate microscopic
models. Here, we provide a theoretical framework for a class of effective spin models with long-range magnetic
interactions mediated by conduction electrons in magnetic metals. Our framework is based on the steepest
descent method with a set of self-consistent equations that leads to exact solutions in the thermodynamic limit,
and has many advantages over existing methods such as biased variational calculations and numerical Monte
Carlo simulations. We develop two methods that complement each other in terms of the computational cost
and the range of applications. As a demonstration, applying the framework to the models with instabilities
toward triple- and hextuple-Q magnetic orderings, we clarify the magnetic field–temperature phase diagrams
with a variety of multiple-Q phases. We find that the models exhibit interesting reentrant phase transitions where
the multiple-Q phases appear only at finite temperature and/or nonzero magnetic field. Furthermore, we show
that the multiple-Q states can be topologically nontrivial stacked skyrmion crystals or hedgehog lattices, which
exhibit large net spin scalar chirality associated with nonzero skyrmion number. The results demonstrate that our
framework could be a versatile tool for studying magnetic and topological phase transitions and related quantum
phenomena in actual magnetic metals hosting multiple-Q magnetic orderings.
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I. INTRODUCTION

Multiple-Q magnetic orders are magnetically ordered
states whose spin textures are approximately given by super-
positions of multiple spin density waves or spin spirals. They
show mutual interference peaks in the spin structure factor
in momentum space, which are observable in elastic neutron
scattering experiments. In real space, they are often regarded
as periodic arrays of topologically nontrivial objects made of
many spins [1–5], such as two-dimensional (2D) skyrmion
crystals (SkXs) in triple-Q (3Q) magnetic orderings [6–9],
2D vortex crystals (VCs) in double-Q (2Q) magnetic order-
ings [10], and three-dimensional (3D) hedgehog lattices (HLs)
in 3Q and quadruple-Q magnetic orderings [11–16]. Such
topological spin textures induce unique effects on electronic
and transport properties through the Berry phase mecha-
nism [17,18], such as the magnetoelectric effect [19] and the
topological Hall effect [20], and thus the multiple-Q magnetic
orderings have been attracting enormous attention for years.

Several proposals have been made for the stabiliza-
tion mechanism of the multiple-Q magnetic orderings,
for instance, long-range dipole interactions [21–26], the
Dzyaloshinskii-Moriya (DM) antisymmetric exchange in-
teractions [6,27–39], four-spin interactions [40–45], frus-
trated magnetic interactions [46–48], and bond-dependent

anisotropic interaction [49–51]. Among them, in this paper,
we focus on the long-range interactions mediated by con-
duction electrons [52–57]. Such interactions are incorporated
into effective spin models for magnetic metals [58–60], and
have been shown to stabilize a variety of multiple-Q magnetic
orderings, such as 2Q and 3Q VCs [58,59,61,62], and 3Q
and quadruple-Q HLs [62–65]. Usually, the models exhibit
complicated phase diagrams while changing the lattice struc-
tures, the interaction parameters, temperature, and an external
magnetic field. In the previous studies, such phase diagrams
were studied by using, e.g., the variational method and the
Monte Carlo simulation. It is, however, not straightforward to
elucidate the phase competition between different multiple-Q
states. For instance, the variational method is basically limited
to zero temperature and requires good variational states. The
Monte Carlo simulation is an unbiased powerful tool which is
applicable to not only the zero-temperature limit but also finite
temperature, but it requires careful analysis of the finite-size
effect, and it is usually a time-consuming task to obtain the
full phase diagram because of the relatively high compu-
tational cost. Thus, there remain vast unexplored parameter
regions, including extensions of the models to more complex
multiple-Q orderings, such as hextuple-Q (6Q) ones [66–68].
An unbiased and computationally cheaper method is therefore
highly desired.
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In this paper, we develop a versatile theoretical framework
for a class of the effective spin models with long-range inter-
actions, and demonstrate its power by revealing the complete
phase diagrams for two types of the models. Our framework
is based on the self-consistent equations derived from the
saddle-point method, which gives the exact solution in the
thermodynamic limit. Specifically, we provide two methods,
which we call method I and method II, being complemen-
tary to each other: The computational cost of method I is
cheaper than method II, but method II has a wider range
of applications in terms of the interaction types. Using this
framework, we study two different models that stabilize 3Q
and 6Q magnetic orderings. We show that both models exhibit
interesting phase diagrams depending on the interaction pa-
rameters and the direction of the magnetic field. In particular,
we find that multiple-Q magnetic orderings with a larger num-
ber of components can be stabilized by raising temperature
and/or applying the magnetic field, which yield a variety of
successive and reentrant transitions in the magnetic field–
temperature phase diagram. We also show that the 3Q and 6Q
states can be topologically nontrivial with nonzero spin scalar
chirality. Furthermore, we find several topological transitions
associated with changes in the topological skyrmion number.

The structure of this paper is as follows. In Sec. II, we
introduce the generic form of the Hamiltonian of the effective
spin model for magnetic metals with long-range interactions
mediated by conduction electrons. In Sec. III, we describe the
theoretical framework for the exact analysis of the effective
spin model in the thermodynamic limit based on the steepest
descent method. We show two methods, method I and method
II, in Secs. III A and III B, respectively. In Sec. III C, we
give some remarks on the condition for the existence of the
saddle-point solutions, the computational cost, and the range
of application for the two methods. In Sec. IV, we present the
results for two different models that stabilize 3Q and 6Q mag-
netic orderings. For each model, after introducing the concrete
model parameters (Secs. IV A 1 and IV B 1), we discuss the
ground-state phase diagram at zero magnetic field and sta-
ble spin configurations of ground states therein (Secs. IV A 2
and IV B 2). Then, we present the magnetic field–temperature
phase diagrams for three different magnetic field directions,
and elucidate the details of the transitions between various
multiple-Q phases (Secs. IV A 3 and IV B 3). In Sec. IV C,
we discuss two possible types of hidden transitions. Finally,
Sec. V is devoted to the summary and perspectives.

II. MODEL

We consider a class of spin lattice models proposed for
understanding the multiple-Q magnetic orderings in itinerant
magnets [58–60]. The generic form of the Hamiltonian is
given by spin interactions in momentum space as

H = H
(
SQ1 , . . . , SQNQ

)−
√

NB · SQ=0, (1)

where

SQ = 1√
N

∑
r

Sre−iQ·r. (2)

Here, Sr = (Sx
r , Sy

r, Sz
r ) represents the spin degree of freedom

at site r in real space, and N is the total number of spins. In
this paper, we consider the classical spin limit where Sr ∈ R3

and |Sr| = 1, for simplicity. In Eq. (1), the first term includes
the effective spin interaction mediated by itinerant electrons,
where Qη with η = 1, 2, . . . , NQ are the characteristic wave
numbers given by the nesting vectors of the Fermi surfaces
of itinerant electrons in the limit of weak spin-charge cou-
pling [58]. Note that the interactions defined in momentum
space extend over infinite distances without decay in real
space. The second term in Eq. (1) represents the Zeeman
coupling with an external magnetic field B, described as
−∑r B · Sr in real space.

The simplest form of the Hamiltonian in Eq. (1) is given
by two-spin interactions in the first term as

H =
NQ∑
η=1

(
HQη

+ H−Qη

)−
√

NB · SQ=0, (3)

where

HQη
= −

∑
α,α′

Sα
Qη
J αα′

Qη
Sα′

−Qη
. (4)

Here, JQη
is a 3 × 3 Hermitian matrix describing the form

of the two-spin interactions; the sums of α and α′ run
over x, y, and z. Note that J−Qη

= J ∗
Qη

and S−Qη
= S∗

Qη
.

The two-spin interactions are the lowest-order contributions
in the perturbative expansion in terms of the spin-charge
coupling [58], which include the Ruderman-Kittel-Kasuya-
Yosida interaction ∝ SQη

· S−Qη
[69–71]. In addition, the

model can be extended to include higher-order contributions.
For instance, the four-spin biquadratic interactions ∝ (SQη

·
S−Qη

)2 [49,50,58,63,72–79] and the six-spin bicubic interac-
tions ∝ {SQ1 · (SQ2 × SQ3 )}2 [61] have also been considered
as the origin of stabilization of multiple-Q magnetic order-
ings.

III. METHOD

In this section, we construct the framework to obtain the
phase diagram of the model in Eq. (1) based on the steepest
descent method also known as the saddle-point method (see,
for example, Ref. [80]). Specifically, we develop two methods
that complement each other, method I and method II. Method
I is computationally cheaper than method II, while it is only
applicable to the two-spin interactions in Eq. (4). Meanwhile,
method II has a wider range of applications; it can deal with
the higher-order spin interactions.

In the following, we consider the model in Eq. (1) with Qη

being commensurate with the lattice sites. Since the period
of magnetic ordering is set by Qη as discussed in Sec. IV,
this corresponds to considering magnetic orders commensu-
rate with the lattice sites. Let aμ (μ = 1, 2, . . . , d) be the
primitive lattice vectors in spatial dimension d and Aμ be the
magnetic translation vectors spanning the magnetic unit cell:
Aμ =∑d

μ′=1 lμμ′aμ′ with integers lμμ′ . Then, all the Qη must
satisfy

eiQη ·Aμ = 1, (5)
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for all μ. While the magnetic unit cell can be smaller for
simpler spin states such as the single-Q spin state for the case
of NQ � 2, we take the largest common magnetic unit cell
defined by Aμ.

Given such commensurate situations, it is commonly use-
ful to denote the spatial coordinate r as r = R + r0 where R
and r0 are the position vectors of the magnetic unit cell and the
internal sublattice site, respectively: R =∑d

μ=1 NμAμ with
integers Nμ ∈ [0, L), and the number of sublattice sites in a
magnetic unit cell is denoted as N0 = N/Ld . Also, it is useful
to define an averaged spin for each sublattice as

Sr0 = 1

Ld

∑
R

SR+r0 . (6)

Note that |Sr0 | � 1. Then, the model in Eq. (1) can be
rewritten in terms of Sr0 because SQη

is expressed as SQη
=√

Ld/N0
∑

r0
Sr0 e−iQη ·r0 under the condition in Eq. (5). For

instance, the Hamiltonian in Eq. (3) is rewritten as

H = −Ld

⎡
⎣ 1

N0

∑
(r0,α),(r′

0,α
′ )

S
α

r0
J (r0,α)(r′

0,α
′ ) S

α′

r′
0
+
∑

r0

B · Sr0

⎤
⎦,

(7)

with a (3N0) × (3N0) matrix J , whose elements are
defined as

J (r0,α)(r′
0,α

′ ) =
NQ∑
η=1

[
J αα′

Qη
e−iQη ·(r0−r′

0 ) + c.c.
]
. (8)

A. Method I

In method I, to compute the partition function

Z =
∫ (∏

R,r0

dSR+r0

)
e−βH, (9)

where β is the inverse temperature β = 1/T taking the Boltz-
mann constant unity (kB = 1), and the integral of SR+r0 is on
the surface of the unit sphere in three dimensions, we apply a
3N0-dimensional Gaussian integral to the two-spin interaction
part by introducing the auxiliary fields mα

r0
:

exp

⎡
⎣βLd

N0

∑
(r0,α),(r′

0,α
′ )

S
α

r0
J (r0,α)(r′

0,α
′ )S

α′

r′
0

⎤
⎦

=
√

N3N0
0

(4πβLd )3N0 det J

∫ ∞

−∞

(∏
r0,α

dmα
r0

)

× exp

⎡
⎣− N0

4βLd

∑
(r0,α),(r′

0,α
′ )

mα
r0
J −1

(r0,α)(r′
0,α

′ )m
α′
r′

0

+ 1

Ld

∑
R,r0

mr0 · SR+r0

]
. (10)

After rescaling the variable as mr0 → m̃r0 = mr0/(βLd ), and
performing the integrals of individual SR+r0 , we obtain

Z =
√

(βLd N0)3N0

(4π )3N0 det J

∫
· · ·
∫ ∞

−∞

(∏
(r0,α)

dm̃α
r0

)
eLd g({m̃α

r0
})
,

(11)

where

g
({

m̃α
r0

}) =
∑

r0

ln

[
4π sinh(β|m̃r0 + B|)

β|m̃r0 + B|
]

− βN0

4

∑
(r0,α),(r′

0,α
′ )

m̃α
r0
J −1

(r0,α)(r′
0,α

′ )m̃
α′
r′

0
. (12)

In the thermodynamic limit of L → ∞, the partition function
asymptotically approaches

Z → eLd g({m̃α
r0

})
, (13)

where {m̃α
r0
} denotes the saddle point that maximizes g({m̃α

r0
}).

The saddle point is obtained by the stationary condition

∂g
({

m̃α
r0

})
∂m̃α

r0

= 0. (14)

This leads to a set of equations

M̃α′
η = 2

N0

∑
(r0,α)

J α′α
Qη

e+iQη ·r0
m̃α

r0
+ Bα

|m̃r0 + B|

×
[

coth(β|m̃r0 + B|) − 1

β|m̃r0 + B|
]
, (15)

m̃α
r0

=
NQ∑
η=1

[
M̃α

η e−iQη ·r0 + c.c.
]
, (16)

which are solved in a self-consistent way. We will remark on
the conditions for the existence of the saddle-point solution in
Sec. III C.

Once the saddle-point solution is obtained, the free energy
per spin is obtained as

f = − 1

βN
lnZ = − 1

βN0
g({m̃α

r0
}). (17)

It is also straightforward to compute other thermodynamic
quantities. For instance, the internal energy per spin, ε, is
obtained by −T 2∂ ( f /T )/∂T . The same result is obtained
directly from the Hamiltonian in Eq. (3) by replacing Sr with
〈Sr〉. The specific heat per spin, C, is obtained by a numerical
derivative of ε as C = ∂ε/∂T . In addition, the real-space spin
configuration is obtained by

〈
Sα

R+r0

〉 = −N0
∂ f

∂Bα
r0

∣∣∣∣
Br0 →B

, (18)

where B in g({m̃α
r0
}) is replaced by a sublattice-dependent field

Br0 . This leads to

〈
SR+r0

〉 = [coth
(
β
∣∣m̃r0 + B

∣∣)− 1

β
∣∣m̃r0 + B

∣∣
]

m̃r0 + B∣∣m̃r0 + B
∣∣ ,

(19)
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which is independent of R; namely, 〈Sα
R+r0

〉 takes the same
value at all the sites belonging to the same sublattice.

Finally, let us make a remark on the ground state. In
Eq. (19), the factor in the square brackets becomes unity at
zero temperature, and the spin texture is given by the sum of
B and the spin density waves or the spin spirals as

〈
SR+r0

〉 = N
[ NQ∑

η=1

(
M̃ηe−iQη ·r0 + c.c.

)+ B

]
, (20)

where N is the normalization factor to ensure |〈SR+r0〉| = 1,

and M̃η corresponds to the solution of the self-consistent
equations in Eqs. (15) and (16). While the expression in
Eq. (20) includes only the Fourier components with Qη,
〈SR+r0〉 has higher harmonics such as S2Q1 in general be-
cause of the normalization. This type of spin texture has
been discussed for understanding the motion of hedgehogs
and antihedgehogs in 3D HLs under the external magnetic
field [65,81].

B. Method II

Next, we describe the other method, method II, which is
applicable to the generic form of the model in Eq. (1). The
key idea of this method is a reduction of the number of
integral variables in Eq. (9) by introducing “density of state.”
Recalling that the Hamiltonian can be written in terms of the
averaged spin Sr0 defined in Eq. (6), we can calculate the
partition function as

Z =
∫ [∏

r0

dSr0ρLd (Sr0 )

]
e−βH, (21)

where
∫

dSr0 denotes an integral inside the unit sphere in three
dimensions, and ρLd (Sr0 ) is the density of state for Sr0 . The
number of integral variables is reduced from 2N in Eq. (9) to
3N0 in Eq. (21).

The quantity ρLd (S)dS/(4π )Ld
represents a probability

that the mean vector of Ld 3D random vectors uniformly
distributed on the unit sphere is found in the infinitesimal
volume dS at S. This is equivalent to the Pearson random
walk [82,83]. From this observation, ρLd (S) in the limit of
Ld → ∞ can be obtained as

1

Ld
lnρLd (S) → ln

[
4π sinh v0(|S|)

v0(|S|)

]
− v0(|S|)|S|, (22)

where v0(|S|) is determined by numerically solving

coth v0(|S|) − 1

v0(|S|) = |S|. (23)

Using this form, we obtain an asymptotic form of the partition
function in the thermodynamic limit as

Z →
∫ (∏

r0

dSr0

)
eLd G({Sα

r0
})
, (24)

where

G
({

S
α

r0

})
= − β

Ld
H+

∑
r0

{
ln

[
4π sinh v0(|Sr0 |)

v0(|Sr0 |)

]
− v0(|Sr0 |)|Sr0 |

}
.

(25)

Then, by the steepest descent method, the partition function is
expressed as

Z ∼ eLd G({Sα

r0
})
, (26)

where {Sα

r0
} denotes the saddle point that maximizes G({Sα

r0
}).

In comparison with Eq. (13) in method I, we note that

G({Sα

r0
}) = g({m̃α

r0
}). Once the saddle-point solution is ob-

tained, the thermodynamic quantities and the real-space spin
configurations are computed in a similar manner to method I.

C. Remark

As both methods I and II are based on the steepest descent
method, the saddle-point solution exists only when g({m̃α

r0
})

in Eq. (13) and G({Sα

r0
}) in Eq. (26) have maxima in the

parameter space. This is guaranteed when the Hessian matri-
ces of −g({m̃α

r0
}) and −G({Sα

r0
}) are positive definite at {m̃α

r0
}

and {Sα

r0
}, respectively. In method I, this corresponds to the

condition that J is positive definite. In this case, however,
since J is made of the Fourier components of ±Qη only
[Eq. (8)], the 6NQ eigenvalues are given by those of J±Qη

,
while the rest 3N0 − 6NQ eigenvalues are all zero. To avoid
such zero eigenvalues, we add a positive infinitesimal λ to
all the diagonal elements of J , namely, J → J + λI with
an identity matrix I, and take the limit of λ → 0+ in the
end of the calculations. This consideration ensures that m̃α

r0

in Eq. (16) includes the Fourier components of ±Qη only
because g({m̃α

r0
}) negatively diverges due to the second term

of Eq. (12) as −O(1/λ)
λ→0+−−−→ −∞ when m̃α

r0
includes the

Fourier components of q �= ±Qη.
Method I is computationally cheaper than method II in

most cases since the number of variables to be determined in
method I (3NQ) is typically less than that in method II (3N0).
It is applicable to the model with two-spin interactions in
Eq. (3) as long as JQη

is positive definite as discussed above.
Meanwhile, method II has a wider range of applications. In
this case, JQη

in the two-spin interaction part does not have
to be positive definite. Furthermore, method II can deal with
the generic form of the Hamiltonian expressed by a function
of Sα

Qη
, including multiple-spin interactions, such as the bi-

quadratic ones ∝ (SQη
· S−Qη

)2 [49,50,58,63,72–79] and the
bicubic ones ∝ {SQ1 · (SQ2 × SQ3 )}2 [61].

IV. RESULTS

In this section, as a demonstration of our framework de-
veloped in Sec. III, we study two models, both of which are
in the class of the models with only two-spin interactions, as
represented by Eqs. (3) and (4). Specifically, for both models,
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we consider

HQη
= −

∑
α,α′

Jαα′
η Sα

Qη
Sα′

−Qη
− iDη · (SQη

× S−Qη
), (27)

where the first term represents the symmetric exchange inter-
actions with Jαα′

η = Jα′α
η ∈ R, and the second term represents

the antisymmetric ones of the DM type [27,28] with the so-
called DM vectors Dη = (Dx

η, Dy
η, Dz

η ) ∈ R3. For simplicity,
we assume that the symmetric interactions include only the
diagonal elements, and that the DM vectors are proportional
to the corresponding characteristic wave number:

Jαα′
η = Jαα

η δαα′ , Dη = D
Qη

|Qη| , (28)

where δαα′ is the Kronecker delta. Note that the latter assump-
tion leads the system to prefer proper-screw type magnetic
orders. Then, the Hermitian matrix JQη

in Eq. (4) is expressed
as

JQη
=

⎡
⎢⎣

Jxx
η iDz

η −iDy
η

−iDz
η Jyy

η iDx
η

iDy
η −iDx

η Jzz
η

⎤
⎥⎦. (29)

We define the two models on a simple cubic lattice (d = 3)
with the lattice constant being unity under the periodic bound-
ary condition. In the following, we set the elements of the
commensurate wave numbers Qη as ±2π/� or 0 with an
integer �. In this setting, the magnetic unit cell fits into a
cube of �3 sites with the magnetic translation vectors A1 =
(�, 0, 0), A2 = (0,�, 0), and A3 = (0, 0,�), namely, lμμ′ in
the equation for Aμ above Eq. (5) is lμμ′ = �δμμ′ . Then, the
linear dimension of the entire system is L�, the lattice site r
is denoted as r = (x, y, z) with integers x, y, and z in [0, L�),
and the number of spin is N = (L�)3. In the following calcu-
lations, we take � = 12.

The difference between the two models lies in the number
of the characteristic wave numbers Qη. One of them has three
(η = 1, 2, 3), and the other has six (η = 1, 2, . . . , 6). We call
the former the 3Q model and the latter the 6Q model. The
directions of Qη as well as the form of Jαα

η are defined in
the following subsections. We present the results for the 3Q
and 6Q models in Secs. IV A and IV B, respectively. For
both cases, we clarify the ground-state phase diagram at zero
magnetic field while changing the interaction parameters, and
the finite-temperature phase diagram in a magnetic field for
representative sets of the interaction parameters. Finally, in
Sec. IV C, we give some remarks on hidden transitions found
through detailed analyses.

All the results in this section are obtained by method I
in Sec. III A, while we confirm that method II in Sec. III B
delivers the same result for some parameter values. In what

follows, we omit the overline of M̃η for simplicity and use
M̃η to represent the solution of the self-consistent equations in
Eqs. (15) and (16).

A. 3Q model

First, we discuss the model with three Qη, the 3Q model.
After introducing the model parameters in Sec. IV A 1, we
present the ground-state phase diagram at zero magnetic field

FIG. 1. Pictorial representation of the coupling constants for the
symmetric and antisymmetric interactions in the 3Q model. The blue
ellipsoids at ±Qη represent Jαα

η : The lengths along the principal axes
[100], [010], and [001] denote the amplitudes of Jxx

η , Jyy
η , and Jzz

η ,
respectively. The red arrows at ±Qη represent ±Dη. The labeled
numbers indicate η. The gray cube is a guide to the eye.

while varying the anisotropy in the symmetric interaction �

and the magnitude of the DM vectors D in Sec. IV A 2. Then,
in Sec. IV A 3, we show the magnetic field–temperature phase
diagrams for a couple of representative parameter sets of �

and D.

1. Model parameters

The model Hamiltonian is given by Eqs. (3) and (27) with
NQ = 3. We set Qη as

Q1 = Qx̂, Q2 = Qŷ, Q3 = Qẑ, (30)

where Q = 2π/� with � = 12, and x̂, ŷ, and ẑ represent unit
vectors as x̂ = (1, 0, 0), ŷ = (0, 1, 0), and ẑ = (0, 0, 1). We
introduce an anisotropy � to the symmetric interactions Jαα

η

in Eq. (28) as(
Jxx
η , Jyy

η , Jzz
η

)

=
⎧⎨
⎩

[J (1 − �), J (1 + 2�), J (1 − �)] (η = 1),
[J (1 − �), J (1 − �), J (1 + 2�)] (η = 2),
[J (1 + 2�), J (1 − �), J (1 − �)] (η = 3).

(31)

As shown in Sec. IV A 2, the anisotropy stabilizes a 3Q mag-
netic order. We take the DM vectors in the antisymmetric
interaction as Dη ‖ Qη as in Eq. (28). Figure 1 shows the
pictorial representation of Jαα

η and Dη. We take the energy unit
as J = 1.

2. Ground state at zero magnetic field

Figure 2 shows the ground-state phase diagram for the 3Q
model at zero magnetic field while changing � and D. The
phase diagram with low resolution was obtained by varia-
tional calculations in Ref. [62]; much higher resolution can be
reached here with much less computational cost owing to the
use of the present framework. As in the previous study, we find
three stable phases in the phase diagram: The 1Q phase in the
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FIG. 2. Ground-state phase diagram for the 3Q model at zero
magnetic field. The phase diagram includes the 1Q phase where
one of three |M̃η| is nonzero, the 2Q phase where two of |M̃η|
are nonzero at different values, and the isotropic 3Q phase where
|M̃1| = |M̃2| = |M̃3| > 0. The white dashed line between the 3Q and
2Q phases represents the first-order phase transition, while the black
solid line between the 2Q and 1Q phases represents the second-order
phase transition.

small-� region including the isotropic limit (� = 0) [84], the
3Q phase in the large-� region, and the 2Q phase in between
them. The phase transition between the 1Q and 2Q phases
is continuous (second order), while that between the 2Q and
3Q phases is discontinuous (first order). If we look into more
detail, however, we find a discontinuous transition line in the
3Q phase (not shown in the phase diagram); we will discuss
the hidden transition in Sec. IV C.

We display typical spin textures in the three phases in
Fig. 3, with the values of |M̃η| in each inset. Figure 3(a)
represents the 3Q state. This is a 3D HL that possesses
topological point defects, the magnetic hedgehogs and anti-
hedgehogs, forming a periodic lattice, as shown in Fig. 3(b).
In this phase, the relation |M̃1| = |M̃2| = |M̃3| always holds,
namely, the 3Q state is composed of a superposition of three
proper screws with equal amplitudes. Meanwhile, Figs. 3(c)
and 3(d) represent the 2Q and 1Q states, respectively. The 2Q
state is composed of a superposition of two proper screws with
different amplitudes in general. Note that the C3 rotational
symmetry about the [111] axis is retained in the 3Q phase,
whereas it is broken in the 2Q and 1Q phases.

3. Magnetic field–temperature phase diagrams

Figures 4 and 5 show the magnetic field–temperature phase
diagrams for the representative parameter sets that realize the
2Q and 3Q ground states at zero magnetic field, respectively.
We take (D,�) = (0.25, 0.2) for the 2Q case and (D,�) =
(0.15, 0.3) for the 3Q case, for which the ground-state spin
configurations at zero magnetic field are shown in Figs. 3(c)
and 3(a), respectively. In each case, we obtain the results for
different magnetic field directions B ‖ [100], B ‖ [110], and

FIG. 3. Ground-state spin configurations stabilized in the 3Q
model at zero magnetic field for (a) the 3Q state at (D, �) =
(0.15, 0.3), (c) the 2Q state at (D,�) = (0.25, 0.2), and (d) the 1Q
state at (D, �) = (0.35, 0.1). The color of the arrows denotes the
[111] component of spins S[111]

r = (Sx
r + Sy

r + Sz
r )/

√
3 in (a), while it

represents the x component of spins Sx
r in (c) and (d); see the color

bars in (a) and (c). (b) Positions of the magnetic hedgehogs (magenta
spheres) and the magnetic antihedgehogs (cyan spheres) in the 3Q
spin state in (a). The dashed lines are guides to the eye. Insets of (a),
(c), and (d) show distributions of |M̃η| for each spin state.

B ‖ [111] in panels (a), (b), and (c), respectively, of Figs. 4
and 5 (B = |B|).

Let us begin with the results for (D,�) = (0.25, 0.2) in
Fig. 4, where the ground state at zero magnetic field is in
the 2Q phase. While increasing temperature at zero field, we
find two phase transitions: A first-order phase transition from
the 2Q to 3Q phase at T � 0.754 and a second-order phase
transition from the 3Q phase to the paramagnet at T � 0.994.
When we apply the magnetic field, regardless of its direction,
the 2Q and 3Q phases are stable in the low-field region,
whereas the 1Q phase appears for higher fields. Types of
the transition to the 1Q phase depend on the field direction.
For B ‖ [100] in Fig. 4(a), the transition is of first order in
most of the high-T regime where the system changes directly
from the 2Q to 1Q phase although the discontinuity becomes
very weak and the order of the transition becomes unclear for
T � 0.90 as indicated by the white dotted line. Meanwhile,
there appears an intermediate 2Q′ phase between the 2Q and
1Q phases in the low-T regime, which is a double-Q phase
different from the 2Q phase (see below). The transitions from
the 2Q to 2Q′ phase and that from the 2Q′ and 1Q phase
are of first and second order, respectively. In contrast, for
B ‖ [110] in Fig. 4(b), the transition to the 1Q phase always
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FIG. 4. Magnetic field–temperature phase diagrams of the 3Q model with (D,�) = (0.25, 0.2) for the magnetic field directions (a) B ‖
[100], (b) B ‖ [110], and (c) B ‖ [111]. The white dashed and black solid lines represent first- and second-order phase transitions, respectively,
while the white dotted lines represent phase transitions whose order is undetermined.

takes place from the 2Q phase, but the nature of the transition
changes with temperature: It is of second order in the high-T
regime, while that becomes first order in the low-T regime.
This suggests the presence of the tricritical point where the
two types of the transition lines meet, but it is hard to de-
termine its precise location within the present resolution; it
would be located at some point on the white dotted line for
0.45 � T � 0.51 on which the order of the transition is not
precisely determined. Similarly, for B ‖ [111] in Fig. 4(c), the
first-order phase transition between the 2Q and 1Q phases
becomes obscure while increasing T , and the order of the
transition is not clear in the high-T regime for T � 0.67.

Interestingly, in all the cases, the 3Q phase appears in a
domelike shape at finite temperature under the magnetic field.
It is surrounded by the 2Q phase in the cases of B ‖ [100]
and B ‖ [110], while it borders both the 2Q and paramagnetic
phases for B ‖ [111]. The transition between the 3Q and 2Q
phases is always of first order, while that to the paramagnet is
of second order. The results indicate that the higher multiple-
Q phase is induced from the lower one by the entropic gain.

Figure 6(a) shows the temperature dependence of the order
parameters |M̃η| at a low field of B ‖ [100], B = 0.1, where
we find successive transitions as 2Q′ → 2Q → 3Q → 2Q →

paramagnet while increasing temperature. At low tempera-
ture, a first-order phase transition separates two double-Q
phases, the 2Q′ and 2Q phases, although they are indis-
tinguishable at B = 0. In both phases, |M̃1|, which is the
component along the magnetic field direction, is nonzero, but
it discontinuously changes at the transition. The other nonzero
component is switched at the transition; |M̃3| is nonzero in the
low-T 2Q′ phase, while |M̃2| becomes nonzero in the high-
T 2Q phase. Note that |M̃2| and |M̃3| are both perpendicular
components to the magnetic field, but they are not equivalent
due to the anisotropy in the symmetric exchange interactions
Jαα
η (see Fig. 1). In the 3Q phase at higher temperature, all

|M̃η| are nonzero; |M̃1| and |M̃2| take almost the same value,
while |M̃3| is smaller. At the transition to the 2Q phase,
|M̃3| goes to zero continuously, and finally, the remaining
two components become zero continuously at the transition
to the paramagnet; it is unclear whether the two components
vanish simultaneously or not in the present resolution, namely,
whether the 1Q state exists or not before entering the param-
agnetic phase. We summarize the order parameters in each
phase in Table I.

Figure 6(b) shows the temperature dependences of the spe-
cific heat per spin C and the spin scalar chirality per spin χ .

FIG. 5. Magnetic field–temperature phase diagrams of the 3Q model with (D,�) = (0.15, 0.3) for the magnetic field directions (a) B ‖
[100], (b) B ‖ [110], and (c) B ‖ [111]. The notations are common to those in Fig. 4.
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FIG. 6. Temperature dependences of (a) the order parameters
|M̃η| and (b) the specific heat C and the spin scalar chirality χ for
the 3Q model with (D, �) = (0.25, 0.2) and B = 0.1 (B ‖ [100]).
The spin scalar chirality is multiplied by a factor of 104 for better
visibility.

The latter is defined as

χ = 1

�3

∑
r0

χr0
· êB, (32)

with

χμ
r0

= 1

2

[〈Sr0〉·
(〈

Sr0+ν̂

〉× 〈Sr0+γ̂

〉+ 〈Sr0+γ̂

〉× 〈Sr0−ν̂

〉
+ 〈Sr0−ν̂

〉× 〈Sr0−γ̂

〉+ 〈Sr0−γ̂

〉× 〈Sr0+ν̂

〉)]
, (33)

TABLE I. Order parameters in each magnetically ordered phase
of the 3Q model. The sets of η, {η1, η2, . . . }, for nonzero M̃η are
shown, with the relations between nonzero |M̃η|.

Phase Sets of η Notes

B = 0 1Q {1}, {2}, {3}
2Q {3, 2}, {2, 1}, {1, 3} |M̃η1 | > |M̃η2 |
3Q {1, 2, 3} |M̃η1 | = |M̃η2 | = |M̃η3 |

B ‖ [100] 1Q {1}
2Q {1, 2} |M̃η1 | �= |M̃η2 |
2Q′ {1, 3} |M̃η1 | > |M̃η2 |
3Q {2, 1, 3} |M̃η1 | > |M̃η2 | > |M̃η3 |

B ‖ [110] 1Q {2}
2Q {2, 1} |M̃η1 | > |M̃η2 |
2Q′′ {2, 3} |M̃η1 | > |M̃η2 |
3Q {2, 1, 3} |M̃η1 | > |M̃η2 | > |M̃η3 |

B ‖ [111] 1Q {1}, {2}, {3},
2Q {3, 2}, {2, 1}, {1, 3} |M̃η1 | > |M̃η2 |
3Q {1, 2, 3} |M̃η1 | = |M̃η2 | = |M̃η3 |

where {μ, ν, γ } = {x, y, z}, {y, z, x}, or {z, x, y}, and êB =
B/|B|. The specific heat shows clear anomalies at the tran-
sition between the 2Q and 3Q phases and that to the
paramagnet: The former is a delta-function-type anomaly
characteristic to the first-order transition, and the latter shows
a jump similar to the second-order phase transition in the
mean-field approximation. In contrast, C shows less anoma-
lies at the transition between the 2Q′ and 2Q phases and that
between the 3Q and 2Q phases, indicating that less entropy
is released at these transitions. A small but nonzero negative
value of χ is found only in the 3Q phase, as shown in Fig. 6(b).
This indicates that when itinerant electrons are coupled with
the 3Q spin texture, the system shows the topological Hall
effect [20].

For the other field directions B ‖ [110] and B ‖ [111], the
transition between the 2Q and 3Q phases in the low-field
regime takes place in a similar manner to that for B ‖ [100].
In the 2Q phases, |M̃2| > |M̃1| > 0 for B ‖ [110], while
|M̃3| > |M̃2| > 0, |M̃2| > |M̃1| > 0, or |M̃1| > |M̃3| > 0 for
B ‖ [111]. For B ‖ [111], unlike the other magnetic field di-
rections, the system undergoes the direct transition from the
3Q phase to the paramagnet, where C drops suddenly similar
to the phase transition between the 2Q and paramagnetic
phases in Fig. 6(b), while χ gradually vanishes similar to
that between the 3Q and 2Q phases in Fig. 6(b). The order
parameters are summarized in Table I.

Next, let us discuss the results for (D,�) = (0.15, 0.3)
in Fig. 5, where the ground state at zero magnetic field is
in the 3Q phase. Unlike the previous case in Fig. 4, there
is only a second-order phase transition from the 3Q phase
to the paramagnet at zero magnetic field while increasing
temperature. When we apply the magnetic field, although the
system shows an overall common phase sequence from 3Q to
2Q, and to 1Q, there are qualitative differences depending on
the magnetic field directions.

Figure 7 shows the field dependences of |M̃η|, χ , and the
magnetization per site m at T = 0.5; m is defined as

m =
∣∣∣∣∣ 1

�3

∑
r0

〈Sr0〉
∣∣∣∣∣. (34)

For B ‖ [100], while increasing the magnetic field, we find
successive transitions as 3Q → 2Q → 1Q → paramagnet.
All of them are of second order, where |M̃3|, |M̃2|, and |M̃1|
go to zero successively, as shown in Fig. 7(a). Nonzero χ is
induced by the magnetic field in the 3Q phase; χ decreases
almost linearly to B, but turns to increase around B � 0.626
and vanishes at the transition between the 3Q and 2Q phases
at B � 0.759, as shown in Fig. 7(b). The transition is accom-
panied by a kinklike anomaly in the magnetization curve. In
contrast, for B ‖ [110], we find two distinguishable double-Q
phases, the 2Q and 2Q′′ phases, between the 3Q and 1Q
phases. In the 2Q phase, |M̃1| and |M̃2| are nonzero, while
in the 2Q′′ phase, |M̃2| and |M̃3| are nonzero, as shown in
Fig. 7(c). Notably, χ is zero for the former but becomes
nonzero for the latter, as shown in Fig. 7(d). The transitions
are of second order for all the cases, except for that between
the 2Q and 2Q′′ phases. Finally, for B ‖ [111], the phase
sequence is similar to that for B ‖ [100], but the transitions
between the 3Q and 2Q phases and that between the 2Q and
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FIG. 7. Magnetic field dependences of (a), (c), (e) the order parameters |M̃η| and (b), (d), (f) the magnetization m and the spin scalar
chirality χ for the 3Q model with (D,�) = (0.15, 0.3) and T = 0.5. The magnetic field directions are (a), (b) B ‖ [100], (c), (d) B ‖ [110],
and (e), (f) B ‖ [111]. The spin scalar chirality is multiplied by a factor of 500, respectively, for better visibility.

1Q phases are of both first order, as shown in Fig. 7(e). Note
that |M̃η| are exchangeable because of the C3 rotational sym-
metry about the [111] axis. In this case, χ becomes nonzero
not only in the 3Q phase but also in the 2Q phase, as shown
in Fig. 7(f). We also summarize the order parameters in each
phase found in these cases in Table I.

B. 6Q model

Next, we discuss the model with six Qη, the 6Q model.
We present the results in parallel with Sec. IV A for the 3Q
model: After introducing the model parameters in Sec. IV B 1,
we present the ground-state phase diagram at zero magnetic
field while varying � and D in Sec. IV B 2 and, then, the
magnetic field–temperature phase diagrams for a couple of
representative parameter sets of � and D in Sec. IV B 3.

1. Model parameters

The model Hamiltonian is given by Eqs. (3) and (27) with
NQ = 6 with the set of Qη:

Q1 = Q(x̂ + ŷ), Q2 = Q(ŷ + ẑ), Q3 = Q(ẑ + x̂),

Q4 = Q(x̂ − ŷ), Q5 = Q(ŷ − ẑ), Q6 = Q(ẑ − x̂). (35)

Similar to the 3Q model, we take Q = 2π/� with � = 12.
We set Jαα

η in Eq. (28) as(
Jxx
η , Jyy

η , Jzz
η

)

=
⎧⎨
⎩

[J (1 − �), J (1 − �), J (1 + 2�)] (η = 1, 4),
[J (1 + 2�), J (1 − �), J (1 − �)] (η = 2, 5),
[J (1 − �), J (1 + 2�), J (1 − �)] (η = 3, 6).

(36)

Figure 8 shows the pictorial representation of Jαα
η and Dη. We

take the energy unit as J = 1 as before.

2. Ground state at zero magnetic field

Figure 9 shows the ground-state phase diagram for the 6Q
model at zero magnetic field while changing � and D. We find

three stable phases, similarly to the 3Q model (see Fig. 2):
The 1Q phase in the small-� region, the 6Q phase in the
large-� region, and the 3Q phase in between them. Unlike
the 3Q model, however, all the transitions are discontinuous
and, furthermore, the intermediate 3Q phase does not extend
down to D = 0. This results in the triple point denoted by the
black dot in Fig. 9, where the three first-order transition lines
meet.

We display typical spin textures in the three phases in
Fig. 10, with the values of |M̃η| in each inset. First, Fig. 10(a)
represents the 6Q state. This is a 3D HL, in which the mag-
netic hedgehogs and antihedgehogs form a periodic lattice,
as shown in Fig. 10(b). In this phase, similar to the 3Q state
in the 3Q model (see Sec. IV A 2), |M̃η| for all η are the
same; namely, the 6Q state is composed of a superposition
of six proper screws with equal amplitudes. In this phase,
the C3 rotational symmetry about the 〈111〉 axis is retained.
We note that the 6Q state is closely related to the magnetic

FIG. 8. Pictorial representation of the coupling constants for the
symmetric and antisymmetric interactions in the 6Q model. The
notations are common to those in Fig. 1.
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FIG. 9. Ground-state phase diagram for the 6Q model at zero
magnetic field. The phase diagram includes the 1Q phase where one
of |M̃η| is nonzero, the 3Q phase where three of |M̃η| are nonzero,
and the 6Q phase where all six |M̃η| are nonzero. In the 3Q and 6Q
phases, all the nonzero |M̃η| take the same value, while the value
depends on D and �. The white dashed lines separating these phases
represent the first-order phase transitions, and the black dot locates
the triple point where the three first-order transition lines meet.

state called bcc2 in a phenomenological Ginzburg-Landau
theory in Refs. [66–68]. This is explicitly confirmed by cal-
culating T̃x = −M̃z

1(M̃y
3 )∗M̃z

4M̃y
6, T̃y = −(M̃z

1)∗M̃x
2M̃z

4M̃x
5 , and

T̃z = −(M̃x
2 )∗M̃y

3M̃x
5M̃y

6, corresponding to Tx, Ty, and Tz, re-
spectively, discussed in the previous studies; we confirm that
all T̃μ are positive real as Tμ in the bcc2 state. A difference is
that the superposed spin helices of the 6Q state are elliptically
distorted due to the anisotropy, whereas those of the bcc2 state
are not distorted.

Next, Fig. 10(c) represents the 3Q state. This state is
composed of a superposition of three proper screws with
equal amplitudes, in which the possible combinations of
η for nonzero |M̃η| are limited to {η1, η2, η3}, satisfy-
ing Qη1 ± Qη2 ± Qη3 = 0, namely, {η1, η2, η3} = {1, 2, 6},
{1, 3, 5}, {2, 3, 4}, or {4, 5, 6}. For example, in the case of
{η1, η2, η3} = {4, 5, 6}, for which Q4 + Q5 + Q6 = 0, as all
the three Qη are orthogonal to the [111] axis, there is no
spin modulation in the [111] direction: Any (111) slice gives
the same spin configuration regardless of the position of the
cut. Interestingly, the 2D spin texture on the (111) slice is
topologically nontrivial. Figures 10(e) and 10(f) show the spin
configuration and the distribution of the corresponding solid
angle formed by neighboring three spins �, respectively (refer
to Ref. [63] for the calculation of �). The results indicate that
this 3Q state is a SkX with skyrmion number Nsk = −1. This
is explicitly shown by summing up � in Fig. 10(f) within
the 2D magnetic unit cell denoted by the dashed rhombus in
Fig. 10(e). Thus, the 3Q state consists of 2D SkXs stacked
along the [111] direction. Note that this state is energetically
degenerate with the stacking of SkXs with Nsk = +1 obtained
by flipping all the spins. Such a stacked topological spin struc-
ture is common to other combinations of {η1, η2, η3} listed

FIG. 10. Ground-state spin configurations stabilized in the 6Q
model at zero magnetic field for (a) the 6Q state at (D, �) =
(0.2, 0.3), (c) the 3Q state at (D, �) = (0.3, 0.3), and (d) the 1Q
state at (D, �) = (0.1, 0.0). The color of the arrows denotes the
[111] component of spins, S[111]

r , according to the color bar in (a).
(b) Positions of the hedgehogs (magenta spheres) and the antihedge-
hogs (cyan spheres) in the 6Q state shown in (a). The dashed lines
are guides to the eye. Insets of (a), (c), and (d) show distributions
of |M̃η| for each state. (e) Spin configuration on a (111) slice of (c).
The black dashed rhombus indicates the 2D magnetic unit cell. (f)
Distribution of the solid angle � spanned by neighboring three spins
calculated from the spin configuration in (e).

above, while a particular set (or subset) with a particular value
of Nsk might be energetically favored when a magnetic field is
applied. We note that the C3 rotational symmetry about the
〈111〉 axis is weakly broken in this 3Q phase even at zero
magnetic field.

Lastly, Fig. 10(d) represents the 1Q state where only one
of |M̃η| is nonzero. The nonzero component of |M̃η| can be
chosen arbitrarily among the six at zero magnetic field, while a
particular one (or one from a particular subset) will be selected
in an applied magnetic field depending on its direction.
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FIG. 11. Magnetic field–temperature phase diagrams of the 6Q model with (D,�) = (0.1, 0.0) for the magnetic field directions (a) B ‖
[100], (b) B ‖ [110], and (c) B ‖ [111]. The white dashed lines and the black solid lines represent first- and second-order phase transitions,
respectively. The black dots in (a) locate the triple points.

3. Magnetic field–temperature phase diagrams

Figures 11 and 12 show the magnetic field–temperature
phase diagrams for the representative parameter sets that re-
alize the 1Q and 6Q ground states at zero magnetic field,
respectively. We take (D,�) = (0.1, 0.0) for the 1Q case and
(D,�) = (0.2, 0.3) for the 6Q case for which the ground-
state spin configurations are shown in Figs. 10(d) and 10(a),
respectively. Similar to the analysis of the 3Q model in
Sec. IV A 3, in each case, we obtain the results for different
magnetic field directions B ‖ [100], B ‖ [110], and B ‖ [111]
in panels (a), (b), and (c), respectively, of Figs. 11 and 12.

Let us begin with the results for (D,�) = (0.1, 0.0) in
Fig. 11. At zero magnetic field, the system is in the 1Q
phase below the critical temperature at T � 0.733; the phase
transition between the 1Q and paramagnetic phases is of sec-
ond order. In an applied magnetic field, the phase diagram is
qualitatively different depending on the direction of the mag-
netic field. While there is no additional phase for B ‖ [110]
[Fig. 11(b)], we find phase transitions to multiple-Q phases for
B ‖ [100] [Fig. 11(a)] and B ‖ [111] [Fig. 11(c)]. In the case
of B ‖ [100], the system changes from the 1Q phase to the 3Q
and 6Q phases in the intermediate magnetic field region at low
and high temperature, respectively, and comes back to the 1Q
phase for a higher magnetic field; namely, the system under-
goes reentrant transitions between the single- and multiple-Q

phases. All the transitions between the magnetically ordered
phases are discontinuous, resulting in the two triple points
denoted by the black dots in Fig. 11(a). Notably, the 6Q phase
appears only at finite temperature, and the width becomes
wider for higher temperature, suggesting that it is stabilized
by the entropic gain, similar to the 3Q phase in the 3Q model
in Fig. 4. In contrast, for B ‖ [111], we find a reentrant transi-
tion as 1Q → 3Q → 1Q, as shown in Fig. 11(c), where the
intermediate 3Q phase becomes narrower while increasing
temperature and vanishes into the transition point between the
1Q and paramagnetic phases in the zero-field limit. It is worth
noting that these results are for � = 0: The multiple-Q phases
are stabilized under the magnetic field even in the absence of
the magnetic anisotropy in the symmetric exchange interac-
tions.

Figures 13(a) and 13(b) show the temperature depen-
dences of |M̃η|, C, χ , and Nsk in the intermediate magnetic
field regime for B ‖ [100] (B = 0.8). In this case, the sys-
tem undergoes successive transitions as 1Q → 3Q → 6Q →
paramagnet while increasing temperature. In the 1Q phase at
low temperature, η for the nonzero |M̃η| is chosen from 1, 3,
4, or 6 for which the easy axis in the corresponding symmetric
interaction is perpendicular to B (see Fig. 8). Meanwhile,
in the intermediate 3Q phase, three out of six |M̃η| are
nonzero with the relation |M̃η1 | > |M̃η2 | = |M̃η3 | > 0 where

FIG. 12. Magnetic field–temperature phase diagrams of the 6Q model with (D, �) = (0.2, 0.3) for the magnetic field directions (a) B ‖
[100], (b) B ‖ [110], and (c) B ‖ [111]. The notations are common to those in Fig. 11.
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FIG. 13. Temperature dependences of (a), (c) the order parame-
ters |M̃η�

| and (b), (d) the specific heat C, the spin scalar chirality
χ , and the skyrmion number Nsk for the 6Q model with (D,�) =
(0.1, 0.0). The data in (a) and (b) are for B ‖ [100] with B = 0.8,
while those in (c) and (d) are for B ‖ [111] with B = 0.6. The
order parameters are sorted in descending order: |M̃η1 | � |M̃η2 | �
|M̃η3 | � |M̃η4 | � |M̃η5 | � |M̃η6 |. The spin scalar chirality is multi-
plied by a factor of 10 for better visibility.

TABLE II. Order parameters in each magnetically ordered phase
of the 6Q model. The sets of η, {η1, η2, . . . }, for nonzero M̃η are
shown, with the relation between |M̃η|.

Phase Sets of η Notes

B = 0 1Q {1}, {2}, {3},
{4}, {5}, {6}

3Q {1, 2, 6}, {1, 3, 5}, |M̃η1 | = |M̃η2 | = |M̃η3 |
{2, 3, 4}, {4, 5, 6}

6Q {1, 2, 3, 4, 5, 6} |M̃η1 | = |M̃η2 | = |M̃η3 |
= |M̃η4 | = |M̃η5 | = |M̃η6 |

B ‖ [100] 1Q {1}, {3}, {4}, {6}
3Q {1, 6, 2}, {1, 3, 5}, |M̃η1 | = |M̃η2 | �= |M̃η3 |

{3, 4, 2}, {4, 6, 5}
6Q {1, 3, 4, 6, 2, 5}, |M̃η1 | = |M̃η2 | = |M̃η3 |

= |M̃η4 | > |M̃η5 | = |M̃η6 |
6Q′ {2, 4, 6, 1, 3, 5}, |M̃η1 | > |M̃η2 | = |M̃η3 |

{5, 1, 3, 4, 6, 2} � |M̃η4 | = |M̃η5 | > |M̃η6 |
B ‖ [110] 1Q {1}

3Q {4, 5, 6}, {4, 2, 3} |M̃η1 | > |M̃η2 | = |M̃η3 |
6Q {2, 3, 4, 1, 5, 6}, |M̃η1 | = |M̃η2 | > |M̃η3 |

{5, 6, 4, 1, 2, 3} > |M̃η4 | > |M̃η5 | = |M̃η6 |
B ‖ [111] 1Q {1}, {2}, {3}

3Q {4, 5, 6} |M̃η1 | = |M̃η2 | = |M̃η3 |
3Q′ {1, 2, 6}, {2, 3, 4}, |M̃η1 | = |M̃η2 | > |M̃η3 |

{1, 3, 5}
6Q {4, 5, 6, 1, 2, 3} |M̃η1 | = |M̃η2 | = |M̃η3 |

> |M̃η4 | = |M̃η5 | = |M̃η6 |

{η1, η2, η3} are chosen from {2, 1, 6}, {5, 1, 3}, {2, 3, 4}, or
{5, 4, 6}. In the 6Q phase at high temperature, all of |M̃η|
are nonzero with the relation |M̃1| = |M̃3| = |M̃4| = |M̃6| �
|M̃2| = |M̃5| > 0. We summarize the order parameters in
each phase in Table II. The two transitions between the mag-
netically ordered phases are both of first order, as indicated by
the delta-function-type anomalies in C shown in Fig. 13(b).
Meanwhile, the transition from the 6Q phase to the paramag-
net is continuous, where C shows a jump, similar to the case
of the 3Q model in Fig. 6(b).

We note that, at the phase transition from the 6Q phase to
the paramagnet, the six components of the order parameters
|M̃η| show different critical behaviors: Four out of them go to
zero in a square-root fashion, but the rest two vanish linearly,
as shown in Fig. 13(a). These peculiar behaviors are under-
stood from the expansion of g({m̃α

r0
}) in Eq. (12) in terms of

M̃α
η in Eq. (16), which corresponds to the Ginzburg-Landau

theory. Among the relevant contributions to the stabilization
of the 6Q phase, we obtain a third-order term given by

B
[
M̃x

2{(M̃1 · M̃6)∗ + (M̃∗
3 · M̃4)}

+ M̃x
5{(M̃∗

1 · M̃3) + (M̃4 · M̃6)} + c.c.
]
, (37)
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which represents the coupling among B, the x component of
M̃η with η = 2 or 5, and the other two M̃η with η′, η′′ = 1,
3, 4, or 6 that satisfy Qη ± Qη′ ± Qη′′ = 0 (see Fig. 8). Given
this form, our result in Fig. 13(a) indicates that M̃1, M̃3, M̃4,
and M̃6 are the primary order parameters, and M̃2 and M̃5 are
the secondary ones:

|M̃1| = |M̃3| = |M̃4| = |M̃6| ∝ |T − Tc|1/2, (38)

|M̃2| = |M̃5| ∝ |T − Tc|, (39)

near the critical temperature Tc. Thus, B{(M̃1 · M̃6)∗ + (M̃∗
3 ·

M̃4)} and B{(M̃∗
1 · M̃3) + (M̃4 · M̃6)}, both of which are pro-

portional to |T − Tc|, act as internal fields to induce M̃x
2 and

M̃x
5 , respectively, through Eq. (37). At the same time, this

analysis indicates that a nonzero magnetic field plays a key
role for the stabilization of the 6Q phase in Fig. 11(a), in
contrast to the 3Q phases in Fig. 4.

As shown in Fig. 13(b), χ becomes nonzero in the 3Q and
6Q phases. Notably, the absolute value is almost two or three
orders of magnitude larger than that in the 3Q phase in the 3Q
model [see Figs. 6(b), 7(b), 7(d), and 7(f)]. This is because the
3Q state in Figs. 13(a) and 13(b) is topologically nontrivial,
which consists of stacked SkXs with Nsk = −1, similar to
the state at zero magnetic field in Figs. 10(e) and 10(f). Note
that the zero-field state is energetically degenerate between
Nsk = +1 and −1, but the one with Nsk = −1 is energetically
preferred under the magnetic field. As shown in Fig. 13(b),
Nsk remains at −1 in the high-T 6Q phase, but it increases
in a stepwise manner, according to the motions of hedgehogs
and antihedgehogs on the discrete lattice. Note that Nsk is an
average over the (100) slices, some of which have Nsk = −1
and the others have Nsk = 0 depending on how many Dirac
strings connecting the hedgehogs and antihedgehogs penetrate
the slice. Finally, Nsk goes to zero at T � 0.622, where the
hedgehogs and antihedgehogs cause pair annihilation. This is
a topological transition caused by temperature, whose rem-
nant can be seen as a hump in the specific heat in Fig. 13(a).

Figures 13(c) and 13(d) show the results for B ‖ [111]
(B = 0.6), where the system undergoes the successive tran-
sitions as 1Q → 3Q → 1Q → paramagnet while increasing
temperature. In this case, the nonzero |M̃η| in the 1Q phase is
chosen from η = 1, 2, or 3, while those in the 3Q phase are
limited to the combination of η = 4, 5, and 6. Note that η in
{1, 2, 3} are equivalent under B ‖ [111], and the same holds
for η in {4, 5, 6} (see Fig. 8). The order parameters in each
phase are summarized in Table II. In this case also, C shows
delta-function-type anomalies and a jump associated with the
discontinuous and continuous transitions, respectively, and χ

becomes nonzero in the 3Q phase taking a much larger abso-
lute value than that in the 3Q model, as shown in Fig. 13(d).
The large |χ | is again due to the topological nature of the
stacked SkXs with Nsk = −1.

Next, let us discuss the results for (D,�) = (0.2, 0.3) in
Fig. 12. In this case, at zero magnetic field, the 6Q state
persists up to the transition to the paramagnet at T � 1.10.
When we apply the magnetic field, it remains stable in the
low-field region, but turns into the 3Q phase in the entire tem-
perature range regardless of the magnetic field direction. With
further increasing the magnetic field, however, the system

behaves differently: While there is no other ordered phase for
B ‖ [100] [Fig. 12(a)], we find an additional first-order phase
transition to the 1Q phase for B ‖ [110] [Fig. 12(b)], and
two additional ones to the 3Q′ and 6Q phases for B ‖ [111]
[Fig. 12(c)]. The case of B ‖ [111] is particularly interesting
as it shows reentrant transitions from 6Q to 3Q and 3Q′, and
to 6Q while increasing the magnetic field.

Figure 14 shows the field dependences of |M̃η|, m, χ ,
and Nsk at T = 0.2. First, for B ‖ [100], while increasing the
magnetic field, the system undergoes a first-order phase tran-
sition from the 6Q′ phase, which has a different distribution
of |M̃η| from the 6Q phase in Fig. 11(a) (see Table II; see
also Sec. IV C), to the 3Q phase with clear jumps of |M̃η|, as
shown in Fig. 14(a). The discontinuity is also found for m and
χ , as shown in Fig. 14(b).

It is worth noting that while χ is nonzero in the 6Q′ phase,
the absolute value is much smaller than that in the 3Q phase.
The value of χ in the 3Q phase is comparable to that in
Figs. 13(b) and 13(d) because this 3Q state is also topolog-
ically nontrivial with Nsk = −1, as shown in Fig. 14(b). In
this case, the solid angle � is calculated on the (100) slice. In
the 3Q phase, however, we find a topological transition from
Nsk = −1 to 0 at B � 1.104, where χ is rapidly suppressed,
as shown in Fig. 14(b). We show the spin configurations and
the distributions of the solid angle on the (100) slice for the
Nsk = −1 and Nsk = 0 states in Figs. 15(a) and 15(b), respec-
tively. The green rhombi correspond to a (100) slice of the
magnetic unit cell on which � and Nsk are computed; note that
the spin structure does not change along the [111] direction in
this 3Q state. The change of Nsk is mainly caused by changes
of the spin configurations near the triangular plaquettes having
large |�| [three blue triangles in Fig. 15(b)]: These plaquettes
exhibit sign change of � before and after the topological
transition.

With a further increase of the magnetic field, the system
continuously changes into the paramagnet at B � 3.031, as
shown in Figs. 14(a) and 14(b). Similar to the previous case
from the 6Q phase to the paramagnet in Figs. 13(a) and 13(b),
the three components of the order parameters |M̃η| show
different critical behaviors: |M̃η1 | = |M̃η2 | ∝ |B − Bc|1/2 and
|M̃η3 | ∝ |B − Bc|. This behavior is also understood from the
Ginzburg-Landau–type argument: In this case, the third-order
terms like B[M̃x

η3
(M̃η1 · M̃η2 )∗ + c.c.] mainly contribute to sta-

bilize the 3Q phase. Here, {η1, η2, η3} are chosen to satisfy
Qη1 ± Qη2 ± Qη3 = 0 and, in addition, η1 and η2 are chosen
from 1, 3, 4, or 6, for which the easy axis in the corresponding
symmetric interaction is perpendicular to B, and η3 is chosen
from 2 or 5, for which the easy axis is parallel to B (see Fig. 8
and Table II). Thus, in this transition, M̃η1 and M̃η2 are the
primary order parameters, acting as internal fields to induce
the secondary one M̃η3 .

Next, for B ‖ [110], the system exhibits successive phase
transitions as 6Q → 3Q → 1Q → paramagnet, as shown in
Fig. 14(c). The transitions between the 6Q and 3Q phases
and between the 3Q and 1Q phases are both of first order,
the former of which is similar to that for B ‖ [100], while the
transition from the 1Q phase to the paramagnet is of second
order. As shown in Fig. 14(d), χ is nonzero in both 6Q and
3Q phases, but the absolute value is much larger in the 3Q
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FIG. 14. Magnetic field dependences of (a), (c), (d) the order parameters |M̃η�
| and (b), (d), (f) the magnetization m, the spin scalar chirality

χ , and the skyrmion number Nsk for the 6Q model with (D, �) = (0.2, 0.3) and T = 0.2. The magnetic field directions are (a), (b) B ‖ [100],
(c), (d) B ‖ [110], and (e), (f) B ‖ [111]. The order parameters are sorted in descending order as Fig. 12. The spin scalar chiralities in (b), (d),
and (f) are multiplied by a factor of 4 (solid lines) [a factor of 400 in the 6Q and 6Q′ phases (dashed lines)] for better visibility.

phase due to the nonzero Nsk as for the case of B ‖ [100]. In
this case, however, Nsk is −1 in the entire region of the 3Q
phase, and there is no topological transition in the 3Q phase,
in contrast to the B ‖ [100] case in Figs. 14(a) and 14(b). We

FIG. 15. Spin configurations (left) and distribution of the solid
angle � (right) in the 6Q model with (D,�) = (0.2, 0.3) and T =
0.2 in B ‖ [100]: (a) B = 0.8 and (b) B = 1.4, which correspond to
before and after the topological transition in the 3Q phase, respec-
tively. The notations are common to those in Figs. 10(e) and 10(f).
The green rhombi correspond to a (100) slice of the magnetic
unit cell.

note that there is a sign change in χ in the 6Q phase, which
will be discussed in Sec. IV C.

Finally, for B ‖ [111], the system exhibits reentrant transi-
tions as 6Q → 3Q → 3Q′ → 6Q → paramagnet, as shown in
Fig. 14(e). The 3Q′ phase is distinguishable from the 3Q phase
as these phases have different combinations of the nonzero
M̃η: |M̃4| = |M̃5| = |M̃6| > 0 in the 3Q phase, while |M̃η1 | =
|M̃η2 | � |M̃η3 | > 0 with {η1, η2, η3} = {1, 2, 6}, {1, 3, 5}, and
{2, 3, 4} in the 3Q′ phase; see Table II. Similar to the previous
two cases of B ‖ [100] and B ‖ [110], all the phase transitions
are of first order, except for that to the paramagnet. Moreover,
similar to the case of B ‖ [100], the system exhibits a topolog-
ical transition within the 3Q phase at B � 2.093, where Nsk

changes from −1 to 0 and χ is rapidly suppressed, as shown
in Fig. 14(f). The spin configurations and the distributions
of the solid angle for the Nsk = −1 and 0 states are shown
in Figs. 16(a) and 16(b), respectively. Similar to the case of
B ‖ [100], the plaquettes with large |�| exhibit sign changes
of �, which mainly contributes to the change of Nsk. In this
case also, we note that there is a sign change in χ followed by
the small but nonzero Nsk in the low-field 6Q state. We will
touch on this issue in Sec. IV C.

C. Remarks on hidden transitions

In this section, we describe two possible types of hidden
phase transitions that were found through the present analysis.
One is associated with phase shifts in the complex variables
M̃α

η , namely, changes in arg M̃α
η , and the other is associated

with changes in the distribution of the amplitudes |M̃η| while
keeping the set of nonzero |M̃η|. We note that the importance
of the former type has recently been pointed out in both ex-
periment and theory [61,65,85]. Both types of the transitions
are obscure, showing very weak anomalies in the physical
quantities and, therefore, it is hard to trace them throughout
the phase diagrams. Thus, we do not indicate such hidden
transitions on the phase diagrams shown above.
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FIG. 16. Spin configurations (left) and distribution of the solid
angle � (right) in the 6Q model with (D,�) = (0.2, 0.3) and T =
0.2 in B ‖ [111]: (a) B = 2.0 and (b) B = 2.2, which correspond to
before and after the topological transition in the 3Q phase, respec-
tively. The notations are common to those in Fig. 15.

For the former type of the hidden transitions, we find, at
least, four examples. For all the cases, the transitions are of
first order. The first case is in the 3Q phase in the ground-
state phase diagram of the 3Q model (Fig. 2). We find that
the phases of all M̃α

η are odd multiples of π/� for small
D, namely, arg M̃α

η = πnα
η/� with an odd integer nα

η , while
they are even multiples of π/� for large D. The second case
is found in the temperature evolution of the 2Q′ phase in
Fig. 6, indicated by small jumps of M̃1 and M̃2 near T � 0.1.
In this transition, similar phase shifts occur for the nonzero
components of the order parameters M̃y

1 and M̃z
1: Both ny

1 and
nz

1 are odd integers in the low-T regime, while they become
even integers in the high-T regime. The third and fourth cases
are found in the field evolution of the low-field 6Q phase of
the 6Q model under B ‖ [110] [Figs. 14(c) and 14(d)] and
B ‖ [111] [Figs. 14(e) and 14(f)]. In both cases, M̃α

η exhibits
a small jump, and χ changes its sign discontinuously. In the
case of B ‖ [111], this transition is followed by a small change
in Nsk, as shown in Fig. 14(f), which is caused by motions of
hedgehogs and antihedgehogs. The onset of Nsk appears at a
slightly higher B than the discontinuous transition. In contrast
to the former two cases, we cannot determine precisely the
phase shifts in these cases because the phase shifts occur in
the subdominant components of M̃η and are difficult to follow
within the present numerical accuracy.

We note that the phase transitions associated with phase
shifts can take place in the system with NQ is larger than the
spatial dimension d in the continuum limit, which corresponds
to the large-� limit in the present models on the discrete

lattice. This is because a phase shift is reduced to a spatial
translation when NQ � d in the continuum limit [65]. Our
3Q model is marginal as NQ = d = 3 and, hence, we expect
that the hidden transitions in the former two cases above may
disappear when � is increased. Meanwhile, our 6Q model
satisfies the condition as NQ = 6 > d = 3 and, therefore, the
latter two transitions may survive even in the large-� limit.

For the latter type of the hidden transitions, we find only
one example in the current analysis. It takes place in the
low-field 6Q phase for B ‖ [100] in Figs. 14(a) and 14(b). In
this transition, the distribution of |M̃η| appears to change from
|M̃η1 | > |M̃η2 | = |M̃η3 | = |M̃η4 | = |M̃η5 | > |M̃η6 | to |M̃η1 | >

|M̃η2 | = |M̃η3 | > |M̃η4 | = |M̃η5 | > |M̃η6 | at B � 0.21, where
{η1, η2, η3, η4, η5, η6} = {2, 4, 6, 1, 3, 5} or {5, 1, 3, 4, 6, 2}.
The distribution changes continuously, and χ shows a peak
near the change. Thus, this transition looks continuous, while
the possibility of crossover or weak first-order phase transition
cannot be ruled out due to less accuracy.

V. SUMMARY AND PERSPECTIVES

To summarize, we have developed a theoretical framework
to investigate the phase competition between multiple-Q mag-
netic orders in a class of effective spin models with long-range
magnetic interactions derived from the coupling to conduction
electrons. In addition, applying the framework to two models,
the 3Q and 6Q models, we have elucidated the magnetic
field–temperature phase diagrams, which reveal a variety of
interesting magnetic and topological transitions.

Specifically, we constructed two methods, method I and
method II, both of which are based on the steepest descent
method and provide the exact solutions in the thermodynamic
limit. They are complementary to each other: Method I is
computationally cheap but limited to two-spin interactions,
while method II is computationally expensive but can be
applied to more generic multiple-spin interactions. The frame-
work is unbiased and concise, and has many advantages over
previously used methods, such as variational calculations and
Monte Carlo simulations.

Using the framework, we studied the ground-state and
finite-temperature phase diagrams of the 3Q and 6Q models
on a simple cubic lattice in an external magnetic field applied
to the [100], [110], and [111] directions. The models in-
clude the anisotropic symmetric interactions and the DM-type
antisymmetric interactions, and exhibit multiple-Q magnetic
orderings in the ground states. By detailed analysis of the
ground-state spin configurations at zero magnetic field, we
found magnetic hedgehogs and antihedgehogs forming 3D
lattices in the 3Q phase of the 3Q model and the 6Q phase
of the 6Q model; we also found magnetic skyrmions forming
2D lattices in the 3Q phase of the 6Q model. By further anal-
ysis with introducing temperature and the external magnetic
field, we obtained the complete phase diagrams with a higher
resolution than ever before.

We found two particularly interesting features in the phase
diagrams: Thermally stabilized multiple-Q spin states and
topological transitions in the multiple-Q phases. As the for-
mer features, we found that a 3Q phase of the 3Q model
and a 6Q phase of the 6Q model appear only at finite tem-
perature [Figs. 4(c) and 11(a)]. The detailed analysis by
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the Ginzburg-Landau expansion indicates that the magnetic
field plays also an important role for the stabilization of
the 6Q phase, while the 3Q phase is stable even at zero
magnetic field. As the latter features, we found a transition
between the 3Q state composed of stacked skyrmion crystals
and the 6Q state with a hedgehog lattice in the 6Q model
[Figs. 9, 11(a), 12, 13(a), 13(b), and 14]. We also found
topological transitions within each 3Q and 6Q phase, where
the skyrmion number vanishes while changing temperature
and the magnetic field [Figs. 13(b), 14(b), and 14(f)].

Our results demonstrate that the newly developed frame-
work in this paper provides a powerful tool to investigate the
phase competition in the effective spin models for magnetic
metals. It can be applied to a generic form of the Hamilto-
nian, which includes not only two-spin but also multiple-spin
interactions with any anisotropy. In recent years, several
variations of such effective spin models have been stud-
ied for understanding of multiple-Q magnetic orderings in
many materials, e.g., the skyrmion lattices in Gd2PdSi3 [86],

GdRu2Si2 [73,74,87], Gd3Ru4Al12 [78], and EuPtSi [76], and
the hedgehog lattices in MnSi1−xGex [62–64]. Our framework
would be useful to clarify the complete phase diagrams and
the nature of the transitions between different multiple-Q
phases in a high resolution. While our demonstration was lim-
ited to the model with two-spin interactions only, the models
with higher-order spin interactions, such as biquadratic and
bicubic interactions, are important for a new generation of the
topological multiple-Q magnetic orderings that appear in the
systems with no or less anisotropy arising from the spin-orbit
coupling [60]. Such extensions are left for future studies.
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