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Electric field control of magnons in magnetic thin films: Ab initio predictions
for two-dimensional metallic heterostructures
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We explore possibilities for control of magnons in two-dimensional heterostructures by an external electric
field acting across a dielectric barrier. By performing ab initio calculations for a Fe monolayer and Fe bilayer,
both suspended in vacuum and deposited on Cu(001), we demonstrate that external electric field can significantly
modify magnon lifetimes and that these changes can be related to field-induced changes in layer-resolved Bloch
spectral functions. For systems with more magnon dispersion branches, the gap between high- and low-energy
eigenmodes varies with the external field. These effects are strongly influenced by the substrate. Considerable
variability in how the magnon spectra are sensitive to the external electric field can be expected, depending on
the substrate and on the thickness of the magnetic layer.
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I. INTRODUCTION

Magnonics, i.e., the generation, control, and detection of
collective spin excitations (or magnons) has been considered
for possible information storage and processing applications
due to the promise of higher data density and its more
energy-efficient elaboration [1–6]. This area is rapidly ad-
vancing, from early proposals of memory devices to more
recent examples concerning the implementation of logical
operations [7–9].

Various groups have studied how an external electric field
can be used to modify features of the magnon spectra and
to potentially realize these functionalities. An early example
has been the measurement of proportionality between mag-
netic resonance shifts and an applied electric field in lithium
ferrite [10]. This observation has been explained as a conse-
quence of a voltage-controlled magnetocrystalline anisotropy
variation, and deemed small for practical applications [11].
Subsequently, multiferroic materials have been found to of-
fer a stronger response in their magnon spectrum through
the coupling between their intrinsic electric polarization and
the externally applied perturbation [12,13]. More recently,
Liu and Vignale discussed yet a different theoretical mech-
anism not restricted to this class of materials and capable to
produce effective Dzyaloshinskii-Moriya interactions (DMI)
proportional to the external field [14]. This has prompted to
examine the consequences for magnon spectra [15–19], most
frequently adopting as reference material the ferrimagnetic
insulator yttrium iron garnet (YIG).

In this paper, we are interested in the possible control of
magnons by an applied electric field acting, across a dielectric
barrier, on a two-dimensional (2D) heterostructure. We deal
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with the idealized layout of magnetic/nonmagnetic layers of
simple transition metals, e.g., Fe and Cu. Similarly to the
case of YIG, absence of electric current due to the insulating
barrier precludes energy dissipation into Joule heating (Ohmic
losses). The gating Efield acts by controlling the hybridization
between electronic states. We study how this can offer another
venue for controlled variation of the magnon dispersion re-
lation and lifetime. This latter aspect complements previous
theoretical studies such as Refs. [20,21], which have typically
examined only the adiabatic or infinitely long-lived limit of
collective spin excitations.

This paper is structured as follows. We first describe a
reference device layout and introduce the theoretical scheme
adopted to study from first principles its magnon spectrum
(Sec. II). We then present numerical results for an Fe mono-
layer and an Fe bilayer either suspended in vacuum or
deposited on a Cu substrate. We show how the magnon life-
time and the gap between low- and high-energy eigenmodes
depend on the external electric field and how this can be
traced back to changes of the underlying electronic structure
(Sec. III). We summarize salient aspects of the results in
Sec. IV and offer our conclusions in Sec. V.

II. COMPUTATIONAL STRATEGY

We consider a metallic 2D heterostructure which contains
a thin magnetic region on top of a nonmagnetic substrate and
which is furthermore capped by a dielectric layer. A steady
voltage between the substrate and an electrode located atop
the dielectric barrier sets up a constant electric field Efield

(Fig. 1). For the sake of clarity and simplicity, we model the
dielectric barrier by a spacing vacuum gap, and we choose,
respectively, Fe and Cu as the material of the magnetic and
nonmagnetic layers.
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FIG. 1. Schematic device layout. Precessing magnetic moments
(red arrows) that compose a magnon mode (blue wave) are studied
as a function of an external electric field acting along the stacking
direction across a dielectric barrier (green region) which prevents
charge transport.

Our interest lies in how the applied voltage can control the
spectrum of transverse spin-wave excitations or magnons. The
magnons are confined within the magnetic layers because of
the negligible proximity-induced spin polarization in copper.
However, their dispersion relation ωn(q), with q being the
wave vector confined to the 2D Brillouin zone �BZ and n
labeling distinct eigenmodes, as well as their lifetime, de-
pend significantly on the underlying substrate already in the
absence of any applied Efield.

Various dissipation mechanisms can be responsible for a
finite lifetime of magnons that manifests itself through the q-
dependent broadening of the above dispersion relation ωn(q).
Here we consider a 2D periodic, perfectly long-range ordered
scenario in the zero temperature limit and we neglect there-
fore Bloch damping from disorder [22,23]. We also neglect
dissipation through magnon-magnon scattering [24–26]. On
the other hand, we consider Landau damping, which is due to
the competition between magnons and single-particle Stoner
spin-flip excitations with same energy and momentum, and
which is deemed to be a dominant attenuation mechanism for
magnons propagation in transition metals [27].

A. General approximation strategy

In the limit of sufficient timescale separation between fast
electrons and slow precession of atomic magnetic moments,
we can adopt as a starting point the Heisenberg Hamiltonian

H = −
∑
i �= j

Ji j êi · ê j, (1)

where êi is the direction of magnetic moment around atom at
position Ri [28]. The exchange coupling parameters Ji j can
be calculated at a first principles electronic structure level by
employing, for instance, the magnetic force theorem [29,30].

Extensions of the basic scheme [31,32] can be used to ob-
tain the full tensor form, Jμν

i j with μ(ν) = x, y, z, which can be
of particular relevance in connection with relativistic effects
such as spin-orbit coupling. Considering, for instance, ferro-
magnetic order along z, one can then identify the isotropic
exchange interactions of Eq. (1) with Ji j = 1

2 (Jxx
i j + Jyy

i j ), and
can analogously define a DMI vector Di j = (Dx

i j, Dy
i j, Dz

i j )

with components Dx
i j = 1

2 (Jyz
i j − Jzy

i j ), Dy
i j = 1

2 (Jxz
i j − Jzx

i j ) and

Dz
i j = 1

2 (Jxy
i j − Jyx

i j ). Liu and Vignale [14] discussed how an
applied electric field can produce an additional DMI term

HDM = Di j · (Si × S j ), proportional to the perturbation and to
the spin-orbit coupling strength.

Although reduced dimensionality can have a significant
impact on spin-orbit coupling, magnetism in thin films is
known to heavily depend on the interplay between substrate
and magnetic layers already at the level of isotropic exchange
interactions Ji j . Our goal is to explore to what extent the layout
of Fig. 1 could be used to control magnon spectral features by
exploiting field-dependent hybridization of electronic states,
without depending on more subtle relativistic effects. We
remain, therefore, within the description of Eq. (1), and we
neglect other features such as magnetocrystalline anisotropy
or Gilbert damping [31,33–35].

The precession of atomic magnetic moments around their
ground-state direction in the effective magnetic field gen-
erated by all their neighbors, Beff

i = ∑
j �=i Ji j ê j , follows the

Landau-Lifschitz equation of motion and can be studied as a
secular equation problem. In particular, the adiabatic magnon
spectrum is given by the eigenvalues of the lattice Fourier-
transformed expression [20,28]

N̂ (q)|ωn(q)〉 = ωn(q)|ωn(q)〉, (2)

with explicit matrix elements [N (q)]s,s′ = 〈s|N̂ (q)|s′〉. The
subscript s = 1, . . . , Nsub labels the (magnetic) sublattices
with origin bs. Each atom therefore lies at position Ri =
RI + bs, where RI is a vector of the periodic lattice. For a long-
range ordered ground state with atomic magnetic moments
ms = (0, 0, mz

s ) the matrix N (q) has elements [36–39]

[N (q)]s,s′ = 4

mz
s

[Jss′ (0) − Jss′ (q)]. (3)

The Fourier transformation in Eq. (2) is performed over all
displacements RIJ = RI − RJ between unit cells I and J:

Jss′ (0) = δs,s′
∑
RIJ

Nsub∑
s′′=1

JIsJs′′ ,

Jss′ (q) =
∑
RIJ

JIsJs′ e−iq·(RIJ+bs−bs′ ). (4)

The above approach toward studying magnon spectra is
intuitive, computationally expedite, and typically offers good
agreement with experiment. However, it does not account
for Landau damping. Physically, it originates from com-
petition of collective transverse spin-wave excitations with
single-particle spin-flip excitations [40–42]. A comprehen-
sive scheme to account for both collective and single-particle
magnetic excitations is provided by linear response formalism
in the framework of the time-dependent density functional
theory (TDDFT). This approach focuses on the dynamic trans-
verse susceptibility χ+(−)(q, ω) which describes the response
of spin-polarized electrons to a magnetic field precessing
clockwise (+) or anticlockwise (−) with the frequency ω.
This susceptibility is determined by the Dyson-like equation

χ+(−)(q, ω) = [1 − χ̊
+(−)(q, ω) f

xc
(q)]−1χ̊

+(−)(q, ω), (5)

where the kernel f
xc

(q) is the second derivative of the
exchange-correlation energy with respect to local magnetic
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moment [43,44] and χ̊
+(−)(q, ω) is the transverse susceptibil-

ity of noninteracting electrons. This quantity can be given at
the scalar-relativistic level in terms of Kohn-Sham eigenstates

φν and eigenvalues εν solving the spin-polarized Schrödinger
problem. Simplifying for a moment the notation through re-
striction to the Nsub = 1 case, we have [41]

χ̊+(−)(r, r′, q, ω) = lim
η→0+

∑
ν,ν ′

∫
�BZ

dk
φ↑(↓),∗

ν (k, r)φ↓(↑)
ν ′ (k + q, r)φ↓(↑),∗

ν ′ (k + q, r′)φ↑(↓)
ν (k, r′)

ω + iη + ε
↑(↓)
ν (k) − ε

↓(↑)
ν ′ (k + q)

× {θ [EF − ε↑(↓)
ν (k)] − θ [EF − ε

↓(↑)
ν ′ (k + q)]}, (6)

with the Heaviside step function θ (x) = 1 for x > 0, θ (x) = 0
for x � 0. The left (right) arrow selects the spin polarization
relevant for the clockwise (anticlockwise) precession of the
moments in response to the infinitesimal perturbation of the
rotating magnetic field. The wave vectors for k, k + q are
considered within the Brillouin zone �BZ, and the positions r,
r′ are restricted to the Wigner-Seitz cells around sites RI , RJ ,
respectively. The quantities in Eqs. (5) and (6) can be cast
in matrix form by adopting, e.g., a combined basis set of
spherical harmonics and orthogonal polynomials to represent
the r, r′ dependence [44,45].

Thanks to the fluctuation-dissipation theorem [46], the
propensity of a material to host a magnetic excitation with
wave vector q and energy ω is marked by large values in
the loss matrix Imχ+(−)(q, ω). Technically, this is due to

zeros from the first term, 1 − χ̊
+(−)(q, ω) f

xc
(q), as well as

to singularities from the second term, χ̊
+(−)(q, ω), in Eq. (5).

The outcome can be studied by examining the eigenvalues of
Imχ+(−)(q, ω) as a function of q and ω [44,47].

Long-living collective excitations (magnons) are character-
ized by the occurrence, at each energy and wave vector, of as
many sharply defined eigenvalues as the number of magnetic
sublattices in the unit cell [44]. By following the sequence of
such peaks, one can reconstruct their dispersion relation and
compare it, for instance, with the simpler ωn(q) outcome from
Eq. (2).

Landau damping instead manifests itself through the emer-
gence of multiple, no longer well-separated eigenvalues which
lead, in practice, to a broadened magnon dispersion. The
broadening can be interpreted as inversely proportional to
a finite magnon lifetime due to competition with Stoner
single-particle excitations. These spin-flip transitions are de-
scribed, in particular, by the noninteracting susceptibility

χ̊+(−)(r, r′, q, ω) [44] and are entirely neglected in the secular
equation problem of Eq. (2).

To approximately account for this aspect of the magnon
physics, we apply here at a first principles level an approxi-
mative procedure that has been proposed, among others, by
Yosida [40] for simplified theoretical models, and adopted,
e.g., by Kirschner et al. [48–50] for the interpretation of
spin-polarized electron energy loss experiments in metallic
thin films.

The procedure consists of two steps. First, we obtain the
adiabatic dispersion relation ωn(q) from Eq. (2). This involves
diagonalizing for each q the real Nsub × Nsub matrix defined in
Eq. (3). Such a procedure is much simpler than dealing with
complex matrices of Eqs. (5) and (6), which need to be dealt
with not only for each q but also for every trial energy ω and
which are also much bigger, depending on the sampling in r
and r′.

Subsequently, the intensity of single-particle excitations
S+(−)

n (q) is obtained by considering only Stoner spin-flip
transitions between occupied and unoccupied Kohn-Sham
states, such that their difference in energy and momentum
corresponds to the magnon eigenmode under consideration
|ωn(q)〉. The number of relevant transitions is estimated
by convoluting the spin-polarized electronic Bloch spec-
tral functions A↑(↓)(k, s, E ) = − 1

π

 G↑(↓)(k, s, E ) where the

electronic Green’s function G↑(↓)(k, s, E ) is the Lehmann
resummation of Kohn-Sham eigenstates and eigenvalues al-
ready appearing in Eq. (6). In practice, we adopt the
Korringa-Kohn-Rostoker (KKR) construction to directly ob-
tain these Green’s functions [51], calculate the Heisen-
berg exchange parameters Ji j [30] and solve the secular
equation problem of Eq. (2), and then we evaluate the
expression

S+(−)
n (q) =

∫ Emax

Emin

dE
∫

�BZ

d3k
Nsub∑
s=1

A↑(↓)(k, s, E ) θ (EF − E ) A↓(↑)(k + q, s, E + ωn(q)) θ (E + ωn(q) − EF )

×
√

Re[vn,s(q)]2 + Im[vn,s(q)]2, (7)

where the double integration samples the full Brillouin
zone �BZ and the energy interval Emin = EF − max[ωn(q)],
Emax = EF + max[ωn(q)] around the Fermi level EF . Occu-
pied and unoccupied states are selected via the Heaviside step
function, similarly to Eq. (6). Finally, the last term in Eq. (7)
is the sublattice-projected magnitude of the complex-valued

eigenvector |ωn(q)〉 := (vn,1(q), vn,2(q), . . . , vn,Nsub (q))† from
Eq. (2). In general, this quantity describes how the n magnon
mode involves deviations from the ground state at each mag-
netic sublattice [28]. In this context, it is used to perform a
weighted sum of Stoner spin-flip transitions which also orig-
inate from that sublattice and which are assumed to compete
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proportionally more with the specific magnon mode, depend-
ing on how it involves the same atoms.

Compared to Eq. (6), the energy and momentum convo-
lution of Eq. (7) only involves real quantities. We use the
result to produce a magnon spectral function which includes
the finite lifetime

Amag(q, n, ω) = − lim
η→0+

|ωn(q)〉 〈ωn(q)|
ω + i[η + S+(−)

n (q)] − ωn(q)
.

(8)
We note that the approach is not as robust as the more rig-

orous but demanding formulation in terms of the loss matrix
Imχ+(−)(q, ω) from Eq. (5). Among various simplifications
behind it, we deem as most severe the separate evaluation of
the adiabatic dispersion ωn(q) and of the broadening func-
tion S+(−)

n (q). These quantities are used within Eq. (8) to
approximate complex magnon poles which would, in an ex-
act treatment, follow from analyzing the dynamic transverse
susceptibility.

The TDDFT Eq. (5) construction of the magnon spectral
function evaluates collective and single-particle spin-flip ex-
citations on equal footing, meaning that their relative spectral
weights gets redistributed, depending for instance on the lo-
cation of the wave vector q within the Brillouin zone, but
it remains on the whole conserved. The approximated con-
struction of Eq. (8) reproduces some of the same features,
but does not guarantee conservation of the total spectral
weight [44,52]. Numerical nevertheless tests provide good
agreement with the trends obtained, e.g., in Ref. [53] using
TDDFT, in particular, for the dispersion ω(q) and the Stoner
intensity S(q).

In this paper, our aim is not to obtain absolute values for the
Landau damping but rather to investigate its relative changes
as a function of the externally applied electric field efficiently.
As long as the inaccuracies of the more expedited but less
robust approach depend only weakly on this perturbation, we
can expect reasonable trends for the ratio between lifetime
estimated with Efield = 0 and Efield �= 0.

B. Finite electric field and other technical aspects

The results discussed in the following have been pro-
duced using the ab initio spin-polarized multiple-scattering or
KKR Green’s function formalism [51] as implemented in the
SPRKKR code [54]. The self-consistent field (SCF) ground
state for the 2D heterostructure of Fig. 1 was obtained by
solving the DFT problem in fully relativistic mode, relying
on the local spin density approximation with the Vosko, Wilk,
and Nusair parametrization for the exchange and correlation
term [55]. This provides good agreement with magnetic spec-
troscopy experiments in metallic ultrathin magnets [20], when
atomic positions are fixed as in this paper.

To deal with systems with only 2D periodicity, we used
the tight-binding or screened KKR method [56]. Fe mono-
layers and bilayers suspended in vacuum were modeled by
slabs consisting of one or two Fe layers embedded in vacuum
represented by four layers of empty sites at each site. Fe
monolayers or bilayers deposited on Cu(001) were treated as
truly semi-infinite systems: the electronic structure was recon-
verged within the topmost 11 or 10 substrate layers, while at
the bottom of this interaction zone the electronic structure was

matched to the bulk. For the geometry, we used the experi-
mental unit cell parameters of bulk copper for the substrate
and the case of iron layers suspended in vacuum to better high-
light the role of the heterogeneous stacking by changing only
one aspect of the system at the time [57]. The axis of magne-
tization was assumed along the [001] direction, in agreement
with calculations of the magnetocrystalline anisotropy energy
(MAE) and other literature [58,59]. Although neglected in
the magnon dispersion of Eq. (3) due to its tiny magnitude,
this nonzero anisotropy suppresses instabilities of long-range
ferromagnetic order for the 2D-periodic magnetic layer(s). We
refer to, e.g., Ref. [20] for a more extensive review of magnon
spectroscopy in similar ultrathin metallic systems.

The external electric field is introduced similarly as in
Refs. [60,61], namely, by considering above the Fe layers an
auxiliary array of point charges, separated from the surface by
vacuum, during calculation of the SCF solutions and all other
quantities. For sufficient areal density and vertical separation,
this layer generates an electric field which can be considered
constant [62,63], with intensity

Efield = Qaux

2ε0A
, (9)

where Qaux is the point charge within the perturbation lim-
its discussed, e.g., in Ref. [63] (positive for a field oriented
antiparallel to the surface normal ẑ) per area of the 2D unit
cell A, and ε0 is the vacuum permitivity. For the multipole
expansion of the Green function, the angular momentum cut-
off �max = 3 was used. The energy integrals to obtain the
SCF-DFT solutions, as well as the isotropic Heisenberg ex-
change interactions from the magnetic force theorem [30],
were evaluated by contour integration on a semicircular path
within the complex energy plane using 32 Gaussian-Legendre
abscissae. The Brillouin zone integrals used an equispaced
mesh with 16 000 k points or more over the whole �BZ. The
Stoner expression Eq. (7) was evaluated by sampling energy
points parallel and near to the real axis.

For the ferromagnetic ground states studied in Sec. III, we
only need to consider one chirality, meaning that we restrict
ourselves to the (+) variant of Eqs. (5)–(7) [40,42,44].

III. RESULTS

We discuss here results for a Fe monolayer and a Fe bilayer,
both suspended in vacuum as well as deposited on Cu(001)
surface.

A. Fe monolayer and Fe bilayer in vacuum

We begin examining how the external electric field influ-
ences the spin-polarized density of states (DOS). Results for
a Fe monolayer are shown in Fig. 2, with no visible effects.
Magnon spectra appear similarly robust with respect to the
perturbation and are therefore not shown.

If a second iron sheet is added, changes in the layer-
resolved DOS start to appear but they are still very small.
Therefore, to highlight the influence of the external pertur-
bation Efield, we consider the difference between the DOS
projected on individual layers,


n↑(↓)(E ) = n↑(↓)
Fe1

(E ) − n↑(↓)
Fe2

(E ).
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FIG. 2. DOS of a Fe monolayer suspended in vacuum for differ-
ent values of Efield. All the curves fall essentially on top of each other,
with no discernible effects from the electric field.

The outcome is shown in Fig. 3. If there is no external
field, this difference is obviously zero because the bilayer is
symmetric. With a finite Efield, the symmetry is removed and
small energy- and spin-dependent transfer of electronic states
between both layers occurs. This transfer is more pronounced
for the minority states. Swapping the polarity of the pertur-
bation, or the labeling of Fe1 and Fe2 layers, is equivalent to
the z → −z coordinate transformation and leads to identical
results. This will only change in the presence of a substrate
which lifts the symmetry, as discussed in Sec. III B below.

FIG. 3. Difference between the DOS projected on individual lay-
ers of a Fe bilayer as a function of Efield.

FIG. 4. Adiabatic magnon spectrum for the Fe bilayer suspended
in vacuum with Efield = 0. The ω2(q) solution is plotted with an
artificial offset of +10 meV to allow visualization where energy
degenerate. The color coding represents the magnitude of the cor-
responding complex eigenvectors, projected on the Fe2 layer.

With only two magnetic layers, the secular equation prob-
lem expressed by Eqs. (2) and (3) reduces to diagonalizing the
matrix

N (q) = 4
∑
RIJ

⎛
⎝ J11

IJ +J12
IJ −J11

IJ e−iq·RIJ

mz
1

−J12
IJ e−iq·(RIJ +b1−b2 )

mz
1

−J21
IJ e−iq·(RIJ +b2−b1 )

mz
2

J21
IJ +J22

IJ −J22
IJ e−iq·RIJ

mz
2

⎞
⎠, (10)

having neglected here the much smaller contributions from the
MAE. Results are shown in Fig. 4. We observe that eigenval-
ues are distinct between the � and the X point and between the
M and the � point, i.e., when going from the center of the 2D
Brillouin zone to its corners. For these portions of the spec-
trum, magnetic precession involves atoms from both layers.
On the contrary, along the X–M segment, i.e., at the Brillouin
zone edge, eigenvalues are degenerate but precession involves
exclusively one or the other iron sheet.

The effect of the external electric field on the magnon
spectra is again very weak for this suspended Fe bilayer, so
it would be hardly visible in a plot. Therefore, we focus just
on the gap between the high- and low-energy branches at the
� point (see Fig. 4). This gap can be evaluated as


E = ω2(�) − ω1(�) = 4
∑
RIJ

J12
IJ

mz
1 + mz

2

mz
1 mz

2

.

The dependence of this gap on Efield is shown in Fig. 5. We
observe a very small variation for the considered range of
Efield, just about 0.05%. Similarly as for Fig. 3, the graph in
Fig. 5 is symmetric with respect to the polarity of the external
field, in accordance with the interchangeable role of layer 1
and layer 2 in the absence of a substrate.

B. Fe monolayer on Cu(001) substrate

Larger effects can be expected for supported iron sheets
because here the asymmetry introduced by the external field
couples with the asymmetry stemming from the substrate.
Figure 6 shows how the spin-polarized Fe-projected DOS
varies with Efield for a Fe monolayer on Cu(001). The changes
are now clearly visible, contrary to the situation for layers
suspended in vacuum investigated in Figs. 2 and 3.
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FIG. 5. Energy gap between the high- and low-energy magnon
branches at q = � for an iron bilayer suspended in vacuum (cf.
Fig. 4) evaluated as a function of Efield.

The corresponding change of the magnetic moment with
Efield is shown in Fig. 7. The presence of the substrate means
that the polarity of the external electric field matters this
time—unlike in the case of suspended layers, as evidenced,
e.g., in Fig. 5. Overall, the variation in the magnetic moment
is quite small, about 0.5%.

A more detailed view can be obtained by inspecting the
projection of the Bloch spectral function at the Fe site. Its
dependence on Efield is outlined in Fig. 8. We show an
interval around the Fermi level, which corresponds to the
max[ωn(q)] = 0.5 eV energy range of magnons in iron thin
films.

Note that the Bloch spectral function exhibits the character-
istic broadening from lack of periodicity along the z direction.
Even though the general look of all three graphs is the same
in Fig. 8, a systematic dependence of the position of certain

FIG. 6. Spin-polarized Fe-projected DOS for a Fe monolayer on
Cu(001) for different intensities and polarities of the external electric
field.

FIG. 7. Dependence of the magnetic moments at Fe sites on the
external electric field for a Fe monolayer on Cu(001).

features on Efield is evident: for example, the energy positions
of the local maximum within 0.3 eV below EF for k between
� and X or the energy positions of the inflection point within
0.3 eV below EF for k between M and �.

We show in Fig. 9 the dispersion relation ω(q) obtained ac-
cording to Eq. (2) for the same three values of Efield considered
in Fig. 8. We observe a very limited dependence. However,
the situation is different for the Stoner spectrum estimated by
means of Eq. (7). Results for Efield = 0 are first illustrated in
the top graph of Fig. 10 as a broadening of the dispersion
ω(q). The qualitative outcome of increasing Landau damp-
ing as we move away from the � point compares well both
with experiments and with more comprehensive TDDFT [44]
or model Hamiltonian RPA-based [64] calculations of the
susceptibility. We interpret this broadening as inversely pro-
portional to the magnon lifetime. The bottom graph of Fig. 10
shows the relative change of this quantity with Efield. Results
are depicted for three choices of the q vector, indicated by
dashed lines in the top graph of the same figure. It is evident
that varying Efield leads to significant changes in the Stoner
spectrum and, consequently, to different magnon lifetime. The
general trend is that a positive Efield decreases the Landau
damping thereby extending the magnon lifetime, whereas a
negative Efield increases the damping and therefore reduces
the magnon lifetime. The effect of a negative Efield, gener-
ated by having negative point charges above the Fe/Cu(001)
semi-infinite system, appears to be larger than the effect of a
positive Efield.

C. Fe bilayer on Cu(001)

In Sec. III B, we investigated a system with a single
magnon eigenmode. To have more eigenmodes, it is necessary
to consider more than a single Fe sheet. The Cu substrate has
only a negligible induced magnetic moment and thus cannot
host magnons. We consider in this section an iron bilayer on
Cu(001), again assuming out-of-plane easy axis of magne-
tization and the same unrelaxed lattice parameters as in the
previous sections, to facilitate comparison.

We first examine the dependence of the magnetic moments
in both Fe layers on Efield. For the upper Fe2 layer, exposed to
the vacuum, this dependence has got a similar nonmonotonous
profile as for the iron monolayer on Cu(001) (compare the
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FIG. 8. Fe-projected Bloch spectral function for a Fe monolayer
on Cu(001), color coded to indicate the predominantly down-spin
polarization of electronic states at the Fermi level. From top to
bottom: Results for Efield = −5.2, 0, or +5.2 (V/nm).

line with full circles in Fig. 11 with Fig. 7). On the other
hand, the magnetic moments decrease almost linearly with
increasing Efield for the subsurface Fe1 layer (blue line with
empty circles in Fig. 11). The total change of the magnetic
moment across the investigated range of Efield is about 0.5%
for both layers, similarly as in the case of a Fe monolayer
on Cu(001).

The adiabatic magnon dispersion is shown in Fig. 12. Some
qualitative differences appear with respect to the case of a
Fe bilayer suspended in vacuum. In particular, the substrate
removes the energy degeneracy also for q points along the
X –M path. On the other hand, the suspended bilayer and

FIG. 9. Adiabatic magnon spectrum of a Fe monolayer on
Cu(001) for selected values of Efield = −5.2, 0, and +5.2 (V/nm).

the bilayer deposited on Cu(001) exhibit alike involvement
of individual iron sheets’ moments in hosting the magnons.
The two eigenmodes involve precession of magnetic moments
equally from both iron sheets near to �, and from only one or
the other layer away from the origin of the Brillouin zone. The
high-energy branch involves only the subsurface Fe1 atoms
along the X –M path, whereas the low-energy branch involves
only the surface Fe2 atoms. A similar q-resolved decomposi-
tion can be observed for the suspended bilayer of Fig. 4.

FIG. 10. Top panel: Magnon spectrum for a Fe monolayer on
Cu(001) for Efield = 0, depicting eigenvalues according to Eq. (2)
(darker line) together with the corresponding intensity of Stoner
excitations obtained by evaluating Eq. (7) (lighter shaded area, in
arbitrary units). Bottom panel: Relative change of the magnon life-
time (obtained as the inverse of the Stoner intensity) with Efield, for
three choices of the q-vector indicated in the top graph by differently
dashed vertical lines of matching colors.
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FIG. 11. Spin magnetic moment versus Efield for the exposed Fe2

(brown full circles, left scale) and subsurface Fe1 (blue empty circles,
right scale) for an iron bilayer over Cu(001) substrate.

We then evaluate again the gap 
E = ω2(�) − ω1(�)
between the high- and low-energy magnon branches as a
function of Efield. For the suspended bilayer, its influence
was symmetric with respect to the polarity and quite small
(Fig. 5). The presence of the substrate changes the situation
dramatically, as can be seen in Fig. 13: the total variation
of 
E is now about 30% (in contrast with 0.05% for the
case of a bilayer suspended in vacuum, see Sec. III A) and
it is asymmetric with respect to Efield. This outcome is not
only due to the different effect of the perturbation on the
magnetic moments for Fe1 and Fe2 atoms (see Fig. 11) but
it is also due to the Efield-induced modifications of the in-
terlayer Heisenberg exchange couplings [61]. As discussed,
e.g., in Ref. [65], these interactions are responsible for an
additional indirect contribution to the Fe-Fe exchange inter-
actions, which is mediated by Cu atoms. This can be seen in
Fig. 14 where we present the interlayer coupling constants J12

IJ
for different values of the external electric field. The largest
variation occurs among the nearest neighbors and then decays
rapidly with the distance |RI − RJ |.

FIG. 12. Adiabatic magnon spectrum for a Fe bilayer on Cu(001)
and with Efield = 0. The color coding represents the magnitude of the
corresponding complex eigenvectors, projected on the Fe2 layer (as
in Fig. 4).

FIG. 13. Energy gap between the high- and low-energy magnon
branches at q = � for an iron bilayer on Cu(001) (cf. Fig. 12) evalu-
ated as a function of Efield.

IV. DISCUSSION

The calculations presented in Sec. III reveal that cer-
tain features of magnon spectra can be controlled by an
applied electric field, besides aspects already considered
in the literature as a consequence of voltage-controlled
magnetocrystalline anisotropy in 2D thin films [60,66,67],
multiferroic coupling [12,13], induced effective DMI [14–19],
or strain from a piezoelectric substrate [68]. In particular, we
see that a finite Efield perturbation may lead to sizable changes
in the magnon lifetime, even in a case for which the adiabatic
dispersion ω(q) is fairly unaffected (compare Fig. 9 with
Fig. 10). The stability of this latter quantity can be linked to
the balance between the tiny asymmetric increase of the spin
magnetic moment for |Efield| > 0 on the one hand (Fig. 7),
and the strengthening of Heisenberg Ji j parameters (by few
tenths of meV) for nearest-neighbor Fe atoms on the other
hand.

The robustness of ω(q) against Efield suggests that the main
reason why the magnon lifetime changes with Efield is that
the Bloch spectral functions entering Eq. (7) are significantly
modified by the electric field. A negative Efield couples mainly
with minority electronic states, just below the Fermi level
(Fig. 8, top). This results in more minority states appearing
closer to the Fermi level, with a shift of the n↓

Fe(E ) bump

FIG. 14. Inter-layer Heisenberg exchange couplings J12
IJ for a Fe

bilayer on Cu(001) plotted as a function of the |RI − RJ | distance,
for Efield= −5.2, 0, and +5.2 (V/nm).
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toward higher energy from its original position at around E =
−250 meV (Fig. 6). The net result is an increase in Stoner
intensity, which is shown in Fig. 10 (bottom) as a noteworthy
enhancement of Landau damping at every depicted q-point.
An opposite shift of the electronic spectral weight, i.e., to
lower energies, takes place for Efield > 0. This results in longer
magnon lifetimes due to the repulsion to deeper energies of
the same minority electronic states discussed above, until they
are pushed below the [Emin, Emax] energy interval sampled by
Eq. (7), and progressively allow only fewer competing Stoner
excitations.

For both electric field polarities, saturation of the change in
Landau damping appears when the perturbation no longer can
redistribute spin-polarized spectral weight within the energy
interval spanned by the magnon.

The scenario of a Fe bilayer on Cu(001) shows Efield-
induced changes in the magnon dispersion relations even
before considering finite lifetime effects. Interestingly, the
dependence of the magnetic moments on Efield exhibits dif-
ferent trends for each of the two iron sheets (see Fig. 11). In
both cases, the magnetic moment is larger than in bulk bcc
Fe, as it is common for surfaces. This is a consequence of
the thin film straining to follow the different lattice parame-
ters of the substrate. In addition, the reduced dimensionality,
or more specifically, the reduced number of Fe atoms with
alike neighbours also plays a role. However, whereas the sur-
face Fe2 layer shows an approximately parabolic and slightly
asymmetric variation of the spin magnetic moment with Efield,
similar to the case of a monolayer (cf. Fig. 7), the subsurface
Fe1 layer contiguous to copper shows a monotonous quasilin-
ear dependence instead. It seems that exposition to the electric
field perturbation with or without an in-between layer that
can provide metallic screening is more important than the
proximity to the nonmagnetic substrate in governing these
trends.

After the nonmagnetic Cu(001) substrate has lifted the
degeneracy between the two iron sheets, our calculations show
in Fig. 11 different trends for the magnetic moment depen-
dence on Efield from subsurface Fe1 contiguous to copper and
from exposed Fe2 facing vacuum. The change spans an alike
interval of about 0.012 μB. The deeper iron sheet shows an
approximately parabolic and slightly asymmetric variation in
the spin magnetic moment, similar to the monolayer case
of Fig. 7. The variation is linear instead for the surface Fe2

atoms.
For all cases under consideration, we find a ω1(q) so-

lution to Eq. (2) that requires zero energy at the � point,
i.e., a Goldstone mode. The second eigenmode ω2(q), when
present, starts from the origin of the Brillouin zone in a similar
quadratic fashion, which is a consequence of the ferromag-
netic ground-state order. While small-wavelength magnons
are equally hosted by both layers, in the presence of a copper
substrate the two modes are neither degenerate in energy nor
in the way that they involve Fe atoms from one or the other
sheet at large q.

Upon including a finite electric field, the Goldstone theo-
rem continues to apply and the lower-energy |ω1(q)〉 branch
continues to start from zero energy. The 
E gap at � strongly
depends on the presence of the nonmagnetic substrate (cf.
Fig. 5 versus Fig. 13). In this case the applied perturbation

significantly modifies the higher-energy ω2(q = �) solution
by changing both the interlayer Heisenberg exchange param-
eters J12

IJ , and layer-resolved magnetic moment mz
1, mz

2 that
enter Eq. (10). The resulting energy difference gets wider for
negative Efield, and shrinks but remains open when inverting
the sign of the perturbation. A negative electric field not only
increases the spin magnetic moment of both Fe1 and Fe2

atoms which are equally involved in the ωn(q → �) limit, but
it also strengthens the J12

i j interlayer interaction (Fig. 14). The
opposite happens for Efield > 0.

In summary, the electric field perturbation acts across the
dielectric barrier of Fig. 1 by modulating the influence of
the nonmagnetic substrate. This mechanism provides differ-
ent Landau damping even for limited changes in the purely
adiabatic dispersion relation of magnons in simple metallic
thin films. The same mechanism also offers possible routes
to engineer specific changes in the magnon spectrum of more
complex, thicker 2D systems, such as the energy gap at the �

point.
We have focused here for clarity on simple examples

with a thin ferromagnetic film. However, the interplay be-
tween metallic screening and the Efield-controlled variation
of the hybridization across magnetic/nonmagnetic layers can
be expected to become more complex for thicker systems,
where the penetration depth of the perturbation is gradually
reduced. Similarly, preliminary calculations show how the
case of colinear antiferromagnetic order can also be affected,
when the Efield alters the net compensation between antiparal-
lel magnetic moments, or through other mechanisms already
considered in the literature [69,70]. Other works have also
examined the impact on DMI [60,71] and skyrmion lattices
in particular [72], rare earths [73], or cases where the applied
electric field is spatially inhomogeneous [74,75].

V. CONCLUSIONS

Magnon spectra of magnetic/nonmagnetic metallic het-
erostructures can be manipulated by external gating electric
field. Our ab initio calculations for test systems of a Fe mono-
layer and Fe bilayer, both suspended in vacuum and deposited
on Cu(001), demonstrate that this perturbation can induce
sizable modifications in finite magnon lifetimes from Landau
damping, besides possible changes in the purely adiabatic
dispersion relations already considered in the literature. The
changes in magnon lifetimes can be related to modifications
of the electronic structure, in particular, in the layer-resolved
spin-polarized Bloch spectral functions.

For systems with more magnon dispersion branches, vari-
ation of the gap between high- and low-energy eigenmodes
with the external field Efield can be expected. As the Efield

perturbation controls the degree of hybridization among
magnetic/nonmagnetic layers, one can expect considerable
variability in how the magnon spectra are affected by the
external field, depending on the choice of the substrate and
the thickness of the magnetic film.
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