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Spin dynamics and continuum spectra of the honeycomb J1-J2 antiferromagnetic Heisenberg model
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We employ the spin cluster perturbation theory to investigate the dynamical properties of the antiferromagnetic
J1-J2 Heisenberg model on the honeycomb lattice. We obtain the excitation spectra for all possible phases in
the phase diagram, including the Néel phase, plaquette valence-bond-solid phase, dimer valence-bond-solid
phase, and stripe antiferromagnetic phase. In the Néel phase, besides the obvious renormalization of the magnon
dispersion, we find that the spectrum exhibits a dome-shaped broad continuum around the second Brillouin
zone (BZ) and the additional strong continuum close to the corner of the BZ. In the valence-bond-solid
phases, the spectra are dominated by a strong broad continuum all the way down to below J1 coexisting with
the lowest-energy triplon modes characterizing the plaquette and dimer phases. We ascribe this strong broad
continuum and the additional continuum close to the BZ corner in the Néel phase to the contributions of
fractionalized spinon excitations. In the stripe phase, a clear difference from the linear-spin-wave approximation
is that the spectrum is gapped at the M point, while that obtained by the latter is gapless due to the strong
quantum fluctuations. We point out that the features observed in the Néel phase are consistent with the recent
neutron scattering experiments on YbCl3 and YbBr3.
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I. INTRODUCTION

The low-dimensional s = 1/2 antiferromagnetic (AF)
Heisenberg model is the fundamental model in the studies
of quantum magnetism. By changing the geometry of the
underlying lattice and the range of the exchange coupling to
introduce frustration, the spin interactions between magnetic
degrees of freedom could be incompatible with the underlying
lattice geometry and thus exotic ground states and excitations
can emerge [1–6]. A typical example is the square-lattice
J1-J2 Heisenberg model, in which the J1 and J2 terms denote
the nearest-neighbor (NN) and next-nearest-neighbor (NNN)
exchange interactions, respectively. By tuning the magnitudes
of the interactions, this model can realize not only the mag-
netically ordered phases with Néel order and stripe order in
the weak and strong frustration region, respectively, but also
the magnetically disordered phases in the intermediate frus-
tration region (0.4 � J2/J1 � 0.6) [7–15], which have been
ascribed to be the quantum spin liquid (QSL) or valence-
bond-solid (VBS) phases. Besides the ground-state phase
diagram, the spin dynamics is also crucial for understand-
ing the rich physics of this quantum spin system and has
attracted considerable interest recently in both experimental
and theoretical aspects. In particular, a recent inelastic neu-
tron scattering (INS) measurement on the Cu(DCOO)2·4D2O,
which is considered to be the best realization of the square-
lattice Heisenberg antiferromagnet, reveals that in addition
to the well-defined low-energy magnon excitations, there is
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an obvious high-energy continuum at (π, 0) in the Brillouin
zone (BZ) [16]. The similar anomalous high-energy contin-
uum at (π, 0) is also observed in the parent antiferromagnet
La2CuO4 of high-Tc cuprates [17]. Although the nature of this
anomalous continuum is still under debate [16–27], it sug-
gests the possibility for a coexistence of conventional magnon
excitations and deconfined spinons which are the spin-1/2
excitations by fractionalizing the spin-1 magnons.

The existence of non-spin-wave excitations in the square-
lattice Néel antiferromagnet indicates that the magnetically
ordered state of the AF Heisenberg model has noticeable
quantum fluctuations. From a theoretical point of view, the
quantum fluctuations in the honeycomb-lattice AF Heisenberg
model can be further enhanced due to its low coordina-
tion number, so we can expect more obvious characteristics
of collective quantum behaviors beyond the magnon in the
magnetically ordered phases. Furthermore, the very recent
INS experiment on YbCl3 [28], which is suggested to be
a realization of the ideal NN antiferromagnetic Heisenberg
model on the honeycomb lattice, has shown a conventional
magnon mode and a dome-shaped broad continuum in the
spin excitation spectra which has been suggested to come
from two-magnon excitations due to longitudinal spin fluctu-
ations. Interestingly, we also notice that a ball of particularly
high spectral weights exhibiting as an additional continuum
superimposed on the dome-shaped continuum exists around
the corners (K point) of the BZ and disappears near the center
of the BZ, and this part of the continuum spectra within
a limited region exhibits a deviation from the two-magnon
continuum. Similarly, for YbBr3 with the same structure as
YbCl3, the recent INS measurement also reveals a broad high-
energy continuum at the boundary of the BZ in addition to
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well-defined S = 1 magnetic excitations near the zone cen-
ter [29], while the experiment only observes a short-range
magnetic order. Thus, the AF Heisenberg model on the honey-
comb lattice provides another ideal platform for studying the
anomalous excitations due to quantum fluctuations in the AF
ordered magnets.

Like its counterpart on the square lattice, the phase dia-
gram of the honeycomb-lattice J1-J2 Heisenberg model has
also been extensively studied by different theoretical meth-
ods, such as the linear-spin-wave (LSW) and bond-operator
theory [30], series expansions [31], coupled-cluster theory
[32,33], modified spin-wave theory [34], variational Monte
Carlo (VMC) [35–37], exact diagonalization (ED) [38,39],
and density matrix renormalization group [40–42]. Most of
these studies report a nonmagnetic phase for J2/J1 ∼ 0.2–0.4,
in which two VBS states with plaquette and staggered-dimer
orders are realized, but the results are in general disagreement
on the range of this phase. For J2/J1 < 0.2, the ground state
is an AF Néel state, while for J2/J1 > 0.4, the results based
on the ED [39], VMC [36], modified spin-wave theory [34],
and coupled-cluster theory [33] predicted a magnetic phase
with stripe order. By contrast, the studies of the spin dynamics
of this model obviously lag behind that of the ground-state
phase diagram. So far, the spin excitation spectrum beyond the
LSW theory for this model comes from the VMC study for the
Néel phase and two possible valence-bond-solid phases with
J2 � 0.4J1 [43], as well as the random phase approximation
based on the resonant-valence-bond (RVB) ansatz with the AF
order [44] and the Schwinger boson mean-field theory [45].
Therefore, to fully explore the spin dynamics of this model
and provide theoretical understandings on the related recent
experimental observations, we need a more comprehensive
research.

In this paper, we study the spin dynamics of the AF J1-J2

Heisenberg model on the honeycomb lattice by using the
spin cluster perturbation theory (CPT) [23]. We obtain the
excitation spectra for all possible phases in the phase diagram,
including the Néel phase, plaquette valence-bond-solid phase,
dimer valence-bond-solid phase, and stripe antiferromagnetic
phase. In the Néel phase with J2/J1 = 0.1, we reproduce well
the entire spectrum observed in a recent INS experiment on
YbCl3, especially the strong continuum close to the corner of
the BZ, where our results reveal that there is even no well-
defined one-magnon mode. The continuum around the BZ
corner had not been analyzed in the previous VMC study [43]
and has also been shown here to reproduce the experimental
observations in YbBr3 [29]. Furthermore, we find that this
continuum is inconsistent with the multimagnon mechanics
and suggest that it originates from the deconfinement of frac-
tionalized spin-1/2 spinons based on a further analysis of
the evolution of the continuum from the Néel phase to the
plaquette VBS phase. In the valence-bond-solid phases, the
spectra show a clear gap and a broad continuum, and different
triplon excitation dispersions at lowest energies corresponding
to plaquette and dimer valence-bond-solid phases, respec-
tively. Finally, we go beyond the previous studies [43–45]
to explore the properties of spin excitations in the large-J2

regime where a stripe AF phase is expected; we find that
the quantum fluctuations not only play an important role in
stabilizing the stripe order of the ground state, but also lead

to the obvious deviation of the excitation spectrum from the
results of the LSW theory.

The paper is organized as follows. In Sec. II, we introduce
the model and the spin cluster perturbation theory (CPT).
In Sec. III, we present the dynamic excitation spectra for
various possible phases of the J1-J2 Heisenberg model on the
honeycomb lattice. Section IV presents a summary.

II. MODEL AND METHOD

The J1-J2 Heisenberg model on the honeycomb lattice is
given by

H = J1

∑

〈i j〉
Si · S j + J2

∑

�i j�
Si · S j, (1)

where 〈i j〉 denotes the NN bonds and � i j � denotes the
NNN bonds. As mentioned above, the ground-state phase
diagram of this model has been extensively explored previ-
ously [30–42], so here we will focus on the spin dynamical
properties.

In order to obtain a reliable spin excitation spectrum with
high momentum resolution, we use the spin cluster perturba-
tion theory (CPT), which has been successfully applied to the
J1-J2 Heisenberg model on the square lattice [23]. Normally,
the CPT is used to study the charge dynamics of the Hubbard
model [46–51]. To extend the CPT method to spin systems,
we use the mapping between spin-1/2 operators and hard-core
bosonic operators [52,53],

S+
i = b†

i , S−
i = bi, Sz

i = b†
i bi − 1

2 , (2)

where b†
i and bi are the creation and annihilation operators of

the hard-core boson, which can be viewed as particles with
infinite on-site repulsion interaction. The hard-core boson
operators have the following relations: [bi, b j] = [b†

i , b†
j] =

0 for i �= j, (bi )2 = (b†
i )2 = 0, and [bi, b†

j] = δi j (1 − 2b†
i bi ).

Under these relations, the occupation number per site is
restricted to ni = 0 or 1 with ni = b†

i bi, and the commuta-
tion relations of the spin operators, [S+

i , S−
j ] = 2δi jS

z
i and

[S±
i , Sz

j] = ∓δi jS
±
i , are realized. Using this representation, the

Hamiltonian (1) is rewritten as

H = 1

2
J1

∑

〈i j〉
(b†

i b j + H.c.) + 1

2
J2

∑

〈〈i j〉〉
(b†

i b j + H.c.)

+ J1

∑

〈i j〉
nin j + J2

∑

〈〈i j〉〉
nin j − 2(J1 + J2)

∑

i

ni. (3)

In the CPT method, we first divide the original lattice into
identical clusters to form a superlattice [see Fig. 1(a)], and the
Hamiltonian can be consequently rewritten as H = Hc + V ,
where Hc is the cluster Hamiltonian and V represents the
coupling between different clusters. Then, the cluster Green
function G(z) (in matrix form) of the frequency z is calculated
by the ED method at zero temperature [54] and finite tem-
peratures [55] with open boundary condition, and the original
lattice Green function is given by

g(k̃, z) = G(z)[1 − V (k̃)G(z)]−1, (4)

where k̃ is the wave vector in the BZ of the superlattice and
Vμν (k̃) = ∑

R V 0R
μν ek̃·R with R the superlattice index; μ and
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FIG. 1. (a) 24-site cluster used in the CPT calculations to tile the
honeycomb lattice. (b) Path consisting of the high-symmetry lines in
the BZ used to illustrate the excitation spectra in this paper, unless
otherwise specified.

ν are the site indices in a cluster. V 0R
μν = 1

2 J1
∑

e δR+rν−rμ,e +
1
2 J2

∑
e′ δR+rν−rμ,e′ contains all hopping terms of the hard-core

bosons between two clusters at 0 and R, and e and e′ denote
the NN and NNN vectors, respectively. Since the intercluster
couplings contained in V should be quadratic in the CPT
method, we perform the following mean-field approximation
on the NN and NNN interactions in the Hamiltonian (3) be-
tween different clusters [23]:

J1

∑

〈i j〉
(ni〈n j〉 + 〈ni〉n j ) + J2

∑

〈〈i j〉〉
(ni〈n j〉 + 〈ni〉n j ). (5)

Due to the cluster decomposition, the Green function obtained
by the CPT method breaks the original lattice translation sym-
metry. We then perform a periodization procedure to recover
the translation invariance and the CPT Green function is given
by

gcpt (k, z) = 1

L

∑

μ,ν

e−ik·(rμ−rν )gμν (k̃, z), (6)

where L is the number of sites in each cluster. Each wave
vector k in the BZ of the original lattice can be expressed
as k = k̃ + K, where K is the reciprocal vector of the super-
lattice. The mapping between s = 1/2 spins and hard-core
bosons given by Eq. (2) leads to a straightforward relation
of the dynamical spin susceptibility S+−(k, ω) to the bosonic
single-particle Green function, as given by

S+−(k, ω) = −Imgcpt (k, ω + iη). (7)

In this paper, the dynamical spin susceptibilities are cal-
culated at zero temperature by using a 24-site cluster with
C6 symmetry, as shown in Fig. 1(a), to divide the original
lattice and setting the broadening factor η = 0.15J1. The 24-
site cluster is the maximum cluster size that we can handle
preserving the C6 rotational symmetry of the original lattice.
We have checked the results by using clusters with different
sizes and structures, such as for the 18-site cluster, and the
results are qualitatively consistent with those presented here
for the 24-site cluster.

FIG. 2. (a) Illustration of the pattern of the AF Néel or-
der. (b) Dynamical structure factor S+−(k, ω) for J2/J1 = 0.
(c) S+−(k, ω) for J2/J1 = 0.1. (d) Path for the illustration of the
spectrum in (e). (e) S+−(k, ω) for J2/J1 = 0.1 along the path shown
in (d). The white lines in (b), (c), and (e) are the LSW dispersion with
the 1/S correction.

III. RESULTS

A. CPT results in Néel phase

Let us start our discussion with the unfrustrated Heisenberg
model for J2 = 0, whose ground state has an AF Néel order
[see Fig. 2(a)]. The spin excitation spectrum along a path
consisting of the high-symmetry lines [see Fig. 1(b)] is shown
in Fig. 2(b), in which we can find a well-defined magnon
dispersion. The overall shape of the dispersion is consistent
with that obtained by the LSW theory with 1/S correction
[56], which is shown by the white solid line. In particular, the
CPT result can successfully produce the Goldstone mode at
the �′ point, which is a defining characteristic of the AF Néel
order. According to the fact that the CPT result is consistent
with the spin-wave dispersion obtained by the LSW theory,
we can expect that there is also a Goldstone mode at the
� point, but the vanishing spectral intensity makes it hardly
seen. However, the dispersion from K to M (M ′) obtained by
the CPT method is nearly flat, which deviates significantly
from the LSW dispersion with the 1/S correction, in which
the energy at the K point is obviously larger than that at the
M and M ′ points. We also note that this flat dispersion is in
good agreement with the result of the VMC calculation [43]
(see the Appendix A). The difference between the CPT and
LSW dispersions is much larger than that in the square-lattice
Heisenberg model [23], evidencing a much stronger renor-
malization effect due to the enhanced quantum fluctuations

174403-3



CHENG GU, SHUN-LI YU, AND JIAN-XIN LI PHYSICAL REVIEW B 105, 174403 (2022)

FIG. 3. Dynamical structure factors S+−(k, ω) in the nonmag-
netic phase. (a) J2/J1 = 0.25. (b) J2/J1 = 0.37.

resulting from the low coordination number in the honeycomb
lattice. Furthermore, there is a continuum in a wide energy
range above the top of the magnon band, and it is especially
obvious close to the K point.

We further study the excitation spectrum by increasing J2,
and the result for the J2 = 0.1J1 is presented in Fig. 2(c). It
is found that the low-energy one-magnon excitations can still
be described by the LSW theory with 1/S correction, while
the broad continuum becomes more obvious, so that a dome-
shaped region with the upper boundary centered on the �′
point can now be seen clearly. More importantly, the spectral
weights around the K point have been heavily suppressed
and no well-defined magnon mode can even be identified any
longer. Thus, the whole spectrum around this point becomes
completely continuum and extends out of the dome-shaped
continuum reaching near 2.5J . Thus, this continuum can be
distinguished as that superimposing on the dome-shaped part
which extends to be about 4.0J around the �′ point. At the
bottom of this continuum, a dim rotonlike excitation with a
minimum at the K point can also be noticed.

B. CPT results in nonmagnetic phase

When J2 is further increased to be 0.18J1, we find that the
AF Néel state is no longer stable and the system becomes a
nonmagnetic state. This evolution of the ground states with
J2 allows us to investigate the corresponding evolution of
excitation spectra, especially the strong continuum around
the K point in the Neél phase to trace its possible origin.
Our numerical calculation reveals that the nonmagnetic phase
persists for 0.18J1 < J2 < 0.48J1, which is consistent with
the previous research in the literature [30–42]. In Figs. 3(a)
and 3(b), we present the excitation spectrum based on our
CPT calculation for J2 = 0.25J1 and 0.37J1, respectively. The
common features are that the Goldstone mode disappears, and
the spectrum develops a clear gap and a broad continuum
reaching down to below J1. The former two features strongly
suggest that the long-range Néel order disappears and the sys-
tem enters into a nonmagnetic phase. On the other hand, they
exhibit different structures at the lowest excitation energies.
For J2 = 0.25J1, the spectral bottom is nearly flat with the
minimum at the �′ point [Fig. 3(a)], while for J2 = 0.37J1,
the lowest-energy spectrum is split into two minima and they
move towards the M point [Fig. 3(b)]. These salient differ-
ent features clearly suggest that two different phases exist in
these two parameter regions. We notice that according to the
previous studies [30–42,57], there are two VBS phases in this
nonmagnetic region with a plaquette order for J2 < 0.36J1 and

FIG. 4. (a),(b) Evolution of the dynamical structure factors with
J2/J1 at the K and M points of BZ, respectively. (c) Density of three-
magnon states for the AF Néel order with J2/J1 = 0. The white line is
the LSW dispersion with the 1/S correction. (d) Dynamical structure
factors S+−(k, ω), Lorentz fittings, and densities of three-magnon
states at the K and M points of BZ for J2/J1 = 0.

a column dimer order for J2 > 0.36J1, respectively. Thus, the
two different excitation spectra can be naturally interpreted
as those out of the plaquette VBS and dimer VBS states, re-
spectively. The lowest-energy spectra manifest the dispersion
of the well-defined triplon mode, and are consistent with the
VMC calculation based on the plaquette and dimer VBS vari-
ational states [43] (see the Appendix A), though the bottom of
the spectrum for J2 = 0.37J1 is not right at the M point due to
the finite-size effects of the cluster we have chosen here.

C. Possible origin of the continuum in Néel phase

Here, we will focus on the discussion of the possible origin
of the additional strong continuum around the K point and
along the K − M line in the Néel phase. In order to get more
insight, we study the evolution of the spectra with J2 from
the Néel phase to the plaquette VBS phase at two typical mo-
menta K and M, as shown in Figs. 4(a) and 4(b), respectively.
It can be seen that there is a sharp peak at both momenta for
J2 = 0, signifying the existence of the well-defined magnons.
But the spectrum is not exhausted completely by a Lorentz
fitting [see the fitting in Fig. 4(d)]; the line shape develops
a noticeable tail in the high-energy region. This non-Lorentz
tail constitutes the continuum above the magnon dispersion
around the K and M points, as shown in the intensity map
of the spectra in Fig. 2(b). From the results for J2 = 0, we
can also see that the spectral weight of the tail at the K point
is clearly larger than that at the M point, so it is easier to
notice the continuum around the K point as discussed above.
With the increase of J2, the sharp peak at the K point dis-
appears rapidly, such as for J2 � 0.05, so no well-defined
magnon mode exists. Instead, a local broad peak emerges near
the edge of the line shape and corresponds to the rotonlike
mode identified already based on Fig. 2(c). In contrast, the
peak corresponding to the magnon mode at the M point re-
mains in the whole Néel phase, and a peak broadened by the
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continuum can also be identified in the plaquette VBS state
for J2 = 0.25, which is believed to come from the triplon
mode. Importantly, the evolutions of the high-energy tails in
the spectra at both K and M points are continuous from J2 = 0
in the Néel phase to J2 = 0.25J1 in the plaquette VBS phase;
in particular, the spectrum at the K point for J2 = 0.1J1 is
already qualitatively consistent with that for J2 = 0.25J1. It
has been demonstrated that the transition from the Néel state
to the plaquette VBS state is a continuous phase transition
with a deconfined quantum critical point [40,41], at which the
elementary spin excitations are deconfined spinons [58,59].
Therefore, the broad continua above the lowest-energy triplon
excitations that we observe in the VBS states may come
from the nearly deconfined spinon excitations. The continuous
evolution of the spectra with J2 implies that the additional
strong continuum superimposed on the dome-shaped contin-
uum near the K point and along the K − M line in the AF
Néel phase may also originate from the effect of the nearly
deconfined spinons. The similar scenario that one magnon is
fractionalized into two nearly free spinons for the high-energy
excitations in the AF Néel phase has also been applied to inter-
pret the high-energy continuum at (π, 0) in the square-lattice
AF Heisenberg model in previous studies [16,18,22,23].

In principle, the multimagnon processes [60], i.e., one
magnon decays into multimagnons due to magnon-magnon
interactions, can also lead to the continuum. We wish to com-
ment on this possibility. In the multimagnon scenario, for a
collinear antiferromagnet as discussed here, the one-magnon
states are odd parity under the π rotation about the Néel
vector direction, but the two-magnon states are even parity
under this symmetry operation, so the coupling between one-
and two-magnon sectors is forbidden in the Heisenberg model
[60]. For this reason, the lowest-order decay channel beyond
the LSW approximation is that one magnon decays into three
magnons due to the four-magnon interaction [60],

H4 =
∑

k1−k4

V1234a†
k1

a†
k2

a†
k3

ak4δ(k1 + k2 + k3 − k4). (8)

The effect of such terms on the continuum depends crucially
on the availability of low-energy three-magnon states. To gain
insight into whether the multimagnon mechanism can fully
reproduce the features of the continuum, we check the density
of three-magnon states, which is given by [60,61]

D(k) = 1

N2

∑

p,q

δ(εk − εp − εq − εk−p−q ), (9)

where εk is the magnon dispersion. The density of three-
magnon states for J2/J1 = 0, based on the one-magnon
dispersion obtained by the LSW theory with the 1/S correc-
tion, is shown in Fig. 4(c). We find that the large densities of
three-magnon states are concentrated at high energies above
3J1, but the continua in Fig. 2(b) are concentrated at energies
below 3J1. In order to more clearly show the energy distri-
butions of the continuum and the three-magnon states, we
present the CPT spectra together with a Lorentz fitting and
the densities of three-magnon states at the K and M points
in Fig. 4(d). We can see clearly that the energy distribution
region of the continuum is obviously different from that of
the three-magnon excitations, and the spectral weight in the

FIG. 5. (a) Illustration of the pattern of the stripe magnetic
order. (b) Path for the illustration of the spectrum in the stripe
phase. (c),(d) Dynamical structure factors S+−(k, ω) for J2/J1 = 0.5,
J3/J1 = 0 and J2/J1 = 0.3, J3/J1 = −0.5, respectively. The white
line in (d) is the LSW dispersion with the 1/S correction.

small overlapping region is very weak. Therefore, we expect
that the continua in the Néel state are at least not mainly due
to the multimagnon processes, though we do not consider
the renormalization of the magnon energy band due to the
magnon-magnon interactions for simplicity.

D. CPT results in stripe phase

When J2 > 0.48J1, we find that the system enters into an-
other magnetic phase with a stripe order as shown in Fig. 5(a),
which is consistent with the results obtained by the VMC
[36], the modified spin-wave theory [34], and coupled-cluster
method [33]. In the classical limit, there are an infinite number
of degenerate magnetic structures, whose wave vectors form
a closed contour in the BZ [30], and the wave vector for the
stripe order is not necessarily on this contour for all J2. This is
further evidence that the Heisenberg model on the honeycomb
lattice has strong quantum fluctuations, which substantially
change the classical scenario and stabilize the stripe order for
large J2. In order to reflect the rotational symmetry breaking
of the stripe order, we choose a different path in the BZ
[see Fig. 5(b)] to present the excitation spectrum. The result
for J2 = 0.5J1 is shown in Fig. 5(c). One can see that the
Goldstone modes appear at X and Y , which is a key feature
of the stripe order. Since the stripe order is not necessarily
the classical ground state for the J1-J2 model, the LSW theory
cannot be applied to the stripe order. In order to reveal the
effects of quantum fluctuations on the excitation spectrum by
comparing the results obtained by the CPT and LSW methods,
we introduce the third-nearest-neighbor Heisenberg exchange
J3 into the model, which can stabilize the stripe order at the
classical level. Figure 5(d) shows the CPT spectrum together
with the LSW dispersion for J2 = 0.3J1 and J3 = −0.5J1,
for which the classical ground state has a stabilized stripe
magnetic order. Although the dispersions based on the two
theoretical methods are consistent at most momentum points,
a remarkable difference is that the CPT spectrum is gapped
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at the M point while the LSW spectrum is gapless, which is
a strong manifestation of the effects of quantum fluctuations.
We note that this gap at the M point also exists in the spectrum
for J3 = 0, as shown in Fig. 5(c). Thus, the quantum fluctua-
tions not only select the stripe order as the ground state, but
also lead to a gap in the excitation spectrum at the M point.

E. Comparison of CPT results in Néel phase to experiments

In order to directly compare with the experimental results,
we also exhibit the spectrum for J2 = 0.1J1 in Fig. 2(e) along
the same path [see Fig. 2(d)] as that used in the experiment
[28]. We find that the result for J2 = 0.1J1 reproduces the
following features observed in the experiment [28]. Namely,
(i) besides the well-defined low-energy magnon excitations,
there is an obvious dome-shaped continuum up to twice the
energy of the magnon band top and centering around the �′
point; (ii) the continuum disappears in a large region centering
around � (the center of the first BZ), as can also be seen in
Fig. 2(c); (iii) around the K (K ′) point, the spectral weights are
suppressed and no well-defined magnon mode can be identi-
fied, so the spectrum there exhibits an additional continuum.
In the meantime, the characteristic that the additional strong
excitation continua around the K (K ′) point and along the
K − M ′ (K ′ − Y ′) line coexist with the low-energy magnon
excitations which disperse from the BZ center for J2 = 0.1J1

is also consistent with the neutron scattering results on its
sister compound YbBr3 [29]. According to the discussion of
the possible origin of the additional strong continua presented
in Sec. III C, we propose that the continua observed at the K
point of the BZ in the INS experiments on YbCl3 [28] and
YbBr3 [29] may be mainly due to the fractionalization of the
S = 1 spin excitations into deconfined spinons.

On the other hand, we note that an observable feature
with high intensity along the upper boundary of the dome-
shaped continua has also been identified in YbCl3 [28], which
is absent in our calculation. As shown in Ref. [28], the
dome-shaped continuum can be accounted for with the LSW
theory by including both the transverse and longitudinal spin
scattering channels and the high-intensity feature within the
continuum is ascribed to be a Van Hove singularity in a
two-magnon continuum which occurs only in the longitudinal
scattering channels. Here in our theoretical calculations, the
longitudinal spin fluctuations are not included. Our qualita-
tive reproduction of the dome-shaped continuum only in the
transverse scattering channel would suggest that the contin-
uum observed in the INS measurement in YbCl3 may come
from not only the longitudinal spin excitations, but also the
transversal spin excitations. This is different from the LSW
scenario in Ref. [28], where the continuum comes only from
the longitudinal spin excitations and the transversal spin exci-
tations contribute only the sharp spin-wave dispersion.

IV. SUMMARY

In summary, we have investigated the spin dynamics of
the antiferromagnetic J1-J2 Heisenberg model on the hon-
eycomb lattice making use of the spin cluster perturbation
theory. We obtain the excitation spectra of all four possible
phases for different J2: a Néel phase, a plaquette valence-

bond-solid phase, a dimer valence-bond-solid phase, and a
stripe antiferromagnetic phase. In the unfrustrated Heisenberg
model with J2 = 0, we have already found clear deviation
from the magnon dispersion obtained by the linear-spin-wave
calculation along the boundary of the Brillouin zone, namely,
the band is relatively flat. The excitation spectrum for the
case of J2 = 0.1J1 is consistent with the recent inelastic neu-
tron scattering measurement on YbCl3 and YbBr3, including
the dispersion, the dome-shaped continuum around the cen-
ter of the second Brillouin zone, and the additional strong
continuum close to the corner of the Brillouin zone. In the
valence-bond-solid phases, the spectra show a clear gap and
a broad continuum, and different triplon excitation disper-
sions at lowest energies corresponding to plaquette and dimer
valence-bond-solid phases, respectively. This broad contin-
uum is shown to come from the nearly deconfined spinon
excitations. Moreover, the continuous spectrum in the plaque-
tte valence-bond-solid phase evolves into the additional strong
continuum near the corner of the Brillouin zone in the Néel
phase. Thus, our results reveal that the additional continuum
in the Néel phase has indispensable contributions from the
deconfinement of fractionalized spin-1/2 spinons. Finally, in
the stripe state, the deviation of the spectrum from the result
in the linear-spin-wave calculation occurs at the M point,
at which the spectrum is gapped, in contrast to the gapless
spectrum in the latter, which is believed to be a strong effect
of quantum fluctuations.
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APPENDIX: CPT SPECTRA FOR THE NÉEL AND VBS
PHASES WITH LOGARITHMIC COLOR BAR

In the main text, the intensities of our CPT spectra are
exhibited with a linear color bar, which is also the usual

FIG. 6. Dynamical structure factor S+−(k, ω) with the logarith-
mic color bar for (a) J2/J1 = 0, (b) J2/J1 = 0.15, (c) J2/J1 = 0.3,
and (d) J2/J1 = 0.37.
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scheme used in experimental works. Nevertheless, to reveal
the detailed features of the spectra, the logarithmic color bar
is an alternative [43]. In Fig. 6, we display the CPT spectra
with the same logarithmic color bar as that in the VMC study
[43], which is helpful to more clearly show the relatively
weak details and make a direct comparison between the results
obtained by the two methods. We can find that the overall

characteristics of the CPT spectra are consistent with those
given by the VMC calculation [43]. As a comparison to our
CPT results with a linear color bar shown in Fig. 2 in the
main text, we find that (i) both the dome-shaped continuum
centered on the �′ point and the additional continuum around
the K point show up more clearly, and (ii) the Goldstone mode
at the � point can now be identified directly in the figure.
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