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Dzyaloshinskii-Moriya induced spin-transfer torques in kagome antiferromagnets

Davi R. Rodrigues ,1 Akshaykumar Salimath,2 Karin Everschor-Sitte ,3 and Kjetil M. D. Hals2

1Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125 Bari, Italy
2Department of Engineering Sciences, University of Agder, 4879 Grimstad, Norway

3Faculty of Physics and Center for Nanointegration Duisburg- Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany

(Received 29 December 2021; revised 22 April 2022; accepted 25 April 2022; published 2 May 2022)

In recent years antiferromagnets (AFMs) have become very promising for nanoscale spintronic applications
due to their unique properties, such as THz dynamics and the absence of stray fields. Manipulating antiferro-
magnetic textures is currently, however, limited to very few exceptional material symmetry classes allowing
for staggered torques on the magnetic sublattices. In this work, we predict for kagome AFMs with broken
mirror symmetry a new coupling mechanism between antiferromagnetic domain walls (DWs) and spin currents,
produced by the relativistic Dzyaloshinskii-Moriya interaction (DMI). We microscopically derive the DMI’s
free-energy contribution for the kagome AFMs. Unlike ferromagnets and collinear AFMs, the DMI does not
lead to terms linear in the spatial derivatives, but instead renormalizes the spin-wave stiffness and anisotropy
energies. Importantly, we show that the DMI induces a highly nontrivial, twisted DW profile that is controllable
via two linearly independent components of the spin accumulation. This texture manipulation mechanism goes
beyond the concept of staggered torques and implies a higher degree of tunability for the current-driven DW
motion compared to conventional ferromagnets and collinear AFMs.
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The manipulation of magnetic textures by electrical cur-
rents was a breakthrough discovery in spintronics and
galvanized a new generation of nonvolatile memory devices
with high performance and low power requirements [1–3].
Further advantages come from the use of antiferromagnetic
materials, allowing for more compact devices and increased
performance speeds [4,5]. The manipulation and observation
of antiferromagnetic textures, however, still present a great
obstacle. The electric control of the magnetization is contin-
gent on the crystal layering structure and symmetries [6–9].
So far, current-driven manipulation has only been observed in
antiferromagnets (AFMs) having a crystal symmetry allowing
for a staggered torque on the magnetic sublattices [6,10–13].

A particularly interesting class of antiferromagnetic ma-
terials is the noncollinear antiferromagnets (NCAFMs) [14].
Unlike ferromagnets and collinear AFMs, whose spin or-
ders are characterized by a single vector field, the NCAFMs
have a SO(3)-valued order parameter field. Consequently, the
NCAFMs are expected to exhibit richer and more complex
spintronic properties than those observed in ferromagnets and
collinear AFMs.

Recently, it was demonstrated that laser pulses can scan
and write domain walls (DWs) in NCAFMs [15]. Astonish-
ingly, their speed and direction of motion can be controlled
by a single spin-wave source with tunable frequency [16].
However, only a few works addressed the current-induced
dynamics of the NCAFMs [17–22], and little is known about
how relativistic interactions influence the shape and current-
driven control of the DWs. Specifically, it is expected that
several NCAFMs could have a significant Dzyaloshinskii-
Moriya interaction (DMI). For example, in NCAFMs with

kagome structure, it was shown that the broken mirror sym-
metry of the kagome plane yielded a complex DMI that varies
on the atomic scale [23–27]. As in ferromagnets and collinear
AFMs [28–32], it is anticipated that the NCAFMs’ DMI is
crucial in understanding the equilibrium and spintronic prop-
erties of the DWs [33–35].

Here, we demonstrate that in kagome AFMs with broken
mirror symmetry, the DMI induces a distinctly twisted DW
shape, which differs markedly from any observed spin tex-
tures in ferromagnets and collinear AFMs. We investigate
how these nontrivial DWs are manipulable by spin currents
injected into the thin-film kagome AFM from an adjacent
heavy metal layer (see Fig. 1). We find that these twisted
DWs can be controlled by a novel spin-transfer torque (STT)
mechanism that couples the DW’s center-of-mass coordinate
additionally to spin currents polarized parallel to the kagome
plane. In contrast, for mirror-symmetric kagome planes, the
DWs are only affected by the out-of-plane component of
the spin accumulation. Consequently, the DWs in kagome
AFMs with broken mirror symmetry couple to two linearly
independent components of the spin current, allowing for a
high degree of tunability in the electrical manipulation of
the DWs. Furthermore, the new STT mechanism opens the
door for detecting the kagome AFMs’ complex DMI via the
current-driven dynamics of the DWs.

We model the kagome AFM with DMI in the exchange ap-
proximation, where the isotropic exchange energy is assumed
to be much stronger than the relativistic interactions produced
by the spin-orbit coupling. In this case, the mutual orientation
of the sublattice spins is only weakly affected by the creation
of spin textures and their dynamics. The spin Hamiltonian of
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FIG. 1. (a) Current-driven DW motion in kagome AFMs with
DMI and broken mirror symmetry. Due to the DMI, the DW attains
a twisted out-of-plane profile, which couples the spin texture to both
the in-plane and out-of-plane spin components of the injected spin
current. (b) Current-driven DW motion in kagome AFMs without
DMI. The spins are confined to rotate in the plane defined by the
AFM layer and the DW only couples to the out-of-plane spin compo-
nent of the injected spin current. The color code of the magnetization
represents cos2 θ , where θ represents the rotation along the z-axis. In
this representation, parallel/antiparallel ground states have the same
color (blue) and the DW is emphasized.

the system is

H = He + HD + Ha, (1)

where He = J
∑

〈i j〉 Si · S j is the isotropic exchange
interaction between the neighboring lattice sites 〈i j〉,
HD = ∑

〈i j〉 Di j · (Si × S j ) represents the DMI, and
Ha = ∑

i[Kz(Si · ẑ)2 − K (Si · n̂i )2] describes the easy plane
(Kz > 0) and easy axes (K > 0) anisotropy energies. The unit
vectors n̂i refer to the in-plane easy axis at lattice site i. The
kagome NCAFM can be divided into three spin sublattices
with in-plane easy axes n̂1 = [0, 1, 0], n̂2 = [

√
3/2,−1/2, 0],

and n̂3 = [−√
3/2,−1/2, 0], respectively. The unit vectors

connecting the three sublattices are ê1 = [1/2,
√

3/2, 0],
ê2 = [1/2,−√

3/2, 0], and ê3 = [−1, 0, 0], and a is the
lattice constant [see Fig. 2(a)].

The structure of the DMI is determined by the symmetry
of the system. The bulk material consists of stacked kagome
lattice layers. In such a three-dimensional kagome lattice,
the inversion symmetry is broken, as the layers are typically
shifted among each other. However, each kagome lattice layer
still corresponds to a mirror plane. In this case, the DMI
vectors Di j are confined to be along the z-axis [24,25]. Often,
however, the mirror symmetry of the kagome lattice is broken,
e.g., due to the presence of nonmagnetic atoms between the
kagome planes such as in jarosites [23–25]. The symmetry
can also be lowered in heterostructures by sandwiching the
kagome AFM between two different materials. In these cases,
the DMI vectors additionally have an in-plane component
[23–27,33] [Fig. 2(b)]. Thus, the most general form of the
DMI within a unit cell is

D21 = Dz ẑ + D‖(ê2 × ẑ), (2a)

FIG. 2. (a) Illustration of the lattice vectors êi and in-plane easy
axes n̂i. (b) The green arrows show the DMI vectors on the bondings
for the case where Dz > 0 and D‖ > 0. The spins in HD should
be summed counterclockwise around the triangles (indicated by the
black arrows on the bondings). (c) Two 120◦ spin configurations of
opposite chirality. For clarity, all figures are illustrated in the limit
D‖ → 0, in which the out-of-plane tilting becomes negligible.

D13 = Dz ẑ + D‖(ê1 × ẑ), (2b)

D32 = Dz ẑ + D‖(ê3 × ẑ). (2c)

The DMI vectors on the bondings connecting the unit cells
are determined by inversion about the site of sublattice 2, i.e.,
D21′ = D21, D1′3′ = D13, and D3′2 = D32 [Fig. 2(b)]. The DMI
vectors in Eqs. (2a) to (2c) have two important implications
for the ground-state spin configurations of Eq. (1). First, the
sign of Dz competes with the easy-axis anisotropy to select
a 120◦ ordering of the sublattice spins with a fixed chirality
[Fig. 2(c)]. For Dz = 0, these two configurations correspond
to an energy minimum of the exchange interaction even
though they have different easy-axis anisotropy contributions
[20]. Second, the in-plane DMI leads to a weak out-of-plane
tilting of the spins: Si,z ∝ −sign[D‖]. Consequently, D‖ yields
a weak ferromagnetic state. Below, we consider Dz < 0 such
that the Hamiltonian (1) has two ground-state configurations
in which the in-plane components Si,‖ of the spins are oriented
along ±n̂i.

To derive a free-energy functional, which provides a
coarse-grained description of the Hamiltonian (1), we write
the three sublattice spins of a unit cell as [36]

Sι(t ) = SR(t )[n̂ι + aL(t )]

‖n̂ι + aL(t )‖ , ι ∈ {1, 2, 3}. (3)

Here, ι = 1, 2, 3 labels the sublattices within a unit cell, R is
a rigid rotation matrix that represents the order parameter of
the NCAFM, whereas L is a vector that describes an overall
tilting of the spins away from their equilibrium direction.
Because R and L are defined by six independent parameters,
the above representation yields a complete description of all
possible configurations of the three sublattice spins. Note that
R and L are constant within a unit cell and vary smoothly
on lengthscales comparable to the system’s exchange length
λ = a

√
J/K . Furthermore, the exchange approximation im-

plies that the tilting aL is small. Substituting Eq. (3) into
Eq. (1), and expanding the Hamiltonian to second order in aL
and the spatial gradients of R, yields in the continuum limit

174401-2



DZYALOSHINSKII-MORIYA INDUCED SPIN-TRANSFER … PHYSICAL REVIEW B 105, 174401 (2022)

a → 0 the free-energy functional

F [R, m] =
∫

dA[FR(R) + Fm(m)], (4)

where dA = dxdy. The free-energy densities

FR = J αβ

i jkl∂αRi j∂βRkl + Ki jkl Ri jRkl , (5a)

Fm = a2m2 + η0m2
z − hD · m, (5b)

originate, respectively, from the rotation matrix R and the vec-
tor field m = TL with Tαβ = δαβ + (1/3)

∑
ι nι,αnι,β and δαβ

being the Kronecker delta. Throughout, Einstein’s summation
convention is implied for repeated indices. In Eq. (5a)

J αβ

i jkl = 

αβ

jl δik + Dαβ

i jkl (6)

parametrizes the spin-wave stiffness of the kagome AFM. Its
first contribution,



αβ

jl = −
0[Aαβ

jl + Bαβ

jl + Cαβ

jl ], (7)

represents the isotropic exchange interaction. Here, 
0 =
(4S2J )/

√
3 is a constant and the tensors A, B, and C are

determined by the easy axes and lattice vectors via the rela-
tionships Aαβ

jl = n1, jn3,l e1,αe1,β , Bαβ

jl = n2, jn1,l e2,αe2,β , and

Cαβ

jl = n3, jn2,l e3,αe3,β . The second contribution to the spin
stiffness

Dαβ

i jkl = −ετ ik[D̃13,τAαβ

jl + D̃21,τBαβ

jl + D̃32,τCαβ

jl ], (8)

is induced by the DMI. Here, ετ ik is the Levi-Civita symbol
and D̃i j = (4S2/

√
3)Di j are the DMI vectors in the continuum

limit. In Eq. (5a), the tensor

Ki jkl = κi jkl + di jkl (9)

describing the anisotropy of the NCAFM also has two contri-
butions. The first one,

κi jkl =
∑

ι

[K̃znι, jnι,lδziδzk − K̃nι,inι, jnι,knι,l ], (10)

is linked to the anisotropy energies, where K̃z = 4S2Kz/a2
√

3
and K̃ = 4S2K/a2

√
3 are the anisotropy constants in the con-

tinuum limit. The second contribution to the anisotropy of the
NCAFM, Eq. (9),

di jkl = 2ετ ik

a2
[D̃13,τM jl + D̃21,τN jl + D̃32,τO jl ], (11)

is determined by the DMI with the tensors M jl = n1, jn3,l ,
N jl = n2, jn1,l , and O jl = n3, jn2,l . In Eq. (5b), the constants
are a2 = 36S2J/

√
3 and η0 = 12KzS2/

√
3. Furthermore,

hD = −(24S2D‖/a)ẑ is the field induced by the in-plane DMI,
which leads to weak ferromagnetism. A derivation of Eq. (4)
is provided in Appendix A.

The free energy (4) captures the long-wavelength physics
of kagome AFMs with DMI, and is the first key result of
this paper. To our knowledge, there has been no microscopic
derivation of the DMI’s contribution to the free-energy func-
tional of kagome AFMs. The free energy of kagome AFMs
without DMI was microscopically derived by the authors of
Refs. [16,37]. Interestingly, Eq. (5a) reveals that the DMI does
not produce any terms that are linear in the spatial deriva-
tives of the order parameter field R. Instead, it renormalizes

the spin-wave stiffness and anisotropy energy via the highly
anisotropic tensors Dαβ

i jkl and di jkl . This differs significantly
from DMI contributions in ferromagnets and collinear AFMs.
For example, unlike ferromagnets and collinear AFMs, the
kagome AFMs described by Eq. (4) do not support helical
spin structures as ground states.

In the following, we study the physics of a DW connecting
two domains being in the two energetically degenerate ground
states of a kagome AFMs with broken mirror symmetry [see
Fig. 1(a)]. To this end, we examine a spin texture along the
x-axis and parametrize the rotation matrix by nautical angles

R(x) = Rz[θ (x)]Ry[φ(x)]Rx[ψ (x)]. (12)

Here, θ , φ, and ψ represent rotations about the z-, y-, and
x-axes, respectively. Furthermore, we consider a parameter
regime in which the easy-plane anisotropy is the dominant
interaction produced by the spin-orbit coupling: K/Kz � 1,
‖Di j‖/Kz � 1. This is consistent with the typical material
parameters of kagome AFMs [38–41].

In the absence of DMI, a DW corresponds to a rota-
tion R(x) = Rz[θ (x)], where ψ = φ = 0, and θ (x) varies
smoothly between 0 and ±π in the DW region. Because the
DMI produces a highly anisotropic form of the spin-wave
stiffness J αβ

i jkl , it may lead to finite out-of-plane rotations φ(x)
and ψ (x) of the DW. We expect these rotations to be small and
linear in the DMI (to leading order). Below, we therefore keep
terms up to second order in φ and ψ in the free-energy density
FR(θ, φ,ψ ) and solve the equilibrium equations to first order
in the DMI. The expression for FR(θ, φ,ψ ) is given in Ap-
pendix A. The equilibrium equations for the nautical angles
and m are found from the variational equations δF/δϑ = 0
(ϑ ∈ {θ, φ,ψ}) and δF/δm = 0.

From Eq. (4), we notice that the equilibrium value of m is
not affected by the underlying spin texture and is a function
only of the in-plane DMI contribution

m = − D‖
a
√

3J

(
1

1 + η0/a2

)
ẑ. (13)

This allows to integrate out the field m in the effective action
description of the DW. Note that η0/a2 ∼ Kz/J � 1 and, thus,
m ≈ −(D‖/a

√
3J ) ẑ for a static kagome AFM.

For the angle θ , we obtain the equilibrium equation

∂2
x θ = 2K̃


0 − √
3D̃z

sin(2θ ), (14)

which has the well-known solution

θ (x) = σ12 arctan{exp[σ2(x − r)/λdw]}. (15)

Here, λdw =
√

(
0 − √
3D̃z )/4K̃ is the DW width, r is the

center of the DW, whereas σ1 ∈ {1,−1} and σ2 ∈ {1,−1} are
determined by the boundary conditions of θ . Notice that the
DMI-induced change of the DW width in Eq. (15) resembles
the ferromagnetic case [42].

Varying the free energy (4) with respect to the nautical
angle ψ produces the following equilibrium equation:

ψ = K̃φ sin(2θ )

2(K̂z + K̃ cos2 θ )
−

√
3D̃‖∂x[(∂xθ ) sin θ ]

8(K̂z + K̃ cos2 θ )
, (16)
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where K̂z = K̃z − √
3D̃z/a2. Thus, ψ is completely deter-

mined by the solutions of the angles θ and φ. The functional
form of the nautical angle φ is dictated by

ε2∂2
x̃ φ(x̃) − Q(x̃)φ(x̃) + R(x̃) = 0, (17)

which has the form of an inhomogeneous Schrödinger equa-
tion. Here, we introduced the dimensionless coordinate x̃ =
(x − r)/λdw and the constant ε2 = 
0/2K̂zλ

2
dw. The functions

Q and R are defined by

Q(x̃) = 1 + k
[
1 − 3sech2(x̃)

]
, (18a)

R(x̃) = −σ1α‖
[
sech (x̃) − 2sech3(x̃)

]
, (18b)

with constants k = K̃/K̂z and α‖ = √
3D̃‖/8K̂zλ

2
dw. An ex-

act analytical solution of Eq. (17) is not known. How-
ever, from the expression of λdw, we see that ε ∼√

k � 1. Therefore, Eq. (17) is on a form suitable for
the Wentzel-Kramers-Brillouin (WKB) approximation [43],
which leads to φ(x̃) = ∫ ∞

−∞ dx̃′G(x̃, x̃′)R(x̃′) with G(x̃, x̃′) =
exp[−(1/ε)| ∫ x̃

x̃′ dt
√

Q(t )|]/2ε[Q(x̃)Q(x̃′)]1/4. In the limits
k � 1, an asymptotic expansion of the above integral implies
the approximate solution

φ(x̃) = −σ1α‖
[
sech (x̃) − 2sech3(x̃)

]
. (19)

Substituting Eqs. (19) and (15) into Eq. (16), yields the fol-
lowing expression for the nautical angle ψ :

ψ (x̃) = σ22α‖sech2(x̃) tanh(x̃). (20)

Equations (15), (19), and (20) are the second key result of
this paper, and determine the DW profile of kagome AFMs.
Importantly, we notice that the DMI forces the DW to develop
a highly nontrivial out-of-plane twist state when the mirror
symmetry of the kagome lattice is broken.

Next, we will investigate how this nontrivial DW texture
couples to a spatial uniform spin accumulation μs. The source
of this spin accumulation does not play a role in the results
we derive. However, in an experiment, μs typically origi-
nates from the spin Hall effect (SHE) in an adjacent heavy
metal layer, which generates a spin current into the AFM, as
sketched in Fig. 1. An effective action Seff = ∫

dtdALeff of
the kagome AFM is characterized by the Lagrangian density

Leff = meff

4
Tr[ṘT Ṙ] − Fs − FR. (21)

Here, the first term represents the kinetic energy where meff =
2h̄2/

√
3Ja2. Additionally, we included Fs, which captures

the free-energy contributions from the spin accumulation and
the DMI: Fs = (h̄/12aSJ )(hD,i − grμs,i )εi jk[RT Ṙ] jk . Here,
gr parametrizes the reactive STT. The free-energy density FR

is given by Eq. (5a).
The dissipative processes of the spin system are governed

by the dissipation functional

G =
∫

dtdA
[αd

8
Tr[ṘT Ṙ] + gd

2
μs,iεi jk[RṘT ] jk

]
, (22)

where αd and gd are parameters controlling the damping and
dissipative STT, respectively. Equations (21) and (22) are
microscopically derived in Appendix B.

In the stationary regime, the STT-driven motion of the DW
is well described by the center-of-mass coordinate r. The

time evolution of r can be found by substituting the WKB
solutions Eqs. (15), (19), and (20) into Eqs. (21) and (22)
and integrating over the spatial coordinates. We then find the
following action and dissipation functionals:

S = Ly

∫
dt

meff ṙ2

λdw

,

G = Ly

∫
dt

[
αd ṙ2

2λdw

− σ1σ2πgd

(α‖
2

μs,y + μs,z

)
ṙ

]
.

Here, Ly is the width of the sample. Note that Fs in Eq. (21)
does not contribute to the dynamics of r because hD and μs
are static. Consequently, the field-like STT does not influence
the DW motion and the main driving torque is the damping-
like STT, similar to the collinear AFM case [8]. From the
variational equation δS/δr = δG/δṙ, we find the equation of
motion for r

2meff

λdw

r̈ = − αd

λdw

ṙ + σ1σ2πgd

(α‖
2

μs,y + μs,z

)
. (23)

In the stationary regime, in which r̈ → 0, the DW approaches
the terminal velocity

vdw = σ1σ2πgdλdw

αd

(
a2

√
3D̃‖

16
(
a2K̃z − √

3D̃z
)
λ2

dw

ŷ + ẑ

)
· μs. (24)

The current-driven DW velocity (24) is the third key result of
this paper and demonstrates that the DMI produces a novel
force acting on the DWs via x polarized spin currents. In the
absence of DMI, the DWs only couple to the z-component of
μs [20], i.e., through the first term of Eq. (24). Consequently,
the DMI enables manipulation of the DWs via two linearly
independent components of μs. Furthermore, Eq. (24) opens
the possibility to probe the in-plane DMI via measurements of
the current-driven DW motion. For example, for a DW driven
by μs||ŷ, the terminal velocity vdw provides a measure of D̃‖.

To summarize, we microscopically derived the DMI’s free-
energy contribution for kagome AFMs. We showed that the
DMI renormalizes the spin-wave stiffness and anisotropy en-
ergies, but does not lead to the typical terms linear in the
spatial derivatives. In kagome AFMs, a nonvanishing in-plane
DMI can be observed in jarosites and heterostructures by
juxtaposing nonmagnetic materials with the kagome planes.
Furthermore, we investigated how the DMI influences the
shape and current-driven motion of DWs in kagome AFMs.
Our findings reveal that the DMI causes the DWs to develop a
twisted spatial profile. A major consequence of the emerging
twist state is that it gives rise to a new STT, which enables the
control of DWs via two linearly independent torques. Impor-
tantly, this suggests that NCAFMs are particularly attractive
for use in spintronic devices as they offer a higher degree of
control of the electrically operated DWs.
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APPENDIX A: DERIVATION OF FREE ENERGY

In what follows, we consider a spin system described by
the microscopic Hamiltonian (1) and derive an expression
for the free-energy functional in the continuum limit (assum-
ing the temperature T → 0). To this end, we first derive the
energy contribution from one unit cell (labeled by the index
u) for He, HD, and Ha in Eq. (1) and express the spins in terms
of L and R using Eq. (3). Second, we sum over all the unit
cells and take the continuum limit by converting the sum to an
integral via

∑
u → ∫

dA/ac. Here, ac = a2
√

3/4 is the area of
the the kagome lattice’s unit cell. Throughout, we keep terms
to second order in aL and the spatial gradients of R.

For |aL| � 1, the spin representation (3) becomes

Sι ≈ SR{n̂ι + a[L − (n̂ι · L)n̂ι]}. (A1)

The net spin polarization of a unit cell is Stot = ∑3
ι=1 Sι =

3aSRm, where Tαβ = δαβ − (1/3)
∑3

ι=1 nι,αnι,β and m = TL.
For the considered kagome AFM, the operator T is diagonal
with elements 2Txx = 2Tyy = Tzz = 1.

The energy contribution of unit cell u originating from the
Heisenberg exchange term He = J

∑
〈i j〉 Si · S j is

He,u =J[Sl
1 · (Sl+ê1

3 + Sl−ê1
3 )

+ Sl
2 · (Sl+ê2

1 + Sł−ê2
1 ) + Sl

3 · (Sl+ê3
2 + Sl−ê3

2 )]. (A2)

Here, l denotes the position of the spin within unit cell u
and l ± ê1 is the nearest-neighbor lattice site connected to
ł via the lattice vector ±aêi. The spatial variations of the
the spin Sl±êi

j is captured by the gradient expansion Sl±êi
j ≈

Sl
j ± a(êi · ∇)Sl

j + a2

2 (êi · ∇)2Sl
j . Substituting this expansion

along with the expression (A1) into Eq. (A2) produces the
energy contribution

He,u = 9a2S2Jm2 + ac

αβ
i j [∂αRT ∂βR]i j, (A3)

where the tensor 

αβ
i j is defined in the main text.

Similarly, the DMI energy of unit cell u can be expressed
as

HD,u =D13 · [Sl
1 × (Sl+ê1

3 + Sl−ê1
3 )]

+ D21 · [Sl
2 × (Sl+ê2

1 + Sł−ê2
1 )]

+ D32 · [Sl
3 × (Sl+ê3

2 + Sl−ê3
2 )]. (A4)

Upon substitution of Eq. (A1) and the gradient expansion of
the spins, Eq. (A4) yields the DMI energy

HD,u = ac[Dαβ

i jkl∂αRi j∂βRkl + di jkl Ri jRkl − hD,imi], (A5)

where Dαβ

i jkl , di jkl , and hD are given in the main text.
We split the anisotropy energy into easy axes and easy

plane contributions: Ha,u = H (axes)
a,u + H (plane)

a,u . The easy axes

anisotropy energy of unit cell u is H (axes)
a,u = −∑3

ι=1 K (Sι ·
n̂ι)2, which to second order in the out-of-equilibrium quan-

tities becomes [again, using Eq. (A1)]

H (axes)
a,u = −KS2

3∑
ι=1

(nι,inι, jnι,knι,l )(Ri jRkl ). (A6)

Correspondingly, we find for the easy plane anisotropy
H (plane)

a,u = ∑3
ι=1 Kι(ẑ · Sι)2 the energy contribution

H (plane)
a,u = KzS

2
3∑

ι=1

nι,inι, jRziRz j + 3a2S2Kz(ẑ · m)2. (A7)

Thus, the energy of unit cell u is Hu = He,u + HD,u + Ha,u

and the total energy of the spin system becomes H = ∑
u Hu.

The free-energy functional (4) is obtained by taking the
continuum limit

∑
u → ∫

dxdy/ac, and grouping the terms
involving R and m into FR and Fm, respectively.

Parametrizing the rotation matrix in terms of nautical an-
gles using Eq. (12), FR in Eq. (5a) can to second order in φ

and ψ be written as

FR =3
0

4

[
(1 − φ2)(∂xθ )2 + (∂xφ)2

] − 3K̃ cos2 θ

+ 3

2

[
(K̂z + K̃ cos2 θ )(φ2 + ψ2) − K̃φψ sin(2θ )

]
+ 3

√
3

4
D̃z(∂xθ )2

− 3
√

3

8
D̃‖[(∂xφ) cos θ + (∂xψ ) sin θ ](∂xθ ). (A8)

APPENDIX B: ACTION AND DISSIPATION FUNCTIONALS

1. Action of the kagome AFM

The action of the spin system is S = ∫
dt[T − H − Hs].

Here, the first term is the kinetic energy T = ∑
i h̄A(Si ) ·

Ṡi, where A is vector potential satisfying ∇ × A(Si ) = Si/S,
H is the Hamiltonian (1) of the isolated spin system, and
Hs = ∑

i λrμs · Si describes the interaction energy between
the spins and the spin accumulation μs.

The kinetic energy of unit cell u is Tu = ∑3
ι=1 h̄Aα[Sι]Ṡι,α .

Expanding the vector potential A(Sk ) to first order in the
out-of-equilibrium quantities and using Eq. (A1) yields the
expression

3∑
ι=1

h̄Aα[Sι]Ṡι,α ≈
3∑

ι=1

h̄S[Aα (Rn̂ι) · (Ṙn̂ι)α

+ aεαβγ Lαnι,β (RT Ṙn̂ι)γ ], (B1)

where we used the relationship εαβγ ∂βAγ = Sα/S as well as
the property εαβγ Rαα′Rββ ′Rγ γ ′ = εα′β ′γ ′ of the rotation ma-
trix. The first term in Eq. (B1) can be disregarded as it is a
topological term that does not influence the equations of mo-
tion of the rotation matrix. The quantity RT Ṙ is antisymmetric
and can thus be written as (RT Ṙ)i j = −εi jαVα , where Vx, Vy,
and Vz represent the three independent tensor elements. Sub-
stituting this expression into Eq. (B1), we find the following
kinetic energy of one unit cell Tu = 3ah̄Sm · V .

Next, we consider the coupling Hs to the spin accumula-
tion μs, which is assumed to be spatial uniform. Using that∑3

ι=1 Sι = 3aSRm, we find to second order in μs and the

174401-5
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out-of-equilibrium quantity m

Hs,u = 3aSλrμs · m. (B2)

Consequently, the action can be written as S =∫
dt

∑
u[Tu − Hu − Hs,u]. Taking the continuum limit, we

find the expression

S =
∫

dtdA[a1m · V − FR − Fm − Fμs ], (B3)

where we introduced a1 = 12h̄S/a
√

3, Fμs = grμs · m with
gr = 12Sλr/a

√
3, and separated the free-energy density of

the isolated spin system into two energy contributions arising
from R and m, respectively. A minimization of Eq. (B3) with
respect to m yields

2a2[1 + δzi(η0/a2)]mi = a1Vi + hd,i − grμs,i. (B4)

Note that the term δzi(η0/a2) only leads to a small cor-
rection to m on the order of η0/a2 ∼ Kz/J . Therefore, we
disregard this term in the proceeding analysis. Substituting
mi = [a1Vi + hd,i − grμs,i]/2a2 back into Eq. (B3) and using
that Vi = −(1/2)εi jk[RT Ṙ] jk , produces the nonlinear sigma
model in Eq. (21).

2. Dissipative processes

The following Rayleigh dissipation function models the
dissipative processes of the spin system

G =
∑

i

∫
dt

(
h̄αG

2
Ṡ

2
i + λd Ṡi · (μs × Si )

)
. (B5)

Here, λd parametrizes the dissipative STT, whereas αG is the
Gilbert damping parameter.

To find an expression for the dissipation in the continuum
limit, we consider the contribution Gu from unit cell u (thus,
G = ∫

dt
∑

u Gu). Further, Gu = G (αG )
u + G (μs )

u is grouped into
terms originating from the damping (G (αG )

u ) and the dis-

sipative STT (G (μs )
u ). Using Eq. (A1), we find that Ṡ

2
i =

Ṙαα′ Ṙαβ ′niα′niβ ′ to second order in the out-of-equilibrium
quantities. A summation over the three spins in the unit cell
then leads to

G (αG )
u = 3h̄αGS2

4
Tr[Ṙ

T
Ṙ]. (B6)

To second order in μs and Ṙ, the dissipative STT of one unit
cell can be written as

Gμs
u = 3

2 S2λdεi jkμs, i[RṘ
T

] jk, (B7)

where we applied Si × Ṡi ≈ S2(Rni ) × (Ṙni ) and summed
over the three sublattice spins. In Eqs. (B6) to (B7), we used
that

∑
k nkα′nkβ ′ = (3/2)δα′β ′ for the case that the 120◦ order-

ing is not restricted to lie in the xy-plane. Summing up the
contributions from the unit cells and taking the continuum
limit produces the following dissipation functional in Eq. (22).
We defined αd = 24h̄αGS2/a2

√
3 and gd = 12λd S2/a2

√
3.
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