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Extending ab initio simulations for the ion-ion structure factor of warm dense aluminum
to the hydrodynamic limit using neural network potentials
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We calculate the intermediate scattering function of warm dense aluminum by using density functional theory
molecular dynamics simulations. From this data set, we derive the static and dynamic ion-ion structure factors.
By applying a generalized collective modes model, we can fit the excitation spectra of the ion system and thereby
extract the dispersion for the ion acoustic modes, as well as the decay coefficients for the diffusive and collective
modes. The results are discussed and compared with experimental data if available. We show that computational
limitations prevent sufficient access to the hydrodynamic limit and demonstrate that this can be circumvented
using high-dimensional neural network potentials. We extract the ionic thermal conductivity of aluminum in the
hydrodynamic limit and compare to values computed using a Green-Kubo relation. We highlight the importance
of partitioning the heat capacity into electronic and ionic contributions and only using the ionic contribution to
compute the thermal conductivity of the ions in the hydrodynamic limit.
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I. INTRODUCTION

The theoretical description of dense Coulomb systems
poses many challenges. The long-range character of the
Coulomb interaction leads to many-particle effects such as
dynamic screening and self-energy, which modify the effec-
tive interactions and, thereby, also the dispersion relations and
excitation spectra dramatically compared with dilute, weakly
interacting systems. Methods which rely on expansions with
respect to small parameters (e.g., virial, activity, fugacity
expansions) are not applicable. Furthermore, a quantum treat-
ment has to be applied in order to incorporate Heisenberg’s
uncertainty principle and Pauli’s exclusion principle present
in fermionic systems. Such quantum statistical descriptions
have been developed successfully for dense plasmas based
on, e.g., Green’s functions [1,2] and integral equations [3].
Their calculation is, however, complicated since a hierarchy
for the equations of motion or the correlation functions fol-
lows which has to be truncated on an appropriate level, see
Ref. [4].

For the description of warm dense matter (WDM), i.e.,
plasmas at high densities as typical for condensed matter and
temperatures of only few eV, the quantum and correlation
effects are dominant. Interestingly, the interior of planets can
be mapped to the WDM region and corresponding data for
the equation of state and the transport coefficients are crucial
for models of their interior structure (e.g., core and mantle
for rocky planets [5] or core and fluid envelopes of different
composition for giant planets [6,7]), their thermal evolu-
tion (cooling behavior) [8,9] and magnetic field generation
(dynamo action) [10,11]. However, the determination of equa-
tion of state data and, in particular, of transport coefficients of
WDM via shock wave or ramp compression experiments is

complicated so that reliable theoretical predictions are indis-
pensible.

Therefore methods of condensed matter physics were
transferred successfully to this state, located between con-
ventional condensed matter and high-temperature plasmas.
[12] A very efficient method is based on electronic structure
calculations using density functional theory (DFT) for a given
configuration of nuclei. The results are in turn used to compute
the forces on the nuclei via the Hellmann-Feynman theorem
so that they can be propagated in a molecular dynamics (MD)
step. The repeated cycling through this scheme is known as
DFT-MD method, which yields accurate structural properties,
equation of state data, and transport coefficients of WDM, see
Refs. [12,13].

As the DFT-MD calculations describe the evolution of
the system in time, dynamic properties of WDM can also
be computed through space- and time-dependent correlation
functions. In the limit of large length and time scales it is
possible to average out the effects of individual particles,
which leads to the hydrodynamic description. A fundamental
problem in this context are the large scales that must be real-
ized for a standard hydrodynamic description [14] to remain
valid in WDM. One of the most prominent extensions of
this description to higher wave numbers is named generalized
hydrodynamics [15,16], or the more general generalized col-
lective mode (GCM) approach. [17] Many principal studies
on model systems like the Yukawa one-component plasma
[18,19] and the generalized Lennard-Jones system [20] de-
veloped techniques to analyze MD results in this regime.
Early numerical descriptions of real systems used classical
MD simulations with respect to effective quantum potentials
[21,22]. However, it is an open question whether or not the
dynamic properties of a dense, interacting quantum system
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can properly be described by effective two-particle potentials.
This is no limitation in DFT-MD calculations due to their
self-consistent many-body nature.

An orbital-free (OF) formulation of DFT was used to com-
pute the dynamic ion-ion structure factor for warm dense
aluminum [23]. Although no effective pair potentials were
used, the OF approach lacks the explicit formulation with
discrete Kohn-Sham orbitals, which is especially important in
dense systems that differ significantly from a free-electron-
gas-like system and exhibit condensed matter characteristics.
Much more expensive DFT-MD simulations within a full
Kohn-Sham treatment were performed in a previous paper
for liquid and warm dense aluminum [24], which should
emulate the forces on the ions adequately. As a result the
ion-acoustic modes were resolved and their dispersion rela-
tions given. This approach has also been used successfully for
warm dense lithium [25]. Recently, deep potential molecular
dynamics simulations [26] and molecular dynamics simula-
tion employing ion-ion potentials constructed from a neutral
pseudoatom model [27] were used to study the nonequilib-
rium effects of two-temperature warm dense aluminum, which
was shown to be present in laser-shocked aluminum [28].
The latter two methods are computationally significantly less
expensive than DFT-MD simulations and therefore enable
large-scale simulations with more than 100 000 atoms, which
makes the hydrodynamic regime better accessible. We adopt
a similar approach as Ref. [26], in the following called neural
network molecular dynamics (NN-MD), to extend our DFT-
MD simulations to larger scales by using high-dimensional
neural network potentials implemented in the N2P2 software
package, [29–31] which employs Behler-Parrinello symmetry
functions [32].

In the present paper we apply the method presented in
Ref. [24] in order to calculate the dynamic ion-ion structure
factor in warm dense aluminum for a wider range of pa-
rameters (density, temperature), see Sec. II. We give a brief
overview of the error analysis in Sec. III and compare the
static and dynamic structure factor with available experimen-
tal results in Sec. IV. Furthermore, we fit the numerical data
for the dynamic structure factor (DSF) to a generalized hy-
drodynamic model in Sec. V and derive dispersion relations
and the decay coefficients. Here, we compare the capability of
extracting thermodynamic and transport properties, in partic-
ular, the thermal conductvity of the ions, in the hydrodynamic
limit between the NN-MD and the DFT-MD simulations. In
principle, highly resolved measurements of the ion-ion DSF
for WDM states would enable the determination of these
quantities for such extreme condition. Corresponding inelastic
x-ray scattering experiments are planned at free electron laser
facilities like the European XFEL [33,34] or the LCLS in
Stanford [35]. At the end, we give conclusions in Sec. VI.

II. THEORETICAL METHOD

Although DFT-MD allows access to information on both
the electronic and ionic system, all quantities of interest in
this paper can be derived from the ion positions at each point
in time. From this the ion-ion intermediate scattering function

Fii (�k, t ) := 1

N

〈
n(i)

�k (τ )n(i)

−�k (τ + t )
〉
τ
, (1)

with

〈. . . 〉τ = lim
�→∞

1

�

∫ �

0
. . . dτ (2)

can be determined where n(i)
�k (t ) = ∑N

i=1 e−i�k·�ri (t ) is the Fourier

transformed ion number density and �k is the wave vector. The
number of ions is denoted by N and � is the simulation du-
ration, which must approach infinity in the exact relation. We
approximate this limit by sufficiently long simulation times.

The dynamic ion-ion structure factor Sii (�k, ω) is given by
the Fourier transform of the intermediate scattering function

Sii (�k, ω) := 1

2π

∫ ∞

−∞
Fii(�k, t )eiωt dt, (3)

with the angular frequency ω. By virtue of the Wiener-
Khinchin theorem this is equivalent to

Sii(�k, ω) = lim
�→∞

1

2πN�

∣∣∣∣
∫ �/2

−�/2
n(i)

�k (t )eiωt dt

∣∣∣∣
2

, (4)

which is the formula we employed for the present calcula-
tions. The intermediate scattering function Fii (�k, t ) is then
determined by an inverse Fourier transformation of Sii (�k, ω).
Analogously, the longitudinal and transverse current spectra
can be determined from

Jii,l/t (�k, ω) := lim
�→∞

1

2πN�

∣∣∣∣
∫ �/2

−�/2
j (i,l/t)
�k (t )eiωt dt

∣∣∣∣
2

, (5)

and

j (i,l)
�k (t ) =

N∑
i=1

v
‖
i e−i�k·�ri (t ), (6)

j (i,t)
�k (t ) =

N∑
i=1

v⊥
i e−i�k·�ri (t ), (7)

where v
‖
i is the component of the velocity which is parallel

to �k, and v⊥
i is the component which is parallel to a given

�k⊥, which is perpendicular to �k. Velocities are computed from
the ion positions via central finite differences. The shape of
the simulation box determines the wave vectors �k at which
Sii (�k, ω) can be evaluated. Only wave vectors that result in
complete oscillations within the simulation box are allowed
and can be computed from the reciprocal lattice vectors.

The ion dynamics are obtained by performing DFT-
MD simulations with the Vienna ab initio simulation
package (VASP) [36–38]. Within these simulations the Born-
Oppenheimer approximation is used to decouple the ion and
electron dynamics. For the determination of the electron
density the finite temperature DFT approach [39] is used,
employing the generalized gradient approximation of Perdew,
Burke, and Ernzerhof [40] for the exchange correlation func-
tional. At each time step the electron density is determined
self-consistently, which allows the determination of the forces
acting on each ion. The ions are moved classically due to
the Coulomb interactions with the other ions and the elec-
trons by solving Newton’s second law for a given time step
�t . Within the VASP code the electronic wave functions are
expanded into plane waves up to a cutoff energy Ecut and

174310-2



EXTENDING AB INITIO SIMULATIONS FOR … PHYSICAL REVIEW B 105, 174310 (2022)

TABLE I. Overview of the simulation parameters used in this
study: temperature T , mass density ρ, size of time step �t , number
of ions in DFT-MD simulation NDFT

i and number of ions in NN-MD
simulation NNN

i .

T [K] kBT (eV) ρ (g/cm3) �t (fs) NDFT
i NNN

i

1000 0.086 2.356 3.0 125 32 000
5802 0.5 2.356 1.0 125 32 000
5802 0.5 4.712 1.0 125 32 000
11605 1.0 2.356 1.0 125 32 000
11605 1.0 4.712 1.0 125 32 000
58023 5.0 4.712 1.0 125 32 000
58023 5.0 8.1 1.0 125 32 000

projector augmented-wave potentials [41] are used to describe
the ion potential. For aluminum we employ the PAW PBE
Al 04Jan2001 potential, which treats the ten inner electrons
within a frozen core approximation and only considers the
three valence electrons within the DFT framework. We use
a cutoff energy of 700 eV. For the temperature control the
algorithm of Nosé-Hoover [42,43] is used with a mass pa-
rameter corresponding to a temperature oscillation period of
40 time steps. The simulation box for aluminum is spanned
by vectors that correspond to its solid lattice structure: face
centered cubic (fcc). The sampling of the Brillouin zone was
carried out at the Baldereschi mean value point [44]. We have
carefully checked the convergence of our results with regard
to plane wave energy cutoff, length of the time step, number
of particles and Brillouin zone sampling.

In order to enable a larger simulation size, we train a
high-dimensional neural network potential, implemented in
the N2P2 software package [29,30], using the energies and
forces predicted by the DFT-MD simulations. Although these
simulations are performed at finite electron temperature, we
use an extrapolation of the internal energy to its value at
zero electron temperature (provided by VASP [45]) to train the
neural network. This allows us to exclude the contributions
from electronic excitations to the internal energy, and, by
extension, the electronic contributions to the heat capacity
which we compute in Sec. V C. The neural network uses
Behler-Parrinello symmetry functions [32] to describe the
surrounding of each ion and employs a Kalman filter to up-
date the network during the training procedure. We employ
the default neural network configuration with a cutoff radius
ranging from 4 Å for the simulations at 8.1 g/cm3 to 6 Å at
2.356 g/cm3. The surrounding of the ions is described by ten
radial symmetry functions and twelve narrow angular symme-
try functions, with parameters chosen according to Ref. [46].
The neural network potential is then used in conjunction with
the classical molecular dynamics simulation code LAMMPS
[47] to generate the NN-MD simulations. We train a separate
neural network for each condition to ensure the highest ac-
curacy in reproducing the DFT-MD results. The networks are
trained on 10 000 configurations, which are randomly sam-
pled from the 20 000 time steps of the DFT-MD simulation
and additional 5000 time steps at slightly higher and lower
temperature and density. We give the specific parameters used
in the simulations in Table I. For kBT = 0.5 eV and ρ =

4.712 g/cm3, aluminum froze into an fcc lattice, while at all
other conditions it remained a liquid.

III. FITTING PROCEDURE AND ERROR ANALYSIS

A. Fit to generalized collective modes

For the DSF of liquids and plasmas, there exists a well
known limiting case at long wavelength k → 0 and low fre-
quencies ω → 0, the hydrodynamic limit [21]. In this limit,
the DSF consists of a zero-centered Lorentzian peak, which
is called the diffusive mode, and two Lorentzian shaped side
peaks, which are called propagating collective modes, cen-
tered at finite frequencies [14].

The diffusive mode is mainly determined by the thermal
diffusivity, while for the collective modes also the adiabatic
speed of sound and the viscosity of the medium play a role.
This limiting case can be extended to a generalized hydrody-
namic model, in which the general shape of the DSF is kept
the same but the transport coefficients become dependent on
the wave number |�k|. While this approach shows good results
at small wave numbers, [18] especially beyond the first corre-
lation peak, nonhydrodynamic thermal modes and structural
relaxation modes also contribute to the DSF [48]. Theoretical
models for the description of the DSF at a wide range of wave
vectors have been developed, with the generalized collective
mode (GCM) approach being one of the most successful [49].
It extends the set of considered dynamic variables from the
three hydrodynamic variables particle density, energy density,
and momentum density to include their derivatives or other
nonconserved variables, resulting in additional mode con-
tributions to the correlation functions. However, since these
microscopic variables cannot be observed in experiments and
access to the local energy density in ab initio simulations is
restricted, several fitting as well as fit-free methods [48] have
been developed.

In this paper, we adopt the fitting scheme of Wax and Bryk
[50]. Within this scheme the intermediate scattering function
is modeled according to a GCM approach with one propagat-
ing and one diffusive mode

F GCM
ii (�k, t ) = A e−α|t | + (B1 cos(ω0|t |)

+ B2 sin(ω0|t |)) e−β|t |

= A e−α|t | + C cos(ω0|t | + φ) e−β|t |, (8)

with the relation

C =
√

B2
1 + B2

2, φ = arctan
(
−B2

B1

)
, (9)

leading, via the Fourier transform (3), to the DSF

SGCM
ii (�k, ω) = 1

2π

(
2Aα

α2 + ω2
+ B1β

β2 + (ω0 + ω)2

+ B1β

β2 + (ω0 − ω)2
+ B2(ω0 + ω)

β2 + (ω0 + ω)2

+ B2(ω0 − ω)

β2 + (ω0 − ω)2

)
. (10)

The zero-centered Lorentzian in Eq. (10) corresponds to a
diffusive process, while the remaining Lorentzians at finite
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frequencies correspond to propagating processes. These two
modes are not necessarily the hydrodynamic modes, although
they will coincide with them in the limit k → 0. In the
GCM scheme, modes correspond to either real or imaginary
eigenvalues of the generalized hydrodynamic matrix, with
real eigenvalues leading to diffusive modes and imaginary
eigenvalues corresponding to propagating processes. There-
fore, in this fitting scheme, it is assumed that the behavior
of the system can be described by the two (hydrodynamic
or nonhydrodynamic) modes of Eqs. (8) and (10). Similar to
Ref. [50], we find that the inclusion of an additional mode
does not improve the results enough to justify the addition
of further fitting parameters. The parameters A, B1, B2, α, β,
and ω0 are unknown functions of the wave number k, but we
omit the index k for brevity. Following the fitting scheme of
Ref. [50], A, B1, and B2 can be eliminated as independent
parameters by constraining the model function to obey the
zeroth, first, and second frequency moments:∫ ∞

−∞
Sii (k, ω) dω = Sii (k), (11)

∫ ∞

−∞
Sii(k, ω)ω dω = 0, (12)

∫ ∞

−∞
Sii (k, ω)ω2 dω = −∂2

t Fii(k, t )|t=0. (13)

The first frequency moment is constrained to be zero, there-
fore this model avoids the unphysical cusp in Fii (�k, t ) at t = 0
that is present in the hydrodynamic model. In contrast to
Ref. [50] for the second frequency moment, we do not use
the one component plasma (OCP) value, but the value directly
obtained from the intermediate scattering function Fii (�k, t ) by
finite differences.

For curve fitting we seek to minimize the least-square merit
function of the form:

χ (�k) =
Nd∑
i=0

wi( f model(i) − f data (i))2, (14)

where f model is a model function one tries to fit to the dataset
f data, Nd is the number of data points and wi is the weight for
the ith data point, which is usually chosen to be the inverse
variance 1/σ 2

f (i). Following the scheme of Ref. [50], the pa-
rameters α, β and ω0 are obtained by fitting Eqs. (8) and (10)
to Fii and Sii obtained from the DFT-MD and NN-MD simula-
tions. The standard deviation of each data point is determined
through the error analysis described in the next section. From
the Jacobian of the fitting problem (14) with respect to the
fitting parameters, it is possible to estimate a standard error
for these parameters. It should be pointed out that this error
merely describes how sensitive the fit to the simulation data is
to small changes in the respective fitting parameter. It includes
no information on the physical validity of the given model
function, which has to be discussed separately.

For fitting we employ a standard Marquardt-Levenberg
fitting algorithm (as implemented in the SCIPY library for
scientific computing in PYTHON [51]) obtaining first the pa-
rameters β and ω0 by fitting to Sii keeping α fixed. Then α is
obtained by fitting to Fii with β and ω0 fixed. This procedure

is then repeated until all parameters converge to an accuracy
of 0.001%.

B. Error analysis

For the estimation of the errors we report the confidence
intervals calculated for a confidence level of 68% (i.e., one
standard deviation). Here, we follow the error estimation of
Welch for the use of the Fast Fourier Transform in power
spectra calculations [52]. A DSF calculated by Eq. (4) has
a standard deviation of σS(�k,ω) = S(�k, ω). By splitting the
duration of the simulation into NI intervals and averaging
over all individual power spectra, the standard deviation of
SGCM

ii (�k, ω) is reduced by
√

NI . Because the systems under
investigation are isotropic we report only on quantities de-
pending on the magnitude of the wave vector |�k| and averages
over the Nk wave vectors with magnitude |�k| can be per-
formed. In addition, since the ions are treated classically in our
simulations, we expect the intermediate scattering function
F (�k, t ) to be symmetric and real-valued, corresponding to
a real and symmetric DSF with respect to ω. Therefore an
average of the positive and negative frequency part is taken
which results in a further reduction of the error leading to the
error approximation

σSii (�k,ω) ≈ Sii(�k, ω)√
2NkNI

. (15)

While the number of intervals stays constant during the
analysis, the number of wave vectors corresponding to a given
magnitude increases with |�k|, causing lower relative errors at
larger wave vectors.

In our calculations, we arrive at the intermediate scatter-
ing function via the Fast Fourier Transform from the DSF
Sii (�k, ω). Using quadratic error propagation on the formula-
tion of the fast Fourier transform leads to a constant error

σFii (�k,t ) =
√∑

j

σ 2
Sii (�k,ω j )

�ω

≈
√√√√∑

j

Sii (�k, ω j )2

2NkNI
�ω, (16)

where ω j are the discrete frequencies available from the
Fourier transform and �ω is their spacing. Using Eqs. (15)
and (16) for the weight wi in (14) allows us to extract an
estimated error on the fit parameters α, β, ω, and, using error
propagation on the equations given by the sum rules, also for
the remaining parameters.

In order to further reduce noise in the simulation data, a
window function g�k (t ) is applied to the intermediate scattering
function to suppress statistical oscillations at large times t .

IV. RESULTS FOR THE STATIC AND DYNAMIC
STRUCTURE FACTOR

A. The static ion-ion structure factor

To validate the accuracy of our simulation approach, we
compare with experimental x-ray diffraction data [53] avail-
able for small temperatures in Fig. 1.
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FIG. 1. Comparison of DFT-MD calculations and experimental
results [53] for liquid aluminum at 2.356 g/cm3 and T = 1000 K.

Very good agreement is found except for values around the
first peak, where a sharp cusp is observed. A similar behavior
has also been observed in earlier MD simulations, which can
be explained by the periodic boundary conditions that induce
additional order. Furthermore, the statistical error in this re-
gion is comparatively large because of the especially large
correlation times that are present there. Additionally, we show
a comparison of the static ion-ion structure factor generated
from the DFT-MD and NN-MD simulations in Fig. 2. It can
be observed that the static structure is reproduced well by
the NN-MD simulations. For the lowest considered temper-
ature T = 1000 K, the first correlation peak of the NN-MD
is slightly lower than that of the original DFT-MD simulation.
This is due to the diminishing impact of the periodic boundary
conditions in the larger simulation box of the NN-MD simula-
tions. The agreement for the other liquid conditions not shown
in Fig. 2 is equally good, while the static structure factor of
solid aluminum exhibits a strong particle number dependence.
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FIG. 2. Comparison of results for the static ion-ion structure
factor from DFT-MD simulations and NN-MD for liquid aluminum
at various conditions.
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FIG. 3. Comparison of the DSF (top panel) and the intermediate
scattering function (bottom panel) and the fit to the GCM model [de-
scribed in Eqs. (8) and (10)] for a NN-MD simulation of aluminum at
2.356 g/cm3 and T = 1.0 eV. The diffusive and propagating part of
the fit are indicated separately. The curves are shifted by 2.25 eV−1

for the DSF and 0.1 for the intermediate scattering function with
respect to each other for clarity.

B. The dynamic ion-ion structure factor

In Fig. 3, the block averaged DSF for aluminum is com-
pared with the curves obtained by the fitting procedure at
11605 K. Very good agreement between the NN-MD data and
the GCM model is found even at high wave numbers (see
upper panel in Fig. 3), far from the collective region. The
same observations can be made for all other conditions under
investigation in this paper (Table I).

As expected, very good agreement is also found for the
intermediate scattering function (see lower panel in Fig. 3).
However, after the decay of the correlations, Fii (�k, t ) exhibits
statistical fluctuations at long times t . To reduce the effect
of these unphysical fluctuations from the DSF and to reduce
truncation effects we use a window function g�k (t ) that is
defined in terms of a decay time θ�k by

g�k (t ) =
{

1, if |t | < θ�k/2

exp
( − 16 (|t |−θ�k/2)2

θ2
�k

)
, if |t | > θ�k/2 . (17)

Sii (�k, ω) is then obtained by Fourier transformation of
g�k (t )Fii(�k, t ). The use of a window function as in Eq. (17)
leaves the intermediate scattering function unchanged at
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1.38 — 1.38 [Å−1]
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FIG. 4. DSF Sii (�k, ω) of liquid aluminum at ρ = 2.356 g/cm3

and T = 1000 K. Dashed lines: experimental x-ray scattering results
[54]. Dotted lines: DFT-MD of Alemany et al. [55]. Solid lines:
present NN-MD simulations. The right wave numbers correspond
to the present NN-MD results, while the left ones correspond to
Refs. [54,55]. For clarity, each set of curves is shifted by an offset
of 0.6 eV−1 with respect to the lower one.

times, where statical fluctuations play a minor role, and damps
the statistical fluctuations where they dominate the signal. To
avoid bias in the choice of θ�k , it is determined from the results
of the fitting procedure. We define θ�k as the time after which
the intermediate scattering function has decayed to 0.1% of its
initial value, i.e., we use the θ�k that fulfills

|A|e−αθ�k + |C|e−βθ�k = 0.001 Fii (�k, 0) (18)

= 0.001 (|A| + |C|). (19)

Note again that the fitting parameters A, C, α, and β are all
wave number dependent, but the index �k has been omitted.
With this specific choice for the window function there are
still small statistical artifacts visible in the DSF but a more
important feature is that it leaves the height and form of the
peaks practically unchanged.

In Fig. 4, we compare the DSF of liquid aluminum at
1000 K to several measurements of Scopigno et al. [54] and
to earlier DFT-MD simulations [55] that used the LDA for
the exchange-correlation functional. The normalization of the
experimental data could not be determined from the experi-
ment, but has been determined from fitting procedures. We
found that static structure factors from this procedure are,
on average, by a factor 1.52 lower than our NN-MD results
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FIG. 5. DSF Sii (�k, ω) of warm dense aluminum at different den-
sities and temperatures. For clarity each set of curves is shifted by an
offset with respect to the lower one. The dotted lines represent the
baseline for each set.

and thus in Fig. 4 scaled the data of Scopigno et al. [54]
by this factor. Alemany et al. [55] report on a normalized
DSF Sii(�k, ω)/Sii (�k). Therefore, in Fig. 4, we scaled their data
according to our Sii (�k) for comparison. Since the calculation
of the structure factor can only be carried out on the reciprocal
lattice corresponding to the periodic boundary conditions, the
comparison is done at those wave numbers that are closest
to the ones in the experiment. Good agreement is found be-
tween our simulations and the experiment. Compared to the
experiment the peaks and shoulders are located at slightly
lower frequencies in our simulation and the peaks are more
pronounced. Compared to the ab initio calculation of Ale-
many et al. [55] our simulation uses a larger energy cutoff,
a larger number of ions, a smaller time step and has a longer
simulation time. They used the LDA for the XC contribution,
while we use the GGA by Perdew, Burke, and Ernzerhof [40].
Furthermore, due to numerical limitations at the time, the
previous DFT study was performed with 205 atoms for 850
time steps, which in our experience is far too few to properly
converge the width and height of the side and central peak.

Figure 5 shows the DSF Sii (�k, ω) of warm dense aluminum
at four different conditions for various wave vectors inside
the first Brillouin zone, illustrating its trends with temperature
and density. With increasing densities, a shift of the prop-
agating mode to higher frequencies and a clear separation
from the diffusive mode can be observed. Additionally, the
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FIG. 6. Peak position ωJ of the longitudinal current-current spec-
tral function Jii (k, ω) (top) and the frequency of the ion acoustic
mode ωion (bottom), extracted by fitting to Sii (k, ω), as a function
of the wave number k for aluminum at various temperatures for the
mass density ρ = 2.356 g/cm3. The linear behavior of ωion for small
k, predicted by the hydrodynamic model, is indicated by dashed
lines. The free particle limit of ωJ for large k is depicted by dash-
dotted lines.

higher densities suppress the diffusive mode due to the higher
collision rates. At constant density, a higher temperature leads
to a broadening and a slight shift to higher frequencies of
the propagating mode, indicating a faster sound transport in
heated materials (see Sec V A).

V. MATERIAL PROPERTIES

A. Dispersion relation

The frequency ωion of the ion acoustic waves can be de-
termined from the fitting procedure, giving reliable data in
the long-wavelength regime. A general quantity that does not
rely on fitting is the peak position of the longitudinal current-
current spectrum [see Eq. (5)], which will coincide with the
hydrodynamic behavior for k → 0, see Fig. 6. All investigated
cases exhibit a linear dispersion at small k. At relatively low
temperatures, local maxima in the peak position are observed
followed by a de Gennes minimum [56] located at the position
of the first correlation peak of the static structure factor Sii(�k).
Analogous to the reciprocal space in solids, where the first
Brillouin zone is repeated infinitely beyond its boundaries,
a periodicity, albeit faster decaying, occurs in liquids due to
the near-field order. At length scales characteristic of this
near-field order, described by the first correlation peak, the
dispersion tends back to its value at k = 0, similar to the
dispersion of phonons going to zero at the center of neighbor-
ing Brillouin zones. This minimum becomes less pronounced
for higher temperatures as the near-field order of the system
decreases. Instead, the curves reach an intermediate plateau
and then go over to a positive dispersion. For large k, the peak
position of the longitudinal current-current spectral function

TABLE II. Adiabatic speed of sound cs,HD, extracted from the fit
to the hydrodynamic model in (8) and (10) and adiabatic speed of
sound cs,TD computed from the thermodynamic relation in (22) for
aluminum at given temperatures T and mass densities ρ.

T (K) ρ (g/cm3) cs,HD (km/s) cs,TD (km/s)

1000 2.356 5.087 ± 0.025 4.73 ± 0.12
5802 2.356 6.029 ± 0.016 6.02 ± 0.05
11 600 2.356 6.736 ± 0.018 6.73 ± 0.04
11 600 4.712 11.579 ± 0.024 11.349 ± 0.025
58 020 4.712 13.049 ± 0.017 12.908 ± 0.020
58 020 8.1 17.406 ± 0.017 17.451 ± 0.003

can be described by the classical free particle limit of a non-
interacting system

ωJ (�k) =
√

2

miβ
|�k| (20)

with the ion mass mi and 1/β = kBTi, where kB is the Boltz-
mann constant. This peak at finite frequencies occurs because
the zero-centered Gaussian DSF of a noninteracting system
is multiplied by ω2/k2 to arrive at the longitudinal current-
current spectral function. We suspect the rise of ωion at high
k, where the DSF is close to a perfect Gaussian, is due to
our choice of fit function. Because a Gaussian cannot be
approximated by a Lorentzian, a second contribution at finite
frequency is necessary. This highlights the inadequacy of this
fit function beyond the first correlation peak, and in the fol-
lowing, we will therefore not apply it there.

By fitting

ωion(�k) = cs|�k| (21)

to the small k dispersion relation of ωion extracted from the fit,
the adiabatic velocity of sound cs is determined, see Table II.
The dashed lines in Fig. 7 indicate the linear fit for the liquid
conditions considered in this work. We use the first eight
oscillation frequencies ωion at each condition for the linear
fit. It can be shown that the inclusion of more or less data
points does not significantly impact the extracted value for the
adiabatic velocity of sound. The speed of sound at 1000 K can
be compared to experimental data by using the suggested best
fit from Ref. [57]. For a temperature of 1000 K, one obtains a
speed of sound of 4648 m/s, which is in reasonable agreement
with our value of 5087 m/s. Remarkably, the experimental
speed of sound is not recovered by the x-ray scattering study
of Scopigno et al. on liquid aluminum, [54] either, from which
an adiabatic speed of sound of ∼5700 m/s can be derived. Ad-
ditionally, following Ref. [58] and the supplemental material
of Ref. [20], we compute the adiabatic speed of sound directly
from the thermodynamic relations

c2
s,TD = 1

ρ χS
= γ

ρ χT
, (22)

χT = 1

ρ

(
∂ρ

∂P

)
T

, (23)

with the heat capacity ratio γ = CP/CV , the mass density ρ,
the pressure P and the adiabatic and isothermal compress-
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FIG. 7. Long-wavelength behavior of the oscillation frequency
of the ion acoustic waves ωion as a function of the wave number k
for aluminum at various conditions. The linear behavior for small k,
predicted by the hydrodynamic model, is indicated by dashed lines
and the inferred speed of sound is shown. The extracted peak position
from the underlying DFT-MD simulations are also indicated by the
black symbols. For clarity each set of curves is shifted by an offset of
0.1 eV with respect to the lower one. The dotted lines represent the
baseline for each set.

ibilities χS and χT . In order to evaluate these expressions,
we perform additional simulations at 5% to 10% below and
above the desired density and temperature and evaluate the
derivatives using central finite differences. The results are
summarized in Table II. The agreement between both methods
is good for all conditions that are hotter than 1000 K. At
these conditions, the results for the direct calculation via (22)
deviate less than 5% from the value extracted from the fit
to the GCM model. However, just above the melting line
at 1000 K, the direct calculation results in a prediction for
the adiabatic speed of sound which is ∼10% lower than the
result extracted from the fit. This speed of sound lines up
better with the experimentally observed value, indicating that
the hydrodynamic limit at this condition might require even
smaller wave numbers than accessible in this work.

In Fig. 7, we also indicate the frequencies that we
determined directly from the DFT-MD simulations (black
symbols). Due to the significantly smaller simulation size, the
available wave vectors cover the k axis more sparsely and
the smallest available wave vectors are at least seven times
larger than the smallest wave vectors from the NN-MD. The

dispersion is reproduced well by the NN-MD in all cases. For
the simulations at ρ = 2.356 g/cm3, the lowest five k values
of our DFT-MD results lie within the linear behavior of the
dispersion, while the denser conditions have at most two k
values in the linear regime. Therefore it would be difficult
to justify a linear fit to the available DFT-MD data at these
conditions.

B. Mode contributions

While fitting the DSF with one propagating and one diffu-
sive mode is justified in the hydrodynamic limit, contributions
from additional kinetic modes will become relevant at higher
wave numbers. The GCM framework enables us to include
arbitrary amounts of additional modes. However, the shape
of the DSF is generally not discriminative enough to achieve
reliable results from fitting procedures. Furthermore, statis-
tical noise prohibits us from identifying the onset of small
corrections beyond the hydrodynamic limit. In order to cir-
cumvent this limitation, we adopt the scheme laid out in
Refs. [17,49,59], which uses the memory-function formal-
ism to construct a generalized hydrodynamic matrix on an
extended set of hydrodynamic variables. We employ the five-
mode approach by including the first time derivatives of the
longitudinal current and energy, on top of the three hydro-
dynamic variables. This approach does not rely on fitting to
the DSF and, therefore, does not suffer from the shortcom-
ings mentioned earlier when examining the transition to the
nonhydrodynamic regime. Due to the higher memory storage
demand, we only use 4000 atoms for this analysis.

In Fig. 8, we show the results of the five-mode ap-
proach compared to the three-mode approach, which can only
describe generalized hydrodynamic modes, for the most ex-
treme condition considered in this study at T = 5 eV and
ρ = 8.1 g/cm3. The other conditions show similar trends
regarding the onset of nonhydrodynamic corrections. The top
panel of Fig. 8 shows the decay coefficients of the various
modes. In the low-k limit, only two modes tend toward zero,
which identifies them as the hydrodynamic modes which will
survive on long time scales. The remaining modes are two
quickly decaying diffusive modes, which do not contribute
in the hydrodynamic limit. At ∼0.8 Å−1, the hydrodynamic
and one nonhydrodynamic diffusive mode merge to create an
additional propagating mode, which is the typical behavior
of a damped wave equation (see Fig. 1 in Ref. [17]). The
oscillation frequency of this additional mode is displayed in
the bottom panel of Fig. 8. It follows the same trend as the
hydrodynamic sound wave, but at a significantly lower fre-
quency. It is apparent that these nonhydrodynamic corrections
only occur for wave numbers above 0.5 Å−1, but contribute
significantly above 1 Å−1. For smaller wave numbers, the
three- and five-mode approaches give virtually the same pre-
dictions, giving credence to our fit functions (8) and (10). We,
therefore, conclude that fitting to these functions at small k
will in fact reveal the thermodynamic and transport properties
that describe the hydrodynamic model [14].

C. Ionic transport

As mentioned in Sec. III A, the general diffusive and prop-
agating modes from Eqs. (8) and (10) can be identified as the
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well known hydrodynamic modes [21] in the limit of k → 0
and ω → 0. In this limit, the diffusive mode is connected to
the thermal diffusivity DT via α = DT k2 and the propagating
mode becomes symmetric, i.e., B2 vanishes, while β = �k2,
where � is the sound attenuation coefficient. Therefore the
behavior of the decay coefficients in equation (8), which de-
scribe how fast diffusive and collective processes decay with
time, can be connected to well known material properties. As
these coefficients also determine the full width at half max-
imum (FWHM) of the peaks in the DSF [see Eq. (10)], this
allows both experiment and theory to access these properties
of interest, provided that the hydrodynamic regime of wave
numbers is reached.

In Fig. 9, we show the FWHM of the zero-centered diffu-
sive peak in the DSF for the considered liquid conditions. The
FWHM is given by 2α, and α is found by fitting to the DSF
and intermediate scattering function of the NN-MD simula-
tions. The results that were found by fitting to the underlying
DFT-MD simulations are also shown by the black symbols in
Fig. 9. It is apparent that the hydrodynamic regime for this
quantity is reached at lower wave numbers than for the dis-
persion relation in Fig. 7. None of the considered cases have
more than two DFT-MD data points in the region that matches
the indicated limiting behavior. Additionally, the FWHM of
the central mode is sensitive to statistical fluctuations and
requires a large number of time steps in order to reach con-
verged results. Due to computational limitations, we perform
40 000 or fewer time steps for all DFT-MD simulations, while
we perform between 150 000 and 600 000 time steps for the
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FIG. 9. FWHM of the central, diffusive peak of the DSF in
equation (10), which is given by 2α, dependent on the wave number
k. A fit to 2DT k2 is indicated and the best fit result for the thermal
diffusivity DT is given. The extracted FWHM from the underlying
DFT-MD simulations are also indicated by black symbols. For clar-
ity, each set of curves is shifted by an offset with respect to the lower
one. The dotted lines represent the baseline for each set.

NN-MD simulations. The statistical fluctuations induced by
the shorter simulations can be observed in Fig. 9.

Additionally, the lowest available wave numbers corre-
spond to only a few wave vectors. For a cubic simulation
box, only three wave vectors are averaged to compute the
smallest k. For the DFT-MD simulations, only the smallest
k approach the hydrodynamic limit, where only very few k
vectors correspond to each k value, leading to worse statistical
averages compared to the NN-MD simulations.

We follow the approach outlined in Ref. [20] to compute
the thermal conductivity of the ions λii from the thermal
diffusivity DT . We employ the thermodynamic derivatives

Cm,V =
(

∂Um

∂T

)
V

, (24)

Cm,P − Cm,V = Vm T

(
∂P

∂T

)2

V

(
∂Vm

∂P

)
T

(25)

to determine the molar heat capacities at constant volume
Cm,V and at constant pressure Cm,P. The internal energy per
mol is given by Um and the molar volume is Vm. Note that
if Um is taken from the DFT-MD simulations, the molar
heat capacities contain contributions from thermal electronic
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TABLE III. Molar total heat capacity at constant volume Cm,V

and at constant pressure Cm,P computed via thermodynamic deriva-
tives from DFT-MD simulations for various temperatures and
densities. These values include the electronic contribution. The cor-
responding adiabatic coefficient is also given.

T ρ Cm,V Cm,P

(K) (g/cm3) [J/(K mol)] [J/(K mol)] γ

1000 2.356 25.9 ± 1.9 34.2 ± 2.8 1.32 ± 0.04
5802 2.356 24.9 ± 1.0 31.4 ± 1.5 1.263 ± 0.026
11 600 2.356 29 ± 4 38 ± 5 1.30 ± 0.07
11 600 4.712 31.6 ± 3.3 35 ± 4 1.093 ± 0.017
58 020 4.712 44 ± 11 53 ± 15 1.22 ± 0.08
58 020 8.1 44 ± 8 48 ± 10 1.103 ± 0.029

excitations. These contributions can be removed by subtract-
ing the electronic heat capacity via CV,e = T ( ∂Se

∂T )V , with the
electronic entropy Se. However, removing the contributions
of electronic excitations from the pressure, which influences
Cm,P, is not easily possible. Therefore we compute the heat
capacity from the NN-MD simulations which were consis-
tently trained on DFT-MD energies excluding the electronic
excitation energy. Both procedures yield heat capacities at
constant volume within 5% for the densities and temperatures
considered here. We summarize the heat capacities computed
from the DFT-MD simulations without the subtraction of the
electronic contribution in Table III and the heat capacities
computed from the NN-MD in Table IV.

The thermal conductivity of the ionic subsystem λii can
now be computed via

λ = DT
Cm,P

Vm
, (26)

results are given in Table V. In order to compare the ionic
thermal conductivity extracted from the hydrodynamic limit
to another approach based on the same DFT-MD simula-
tions, we compare with the linear response treatment of the
thermal conductivity as described in Ref. [60]. We have
parametrized radial force fields between the ions with Eq. (6)
from Ref. [60], setting the potential cutoff parameter to C = 6,
which was sufficient to produce converged thermal conductiv-
ities. The generated force fields between the aluminum ions
are purely repulsive. The ionic thermal conductivity λii,GK

was then calculated with the Green-Kubo formula using the

TABLE IV. Molar ionic heat capacity at constant volume
Cm,V and at constant pressure Cm,P computed via thermodynamic
derivatives from NN-MD simulations for various temperatures and
densities. The corresponding adiabatic coefficient is also given.

T ρ Cm,V Cm,P

(K) (g/cm3) [J/(K mol)] [J/(K mol)] γ

1000 2.356 24.62 ± 0.20 31.69 ± 0.29 1.287 ± 0.004
5802 2.356 18.719 ± 0.027 23.64 ± 0.04 1.2631 ± 0.0008
11 600 2.356 17.36 ± 0.09 22.11 ± 0.13 1.274 ± 0.003
11 600 4.712 23.61 ± 0.12 25.92 ± 0.14 1.0976 ± 0.0008
58 020 4.712 17.61 ± 0.15 20.67 ± 0.19 1.1736 ± 0.0027
58 020 8.1 19.83 ± 0.17 21.09 ± 0.18 1.0637 ± 0.0009

TABLE V. The thermal conductivity λii,HD, computed from DT

in Fig. 9 via Eq. (26), and the thermal conductivity λii,GK computed
from the Green-Kubo relation as described in Ref. [60] for aluminum
at given temperatures T and mass densities ρ.

T (K) ρ (g/cm3) λii,HD [W/(m K)] λii,GK [W/(m K)]

1000 2.356 1.12 ± 0.07 0.93 ± 0.10
5802 2.356 1.05 ± 0.03 1.01 ± 0.11
11 600 2.356 1.13 ± 0.04 1.08 ± 0.11
11 600 4.712 2.9 ± 0.4 3.4 ± 0.4
58 020 4.712 3.16 ± 0.09 2.5 ± 0.6
58 020 8.1 6.40 ± 0.25 5 ± 1

ionic trajectories from the DFT-MD simulations as described
in Ref. [60]. Table V contains the results, which are in good
agreement with those derived from the dynamic structure
factor.

For completeness, note that the total thermal conductivity
of liquid metals is usually dominated by the electronic part,
e.g., the experimentally observed value for liquid aluminum
at 1000 K [61] is two orders of magnitude larger than the
value we determined for the ionic thermal conductivity. This
prevents a direct comparison of our calculated ionic thermal
conductivities with experiments.

In Fig. 10, we show the FWHM of the propagating
mode, which appears at the finite excitation frequency in-
dicated in Fig. 6. From fitting to the low-k behavior of the
FWHM, the longitudinal sound attenuation coefficient � can
be determined. The statistical fluctuations in this mode are
significantly smaller than in the diffusive mode, making it
easier to determine where the hydrodynamic regime begins.
Especially at the lowest available density ρ = 2.356 g/cm3,
higher temperatures lead to an extension of the hydrodynamic
regime to higher wave numbers. Due to these smaller statis-
tical fluctuations, the agreement with the significantly shorter
DFT-MD simulations is also better than in the diffusive mode.

VI. CONCLUSIONS

In this work, we gave an extensive overview of the com-
putation of the ionic DSF and intermediate scattering function
and some relevant practical considerations for its application
in the WDM regime. We introduced a simple GCM model
with one diffusive and one propagating mode which can be
matched to the dynamic behavior of liquid aluminum via a
fitting procedure. We showed that liquid aluminum from the
melting line up to the WDM regime can be approximated well
by this simple model across all length scales apart from the
distances corresponding to the first correlation peak in the
static ion-ion structure factor, where the description breaks
down. Good agreement with experimental data for the static
and dynamic ion-ion structure factor was observed for liq-
uid aluminum at 1000 K. We demonstrated how information
about the k and ω dispersion can be extracted from the fitting
procedure and highlighted the convergence to the hydrody-
namic model in the limit of long wave lengths. The inability of
DFT-MD simulations to reach statistically converged results
in the hydrodynamic regime, due to computational limitations,
was demonstrated. This shortcoming can be circumvented by
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FIG. 10. FWHM of the propagating side peaks of the DSF in
equation (10), which is given by 2β, dependent on the wave number
k. A fit to 2�k2 is indicated and the best fit result for the sound
attenuation coefficient � is given. The extracted FWHM from the
underlying DFT-MD simulations are also indicated by black sym-
bols. For clarity each set of curves is shifted by an offset with respect
to the lower one. The dotted lines represent the baseline for each set.

using molecular dynamics simulations powered by a neural
network trained on Behler-Parrinello symmetry functions. We
showed that this procedure can be used to perform simulations
with 32 000 atoms and up to 600 000 time steps. Thus this
enabled us to extract thermal conductivities of the ions in
the hydrodynamic limit and we compared these results with

ionic thermal conductivities computed from a Green-Kubo
relation. Reasonable agreement between the two approaches
was observed for the considered conditions. We emphasize the
importance of using only the ionic heat capacity, as opposed to
the total heat capacity, to compute the ionic thermal conduc-
tivity from the ionic thermal diffusivity. We demonstrated that
additional nonhydrodynamic modes do not contribute in the k
range of interest, by computing a five- and three-mode GCM
model and showing that they converge to the same result in
the hydrodynamic limit.

The approach presented here for warm dense aluminum
can be applied to other single-component materials like iron,
water or hydrogen as relevant in geophysics or planetary
physics. Based on corresponding simulation results for the
dynamic ion-ion structure factor, combining DFT calculations
and neural networks, reasonable predictions for the sound ve-
locity, thermal diffusivity or thermal conductivity can be made
for matter under extreme conditions. Perspectively, these
properties will be probed experimentally using inelastic x-ray
scattering (IXS) experiments at free electron laser facilities.
High-resolution IXS platforms with meV-monochromators
are currently implemented at the European XFEL [33,34] and
the LCLS in Stanford [35]. The corresponding spectra can
then be compared to, e.g., GCM models as outlined here and,
if the resolution of the measured spectra is sufficient, thermal
and transport properties can be extracted from the dynamical
properties of WDM. Such combined efforts would improve
the so far rather scarce data basis for WDM considerably and
thereby enable upgraded models for the interior structure and
thermal evolution of solar and extrasolar planets.
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