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Symmetry-enforced nodal cage phonons in Th2BC2
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Exploring unique topological states in condensed-matter systems has attracted great interest especially for the
topological phonons recently. Based on the unbiased structure prediction approach combined with first-principles
calculations, the long-sought crystal structure of Th2BC2 is determined. Most importantly, we show by the
symmetry analysis and the phonon tight-binding Hamiltonian that Th2BC2 hosts nodal surface phonons on the
qz = ±π plane, coexisting with nodal line phonons on the qy = 0 and qy = ±π planes, consequently, forming
cagelike phonons. The nodal surface phonons are protected by the screw axis C̃2z, and the nodal line phonons
are enforced by inversion and time-reversal symmetries, demonstrated by the codimension argument and the
effective model analysis. In addition, we also investigate the phonon surface states and the isofrequency arc on
the (100) surface, which benefit the confirmation of the nodal cage phonons in experiments. Our paper not only
determines the long-sought crystal structure of Th2BC2, but also provides an ideal candidate to realize the exotic
topological phonon excitations.
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I. INTRODUCTION

Following the experimental discovery of quantum Hall ef-
fect [1], the studies of topological states become an intense
field in condensed-matter physics [2–5]. The typical exam-
ples are topological insulators and semimetals, which possess
topologically protected surface or edge states that are in fa-
vor of topological quantum computation and next-generation
low-power electronic devices, thus, attracting considerable
attention. In addition to the topological states in the fermionic
systems, substantial efforts have been paid to study the
analogies in bosonic systems, such as acoustic waves in
phononic crystals [6,7], electromagnetic waves in photon-
ics [8,9] and phonons in solids [10–13]. Especially, phonons
in solids, which are closely related to the thermal trans-
port, electron-phonon coupling, and thermoelectric effect,
provide fertile ground for studying the unconventional topo-
logical quasiparticles beyond Dirac and Weyl quasiparticles.
Moreover, phonons have unique advantages in contrast to
electronic systems because they not only can be explored
in the whole frequency range without considering the Fermi
level, but also lack the spin-orbital coupling (SOC) so as
to realize robust topological quasipaticles against SOC. As
a result, various topological phonons are identified very
recently, such as the conventional Weyl phonons [10,13–
16], Dirac phonons [17,18], the unconventional nodal line
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phonons [11,19–22], double-Weyl phonons [10,12,23], hour-
glass phonons [13,24], and nodal surface phonons [25–27].

As is well known, the crystalline symmetries play an es-
sential role in protection of topological states. The nodal
line quasiparticles, characterized by a quantized Berry phase
with a closed path that encircles the nodal line, are gener-
ally enforced by additional crystalline symmetries, such as
mirror or inversion symmetry combined with time-reversal
symmetry [28]. In addition, the nonsymmorphic crystalline
symmetries have higher-dimensional projective representa-
tions at a certain k point [29] and, thus, can bring extra
degeneracies, then leading to band sticking together at the
Brillouin-zone (BZ) boundary. Especially, the nodal surface
quasiparticles, whose nodes form a plane in the BZ, are
dictated by the existence of nonsymmorphic crystalline sym-
metries, such as screw rotation symmetry [25,30]. Therefore,
the coexistence of the topological nodal line and nodal surface
require multiple symmetries, including not only the sym-
morphic symmetry, i.e., inversion or mirror symmetries, but
also the nonsymmorphic screw symmetry. As a result, the
coexistence of a nodal line and nodal surface quasiparticles
possesses rich interplay between symmetry and topology, but
there are a few studies referred to these exotic topological
states [27].

In this paper, we uncover that the nodal line and nodal
surface phonons can coexist in one of the thorium borocarbide
compounds Th2BC2, which may serve as potential nuclear
fuel in generation-IV reactors or fission control material and
draw renewed attention recently [31,32]. Th2BC2 had been
prepared by Toth et al. [33] for a long time ago. However,
its crystal structure has not been determined up to now. On
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one hand, the complex distributions of B and C atoms in the
borocarbides for a given stoichiometry, referred to as the col-
oring problem, lead to their diversified structural arrangement.
On the other hand, owing to the similar electronic and nuclear-
scattering cross sections [34], the exact Wyckoff positions
of B and C atoms for borocarbides are hard to be identified
in experiments. As a result, the crystal structure of Th2BC2

remains a long-standing unanswered question. Combining
the unbiased structure prediction method and first-principles
calculations, we uncover the long-sought crystal structure
of Th2BC2. The phonon dispersion and elastic constants of
Th2BC2 are calculated to demonstrate its structure stability.
More importantly, we find that Th2BC2 hosts intriguing and
unique topological nodal cage phonons consisting of the nodal
surface and nodal line phonons. The Berry phase and topo-
logical surface states are calculated to confirm its nontrivial
properties.

II. COMPUTATIONAL METHODS

Here, the structure prediction employed the particle swarm
optimization (PSO) technique as implemented in the CA-
LYPSO code [35,36]. The structure optimizations were carried
out in the Vienna ab initio simulation package [37] within
the framework of density functional theory [38,39]. The
Perdew-Burke-Ernzerhof functional [40] and the projec-
tor augmented-wave pesduopotentials [41] were chosen to
describe the exchange-correlation interaction and the ions-
electrons interactions, respectively. The cutoff energy for the
plane wave was set to 520 eV, and the BZ was sampled with
a �-centered Monkhorst-Pack k-point grid [42]. The phonon
spectrum of Th2BC2 was calculated with the supercell of
2 × 2 × 2 by using the finite displacement method as im-
plemented in PHONOPY [43]. Moreover, the convergence of
the phonon spectrum was tested with a larger supercell of
3 × 3 × 3. The topological properties were calculated by the
WANNIERTOOLS package [44]. In addition, we also checked the
influence of the on-site Coulomb interaction U on the topolog-
ical phonons by applying the an effective U in a range from 2
to 7 eV. The calculated results show that the topological nodal
cage phonons are robust, and only the positions of the band
crossings move slightly.

III. RESULTS AND DISCUSSION

To obtain the most energetically stable structure, we per-
form a comprehensive structure prediction of Th2BC2 with
the cell up to 8 formula units. Here, to verify the validity and
reliability of our prediction, we also carry out the structure
prediction of ThBC, ThB2C, ThBC2 whose structures had
already been determined [45–47]. It is found that the most
energetically stable structures of ThBC, ThB2C, and ThBC2

are readily reproduced, suggesting the efficiency and reliabil-
ity of our approach for determining the structures of thorium
borocarbide compounds. The most stable predicted structure
of Th2BC2 crystallizes in an orthorhombic lattice with space-
group Cmcm (No. 63) as shown in Fig. 1(a). The fully relaxed
lattice constants are a = 3.712, b = 12.823, and c = 7.206 Å.
Th atoms occupy the 4a Wyckoff position (0, 0, 0) and 4c
Wyckoff position (0, 0.7366, 1/4), B and C atoms occupy 4c

FIG. 1. (a) Crystal structure of Th2BC2, in which the orange,
brown, and blue spheres represent the Th, B, and C atoms, respec-
tively. (b) The bulk and (100) surface BZ of Th2BC2 where the
high-symmetry points in the bulk BZ are marked with dark blue dots,
and the high-symmetry points of the surface BZ are denoted by the
red dots. (c) Phonon dispersion curves along high-symmetry paths
and density of states of Th2BC2.

Wyckoff position (0, 0.3975, 1/4), and 8 f Wyckoff position
(0, 0.3567, 0.4448), respectively.

To evaluate its mechanical stability, we calculate
the nine independent elastic constants of Th2BC2. The
obtained results are C11 = 190, C12 = 87, C13 = 67,
C22 = 173, C23 = 109, C33 = 260, C44 = 80, C55 = 43,
and C66 = 76 GPa, which satisfy the elastic stability criteria
of orthorhombic crystals (C11 > 0, C44 > 0, C55 > 0, C66 >

0, C11C22 > C2
12, C11C22C33 + 2C12C13C23 − C11C2

23 −
C22C2

13 − C33C2
12 > 0 [48]), indicating its mechanical stability.

The formation energy �E f of Th2BC2 is determined with
respect to the reference phases of face-centered-cubic
thorium, rhombohedral α-boron and graphite, that is,
�E f = E (Th2BC2) − 2E (Th) − E (B) − 2E (C) in which
E (Th2BC2), E (Th), E (B), and E (C) represent the
total energies of Th2BC2, face-centered-cubic thorium,
rhombohedral α-boron and graphite, respectively. The
calculated formation energy �E f of Th2BC2 is −1.60 eV,
further confirming its feasible preparation in experiment.
Moreover, we also calculate the phonon band structure of
Th2BC2 to verify it thermodynamical stability as shown in
Fig. 1(c). Clearly, no imaginary frequency is found in the
BZ, indicating the thermodynamical stability of Th2BC2.
Considering the mechanical and thermodynamical stabilities
and the great success of the powerful PSO technique,
we can confirm that the crystal structure of Th2BC2 is
determined despite lack of further experimental data for
comparison.

Owing to the large mass difference of Th, B, and C atoms,
the acoustic and optical branches of phonon dispersion of
Th2BC2 distribute over four different frequency ranges, ex-
hibiting three distinct phonon band gaps. From the phonon
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FIG. 2. (a) The enlarged phonon band structure in the frequency
range from 25 to 27 THz in which the two crossed bands are denoted
by the eigenvalues of M̃y. The three-dimensional (3D) representa-
tions of phonon dispersions for the optical branches 27 and 28 on the
(b) qy = 0 and (c) qy = ±π planes.

density of states in Fig. 1(c), we find that the low-frequency
acoustic and optical modes are dominated by the vibration of
Th atoms, whereas the optical branches in the frequency win-
dow between 7 and 15 THz originate from the contributions of
B and C atoms. Moreover, these phonon bands below 15 THz
overlap severely so that they are not clearly identified. How-
ever, there are two well-separated optical branches (phonon
branches 27 and 28) in a frequency range from 25 to 27 THz,
which are mainly attributed to the vibrational modes of C
atoms. Therefore, we will mainly focus on these two optical
branches from 25 to 27 THz for further study.

The enlarged phonon dispersion between 25 and 27 THz
is shown in Fig. 2(a). Along the high-symmetry Z-A and
T -Z directions, these two optical branches are stuck together.
Besides, the two phonon bands cross linearly along the X -
�, A-�, X1-T , and Z-X directions. The high-symmetry X -�,
A-�, and Z-X lines lie on the qy = 0 plane, whose little
group contains the identity operator E and glide plane of
M̃y = {My|0, 0, 1/2}, i.e.,{E , M̃y}. Therefore, the two touch-
ing bands belong to different irreducible representations so
that we can mark the two bands with the eigenvalues ±1 of
M̃y as labeled in Fig. 2(a). In addition, the 3D representation of
phonon dispersion on the qy = 0 plane is shown in Fig. 2(b).
It is found that any high-symmetry lines that connected the
arbitrary point along �-Z and the arbitrary point along X -A
host doubly degenerate points. For the plane of qy = ±π , the
little group is the same as the case on the qy = 0 plane, so there
exist the similar band crossings on the qy = ±π plane, which
can be marked with the eigenvalues ±1 of M̃y. Meanwhile,
we plot the 3D representation of phonon dispersion on the
qy = ±π plane as depicted in Fig. 2(c). Clearly, it can be seen

FIG. 3. (a) The nodal cage phonons between the optical branches
27 and 28 in the bulk BZ, which consist of nodal surface phonons
on the qz = ±π plane and the nodal line phonons on the qy = 0
and qy = ±π planes. The red lines and surfaces, respectively, denote
the nodal-line and nodal-surface phonons. The frequency difference
maps between these two optical branches in the (b) qy = 0 and
(c) qy = ±π planes. (d) The evolution of the Berry phase for a closed
loop L that encircles the nodal line phonons.

that the band crossings emerge along the high-symmetry paths
terminated by arbitrarily selected points on X1-A1 and on Y -T .

To obtain all the doubly degenerate nodal points between
these two optical branches and investigate their topological
properties, we construct a phonon tight-binding Hamiltonian
based on the dynamical matrix D(q) of Th2BC2, which can be
built by the force constants tensors between atom i in unit-cell
l and atom j in unit-cell l ′,

�αβ

(
l l ′
i j

)
= ∂2U

∂uα

( l
i

)
∂uβ

( l ′
j

) . (1)

α and β are Cartesian indices, and uα (l
i) denotes the dis-

placement of the ith atom in the lth unit cell away from
the equilibrium position. Here, the force constants are treated
as the tight-binding parameters. Based on the phonon tight-
binding Hamiltonian, the nodal points between phonon
branches 27 and 28 in the whole BZ can be obtained as
depicted in Fig. 3(a). It can be found that all the k points on the
whole qz = ±π plane are doubly degenerate, forming a plane
completely composed of twofold-degenerate nodal points, re-
ferred to as nodal surface phonons [25,26]. In addition, we can
clearly see the nodal lines that symmetrically lie in the qy = 0
and qy = ±π planes. All the doubly degenerate nodal points
between optical branches 27 and 28 form a cagelike pattern
with closed bottom and top in the BZ, so we call it nodal cage
phonons. Note that the nodal cage explored here is another
type of nodal cage phonons, which are completely different
with the nodal cage phonons composed of the neck points of
hourglass dispersion proposed in our previous work [24]. To
gain a deeper insight into the nodal cage phonons, the fre-
quency differences between the optical branches 27 and 28 are
calculated as shown in Fig. 3(b) for the qy = 0 and Fig. 3(c)
for the qy = ±π planes, respectively. The obtained results
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show excellent consistency with the nodal point calculation,
further exhibiting the shape of the nodal cage phonons.

Next, we provide a symmetry analysis to gain a deeper
insight into the nodal cage phonons. Th2BC2 belongs
to the space-group Cmcm, which contains screw axis
C̃2z: (x, y, z) → (−x,−y, z + 1

2 ), glide plane M̃y: (x, y, z) →
(x,−y, z + 1

2 ), spatial inversion I symmetry. In addition,
the time-reversal T symmetry is preserved for the spinless
phononic system. As a result, the high-symmetry qz = ±π

plane is the invariant subspace of the product of T and C̃2z.
Therefore, we can choose each Bloch state |u〉 on this plane as
an eigenstate of T C̃2z, and one can easily find

(T C̃2z )2 = e−iqz = −1. (2)

The antiunitary symmetry (T C̃2z )2 = −1 for the qz = ±π

plane gives rise to Kramers-like degeneracy for these two
phonon branches and leads to arbitrary points on the qz =
±π plane sticking together, consequently, forming the nodal
surface.

To demonstrate the nodal line phonons on the qy = 0
and qy = ±π planes, we employ a two-band k · p effective
Hamiltonian,

H (q) =
3∑

i=0

di(q)σi, (3)

where σ0 is identity matrix, σi (i = 1–3) are the three Pauli
matrices, di(q) are coefficients relevant to phonon wave
vectors q = (qx, qy, qz ). Here, the kinetic term d0(q)σ0 is
irrelevant to the phonon band touching, so we neglect it in
the following discussion. For the spinless phonon of Th2BC2,
the I and T symmetries are preserved, which guarantee the
two-band Hamiltonian to be real valued [49,50]. As a result,
the codimension of such a band degeneracy is 2, which is
one less than the number of independent variables (qx, qy, qz).
Therefore, the nodal points can trace out one-dimensional
manifolds in the BZ.

Under the I and T symmetries, the k · p Hamiltonian is
constrained as

IH (q)I−1 = H (Iq), T H (q)T −1 = H (T q). (4)

We can choose I = σ3 and T = K. Then, Eq. (4) can be
simplified into

d1(q) = 0, d2(q) = −d2(−q), d3(q) = d3(−q). (5)

On the qy = 0 plane, the nonsymmophic glide plane M̃y con-
strains the Hamiltonian as

M̃yH (q)M̃−1
y = H (M̃yq), (6)

which can be translated into

d2(qx, qy = 0, qz ) = 0. (7)

Combined with Eqs. (5) and (7), the only left symmetry-
constrained condition of the Hamiltonian for the qy = 0 plane
is that d3(q) is an even function with respect to phonon wave
vector q. Subsequently, we expand d3(q) with the lower orders
up to quadratic terms and obtain

d3(qx, qy = 0, qz ) = Aq2
x + Bq2

z + Cqxqz + D. (8)

Based on above analysis, the frequency of phonon dispersion
on the qy = 0 plane can be represented

ω(q) = ±
√

[d3(qx, qy = 0, qz )]2. (9)

Therefore, the phonon band touching occurs as d3(qx, qy =
0, qz ) = 0 on this plane. Clearly, d3(qx, qy = 0, qz ) = 0
corresponds to the equation of a hyperbola centered at the
� point with the conjugate axis of qz if the conditions of
A > 0, B < 0, C = 0, and D < 0 are satisfied, consequently,
resulting in hyperboliclike nodal lines on the qy = 0 plane.
The nodal lines on the qy = ±π plane can be also understood
according to above discussions owing to the preservation of
M̃y on the qy = ±π plane. There are two things that we need
to pay attention to. The nodal lines for Th2BC2 are topolog-
ically protected by the combination of I and T symmetries,
and the M̃y symmetry only guarantees that the nodal lines lie
on the qy = 0 and qy = ±π planes. In addition, the high-order
terms of d3(qx, qy = 0, qz ) are essential for determining the
detailed shape of the hyperboliclike nodal lines. The topolog-
ical nodal line can be characterized with a quantized Berry
phase around a closed path, we next study the Berry phase
of the nodal lines to confirm their topological feature. The
phonon Berry phase γ around a closed loop L can be defined
as

γ =
∮

L
A(q) · dq, (10)

in which A(q) = i
∑

m〈ϕm(q)|∇q|ϕm(q)〉 is phonon Berry
connection. ϕm(q) is the phonon Bloch wave function, defined
as [51,52]

ϕm(q) =
(

D(q)1/2uq

u̇q

)
, (11)

where uq and u̇q are the displacement and its derivative with
respect to time. Based on the above definition, we calculate
the evolution of Berry phase around a closed loop that moves
from X to X ′ (the mirror point of X with respect to the qx = 0
plane) as shown in Fig. 3(d). It is found that the Berry phase
is π as the closed loop encircles the nodal line, and 0 as the
closed loop is away from the nodal line, implying its nontrivial
feature.

The topologically protected surface states and isofrequency
arc states can characterize the nodal cage phonons. Therefore,
we employ the surface Green’s function method [53] to calcu-
late the local density of states (LDOS) on the (100) surface
based on the phonon tight-binding Hamiltonian. As shown
in Fig. 4(a), although the frequency window for the surface
LDOS is very narrow owing to the covering of bulk states,
the surface states on the (100) surface are clearly visible,
facilitating its experimental observation. In addition, we plot
the isofrequency arc states of the (100) surface at a frequency
of ω = 26.01 THz as depicted in Fig. 4(b). It can found that
the arc states mainly distribute near X̃ of the (100) surface BZ.
Due to the presence of glide plane M̃y, the isofrequency arc is
symmetric about the qy axis.
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FIG. 4. (a) The LDOSs in the frequency range from 25.5 to
27 THz for semi-infinite (100) surface in which M̃, X̃ , and �̃ cor-
respond to the high-symmetry point in the surface (100) BZ. (b) The
isofrequency arc state of the (100) surfaces at a given frequency of
ω = 26.01 THz.

IV. CONCLUSION

To summarize, we determine the long-sought crystal struc-
ture of Th2BC2 by using the PSO technique within the

framework of first-principles calculations and propose that
Th2BC2 possesses a nodal surface and nodal line phonons,
which form a unique shape, such as a cage with a closed
top and bottom, then referred to it as nodal cage phonons.
We provide symmetry analysis and a two-band k · p effective
Hamiltonian to demonstrate the symmetry-protected nodal
cage phonons. The results show that the nodal cage phonons
are protected by the screw axis C̃2z, I, and T symmetries.
Moreover, the calculated surface states and isofrequecy arc
on the (100) surface confirm their topologically nontrivial
feature.
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