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Dynamical quantum phase transitions (DQPTs) are criticalities in the time evolution of quantum systems
and their existence has been theoretically predicted and experimentally observed. However, how the system
behaves in the vicinity of DQPT and its connection to physical observables remains an open question. In this
work, we introduce the concept of the Loschmidt amplitude spectrum (LAS), which extends the Loscmidt
amplitude - the detector of the transition - by considering the overlap of the initial state to all the eigenstates
of the prequench Hamiltonian. By analyzing the LAS in the integrable transverse-field Ising model, we find
that the system undergoes a population redistribution in the momentum space across DQPT. In the quasiparticle
picture, collective excitations around lower-half k modes become dominant when the system approaches DQPT.
The LAS is also applicable to study the dynamics of nonintegrable models where we have investigated the Ising
model with next-nearest-neighbor interactions as an example. The time evolution of the system’s magnetization is
found to be connected to the products of the LAS and there exists a simultaneous overlap of the time-evolved state
to pairs of eigenstates of the prequnech Hamiltonian that possess spin configurations of negative magnetization.
Our findings provide a better understanding of the characteristics of the out-of-equilibrium system around DQPT.
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I. INTRODUCTION

The research on dynamical quantum phase transitions
(DQPTs) has been thriving, both in experimental [1–5] and
theoretical researches [6–49], among condensed matter physi-
cists. On the one hand, quantum simulators have allowed
access to the real-time dynamics of quantum systems in ex-
periments [1–5,50–60], among which detection of DQPT was
found possible [1–5]. On the other hand, theoretical studies of
DQPTs have advanced our understanding of nonequilibrium
physics in quantum many-body systems, among which may
lead to potential applications in quantum computing [61,62].

The central study of DQPTs relies on the concept of
Loschmidt amplitude (LA), which measures the overlap of the
time-evolving system onto its initial state, i.e.,

G0(t ) = 〈ψ0(gi )|e−iH (g f )t |ψ0(gi )〉, (1)

where |ψ0(gi )〉 is the ground state of the Hamiltonian
H (gi ) and H (g f ) is the quenched Hamiltonian. DQPTs
are defined by the zeros in the Loschmidt echo (LE)
L0(t ) = |G0(t )|2 or the nonanalyticities in its rate function
λ0(t ) = − limN→∞ lnL0(t )/N , where N is the system size
[6]. They are analogous to the zeros in the partition function
and the nonanalyticities in the free energy in equilibrium
phase transitions, and therefore λ0(t ) is also called the dy-
namical free energy. Previous studies show that in most cases,
DQPTs occur when the system is quenched across its equi-
librium critical point gc [63,64] though there are exceptions
found in, for examples, Refs. [8,9,49]. The above are in fact
type-II DQPTs. There are also type-I DQPTs describing the

*wingcyu@cityu.edu.hk

order parameter in late time staying finite or vanishing in
different dynamical phases [10,11,65,66]. A recent study has
shown that the two types of DQPTs are actually related in the
long-range transverse field Ising model [10]. In this paper, we
will focus on type-II DQPTs.

In spite of the wealth of literature successfully arguing the
presence of DQPT in different models [63,64], the question
of how the system behaves in the vicinity of DQPT is yet to
be addressed. Various physical quantities have been investi-
gated in attempt to unveil the system’s characteristics around
DQPT. For examples, nonanalytical behaviors are found in
the correlation matrices, and crossings and degeneracy in the
entanglement spectrum are observed at DQPTs [12–16,31].
It is also showed that there exists correspondence between
DQPT and the systems’ equilibrium order parameter in some
models. For instance, the magnetization in the transverse-field
Ising model and its variations was found both analytically
and experimentally switching between positive and negative
regime at the critical times [2,6,17–19], providing a more
physical linkage of DQPTs to physical observables. Dynami-
cal topological order parameters are also introduced to study
the topological properties of DQPTs. The Pancharantnam
geometric phase in the momentum space is found to ex-
hibit a discontinuous jump at critical times [1,4,20,21,37]
in noninteracting models. Another dynamical topological or-
der parameter defined by the time-ordered two-point Green’s
function, which is applicable for interacting systems, is also
found to have discontinuity across the DQPT [22].

In this work, we attempt to provide insights to the above-
mentioned open question. Motivated by the observation that
the dynamics of a quantum system shall depend on the whole
spectrum of the Hamiltonian, we extend the conventional
definition of the LA in Eq. (1), which just takes into account
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the overlaps onto the ground state, to the overlaps onto the
excited states. We name the extension the Loschmidt ampli-
tude spectrum (LAS) of a system. The LAS does not require
empirical knowledge of the order parameters, rather one only
needs to retrieve the spectrum of the system concerned, which
is already computed upon computing the dynamical time-
evolution of the initial state. The LAS is a conceptually lighter
alternative to access the dynamic profile of a general con-
densed matter system.

To show how one uses the LAS in practice, we applied
the LAS to investigate the dynamics in both integrable and
nonintegrable models. We found that the integrable one-
dimensional (1D) transverse-field Ising model experiences
temporary population migration in the momentum space
around DQPTs. Namely the quench triggers excitation con-
centrated on the middle range of the allowed k values in
the momentum space, whereas at DQPT the excitation shifts
downward to the lower-half range. We also examined the LAS
for various quench parameters, and confirmed that nonanalyt-
icities persist in LAS for typical quenches such as quenches
within one phase. On the other hand, the nonintegrable 1D
axial next-nearest-neighbor Ising (ANNNI) model exhibits
substantial drop of magnetization when quenched from para-
magnetic (PM) phase to ferromagnetic (FM) phase, and we
found that the drop can be attributed to the simultaneous finite
overlap between the time-evolved state and the eigenstate
pairs with negative spin magnetization of the prequenched
Hamiltonian.

The paper is organized as the following: The definition of
LAS is presented in Sec. II. The results for 1D transverse-field
Ising model, including the analytical expression of LAS in
momentum space and the numerical calculations of different
quenches, are given in Sec. III. In Sec. IV, the LAS of the
1D ANNNI model and its relation to the magnetization of
the system are investigated. Finally, a conclusion is given in
Sec. V.

II. LAS

Consider a system described by the Hamiltonian H (g) such
that H (g)|ψn(g)〉 = En(g)|ψn(g)〉, where |ψn(g)〉 is the nth
eigenstate of the Hamiltonian with the corresponding eigenen-
ergy En(g). Unless otherwise specified, we prepare the initial
state of the system to be the ground state of H (gi ), and quench
the system with H (g f ) at time t = 0. The LAS is defined by

Gn(t ) = 〈ψn(gi )|e−iH (g f )t |ψ0(gi )〉, (2)

and the respective rate function spectrum

λn(t ) = lim
N→∞

− 1

N
log[Ln(t )], (3)

where Ln(t ) = |Gn(t )|2 is the LE spectrum. Throughout the
whole paper, we use Loschmidt amplitude/echo/rate spec-
trum (LAS/LES/LRS) interchangeably.

For a general n, the LAS measures the overlap between
the time-evolving state and the nth eigenstate of the initial
Hamiltonian. It quantifies how much the quenched state is
scattered into an excited state of the initial Hamiltonian.
A similar quantity that measures the overlap between the
time-evolving state with the final Hamiltonian’s eigenstates

has also been investigated to understand the quench dynamics
in some analytically solvable topological models [67]. Here
we focus on the overlap with the eigenstates of the initial
Hamiltonian, which can be a many-body wave function in
general, as a natural extension to the original definition of
LA. The quantity in Eq. (2) represents the first column of
the evolution operator matrix e−iH (g f )t expanded in the eigen-
states of H (gi ) while the conventional definition of LA in
Eq. (1) only captures the first diagonal element of the matrix.
Therefore, we expect more information about the dynamics
of the system to be encoded in the LAS. By analyzing the
LAS and the corresponding rate function spectrum, insights
into the characteristics of the quantum state around the DQPT
can be drawn. A similar quantity has also been studied in
the context of fidelity spectrum in equilibrium QPTs [68] and
many-body localizations [69]. Here we extend the study to a
time-dependent case and demonstrate the idea using the 1D
transverse-field Ising model and the ANNNI model.

III. 1D TRANSVERSE-FIELD ISING MODEL

The Hamiltonian of the transverse-field Ising model is
given by

H (g) = −J
N∑

j=1

(
σ x

j σ
x
j+1 + gσ z

j

)
, (4)

where J is the Ising coupling, g represents the external mag-
netic field strength, and σα

j (α = x, y, z) are the Pauli matrices
of site j. The periodic boundary condition is adopted. Below
we set J = 1 for convenience.

The model is first transformed by the Jordan-Wigner trans-
formation σ±

j = exp [ ± iπ
∑ j−1

n=1 c†
ncn]c j and σ z

j = 1 − 2c†
j c j

to a spinless fermionic model, followed by a Fourier trans-
formation c j = (1/

√
N )

∑
k e−ik jck , where the Hamiltonian

becomes

H (g) =
∑

k

[(2g − 2 cos k)c†
kck

+ i sin k(c†
kc†

−k − c−kck )] − Ng, (5)

with ck (c†
k ) being a set of fermionic annihilation (creation) op-

erators with k = ±π/N,±3π/N, . . . ,±(N − 1)π/N for even
N in the even-parity subspace [70].

The quadratic Hamiltonian in Eq. (5) can be diagonal-
ized by performing Bogoliubov transformation, namely, ck =
uk (g)βk + ivk (g)β†

−k , where uk (g) = cos (θk (g)) and vk (g) =
sin (θk (g)). The θk (g) ∈ [0, π/2] is called the Bogoliubov
angle satisfying the condition tan(2θk ) = (sin k)/(cos k − g).
The resulting Hamiltonian is

H (g) =
∑
k>0

εk (g)(β†
k βk − β−kβ

†
−k ), (6)

with εk (g) = 2
√

(cos k − g)2 + sin2 k. The ground state is the
vacuum state |0(g)〉 such that βk|0(g)〉 = 0 for all k. The
excited states can be generated by creating pairs of opposite-
momentum quasiparticles in different k modes on the vacuum
state. A quantum phase transition takes place when the mag-
netic field changes across the critical point gc = 1. The system

174307-2



LOSCHMIDT AMPLITUDE SPECTRUM IN DYNAMICAL … PHYSICAL REVIEW B 105, 174307 (2022)

transforms from a FM phase to a PM phase when g increases
from below gc and vice versa.

The LA of the system for a sudden quench gi → g f has
an analytical expression derived by Silva [71]: Let ηk and γk

be the eigenmodes of Hamiltonian H (gi ) and H (g f ), respec-
tively; one can easily write the transformation in-between as
ηk = Ukγk − iVkγ

†
−k with

Uk = uk (gi )uk (g f ) + vk (gi )vk (g f )

Vk = uk (gi )vk (g f ) − vk (gi )uk (g f ).
(7)

Thus the LA is given by

G0(t ) = e−iE0 (g f )t

N 2
〈0(g f )|[e−i

∑
k>0

Vk
Uk

γ−kγk

× e
i
∑
k>0

Vk
Uk

e−i2εk (g f )t
γ

†
k γ

†
−k

]|0(g f )〉, (8)

where E0(g f ) is the ground-state energy of H (g f ) and N is
the normalization factor.

The ground-state rate function can be calculated as

λ0(t ) ∼ − 1

N

∑
k>0

ln
[
1 + T 4

k + 2T 2
k cos(2εk (g f )t )

]
, (9)

where Tk = Vk/Uk = tan(φk ) with φk = θk (gi ) − θk (g f ). Note
that we have ignored an irrelevant constant term. Using
Eq. (2), we obtain the LAS

Gn(t ) = e−iEn (g f )t

N 2

∏
k′

[2Tk′ sin(εk′ (g f )t )e−iεk′ (g f )t ]

×
∏

k 
=k′>0

(
1 + T 2

k e−i2εk (g f )t), (10)

where the k′ product includes all occupied k states; En(g f )
is the energy of the corresponding excited state. With the
expression above, we can compute the LRS easily,

λn(t ) ∼ − 1

N

{∑
k′

ln
[
2T 2

k′ (1 − cos(2εk′ (g f )t ))
]

+
∑

k 
=k′>0

ln
[
1 + T 4

k + 2T 2
k cos(2εk (g f )t )

]}
. (11)

Comparing Eq. (11) with Eq. (9), they are similar to each
other but the former contains an extra term

∑
k′ k′ (t ), where

k′ (t ) = − 1

N
ln

[
2T 2

k′ (1 − cos(2εk′ (g f )t ))
]
. (12)

Further to the LAS, one can generalize the concept to
derive an analytical expression of the overlap between the
time-evolving mth eigenstate and the nth eigenstate, namely,

Gnm(t ) = 〈ψn(gi )|e−iH (g f )t |ψm(gi )〉. (13)

If resolved in Bogoliubov eigenbasis one obtains two distinct
forms. The first is the diagonal terms where m = n,

Gnn(t ) = e−iE0 (g f )t

N 2

∏
k′

(
T 2

k′ + e−i2εk′ (g f )t
)

×
∏

k 
=k′>0

(
1 + T 2

k e−i2εk (g f )t
)
, (14)

where it gives the exact same LE and in turn LR as that for the
ground state. The other form corresponds to the case when
m 
= n and is given by

Gnm(t ) = A(t )
∏

k′
[iVk′ (Uk′ + Vk′Tk′ )(1 − e−i2εk′ (g f )t )]

×
∏

k 
=k′>0

(
1 + T 2

k e−i2εk (g f )t), (15)

where A(t ) = e−iE0 (g f )t

N 2 is the insignificant prefactor. One can
show that the corresponding LE reduces to the previously
solved LES and thus the same rate function as Eq. (11). In
other words, we expect that the LAS will be the same if we
take the excited state as the initial state. In this paper, we
would focus on the analysis of m = 0 case where the initial
state is taken as the ground state.

The term k′ becomes nonanalytic when the argument of
the logarithmic function is zero. The associated “critical time”
is given by

tp(k′, g f ) = pπ

εk′ (g f )
p = 1, 2, 3, . . . , (16)

which depends on the values of k′ and g f . For a general
excited state, since k′s are independent, the critical times in the
LRS will be determined by all the k′ modes in the excited state
and their associated critical times given by Eq. (16). In fact,
in the complex time plane, one easily realizes that the zeros
of Gn(z), where z ∈ C, are all lying on the imaginary time
axis with a magnitude equal to tp(k′, g f ). This implies that
the nonanalyticities of LRs for excited states are insensitive to
system size and they persist in large systems, unlike the case
for ground-state rate function where it was shown in Ref. [6]
that the Fisher zeros cross the imaginary time axis at ther-
modynamic limit. However, one shall not simply analogize
the LAS defined in Eq. (2) for n 
= 0 to partition function in
statistical mechanics.

Figure 1 shows the plot of the critical time in Eq. (16)
versus k′, which also represents the case of single mode exci-
tation. As expected, critical time tp decreases as k′ increases.
Note that an obvious horizontal “line” crosses around the
middle of the graph. This refers to the discontinuity of λn(t )
against φk′ , where the Bogoliubov angle difference φk′ jumps
from strictly positive to strictly negative as k′ increases, mak-
ing the log function drop abruptly in magnitude and causing
the large gap.

The k′ (t ) alone has a neat property when we concern
large systems. A simple analysis shows the vanishing of the
term, namely, |k′ (t )| � ln(N )/N for k′ close to 0, π and thus
|k′ (t )| → 0 in the thermodynamic limit. It also holds true
for a general allowed value of k′ as suggested from finite
size analysis of our numerical results. Consequentially, the
rate function for excited states with only a few occupied

174307-3



CHEUK YIU WONG AND WING CHI YU PHYSICAL REVIEW B 105, 174307 (2022)

FIG. 1. Color map of k′ (t ) in the LRS from an N = 1000 sys-
tem quenched from g = 0.1 to 2. The nonanalytic peaks in k′ (t )
become more evenly separated and denser in time as k′ increases.

momentum states would behave similarly to the ground-state
quantity during quenching, i.e., a large main peak equivalent
to the ground-state nonanalyticity, except some small spikes
can be seen along at times in Eq. (16) given by k′ (t ).

On the other hand, the growth of the rate functions for
higher excited states starts to behave differently and be-
comes more dramatic. The vanishing of k′ (t ) does not
apply to states with multimode excitation [72]. Figure 2
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FIG. 2. (Top) Variation of LRS for excited states of the
form

∏k′
max

k′=k1
η†

k′η
†
−k′ |0(gi )〉, where km = (2m − 1)π/N with m =

1, 2, . . . , N/2. (Bottom) Same quantities as the top panel with four
specific values of k′

max. The N = 300 system is quenched from g =
0.1 to 2. The dashed black lines indicate the first critical time in the
ground-state rate function.

FIG. 3. The rate functions for the excited states of the form∏kN/4+m+1

k′=kN/4−m
η†

k′η
†
−k′ |0(gi )〉 with m = 0, 1, 2, . . . , N/4 − 1 (top) and∏kN/2

k′=kN/2−m′ η†
k′η

†
−k′ |0(gi )〉 with m′ = 0, 1, 2, . . . , N/2 − 1 (bottom) of

an N = 300 system quenched from g = 0.1 to 2.0. The black curve
represents the ground-state Loschmidt rate with the dashed line indi-
cating the first critical time, and the black arrow shows the direction
of increasing m.

illustrates the trend of the rate functions for |ψn(gi )〉 =∏k′
max

k′=π/N η
†
k′η

†
−k′ |0(gi )〉, where the product is taken over all

occupied k modes for a quench across the equilibrium crit-
ical point. Comparing the rate functions at the ground-state
critical time, we can see the turning from nonanalytical peaks
to smooth valleys and then rising again to sharper peaks as
we go up along the black dashed line. The valleys in rate
functions correspond to the high probability of the overlap of
the time-evolving state to the respective excited states. This
suggests that the system is driven to a combination of states
with mode excitation concentrating on the lower-half range at
the DQPT when the system is quenched across the equilibrium
critical point.

A further diagnosis of the spectrum is presented in Fig. 3,
where we explore higher excited states with excitations in
the middle range of the k spectrum and excitations starting
from the highest k, respectively. Overall the quenched system
would barely stay in highly excited states and the excitations
occur mainly in the middle or low k modes during the dy-
namical evolution, as seen from Fig. 2 and Fig. 3. Notice,
however, that we only show the dynamic responses around the
first critical time as long-term dynamics are out of the scope
of this paper.

Integrating the details shown previously, we suggest a
physical description of the system’s dynamics around the
first critical time along with the aid of a schematic diagram
in Fig. 4 as follows: The key concept is to realize that the
diagonalized Hamiltonian in Eq. (6) represents a system of N
two-level harmonic oscillators with independent momentum.
The initial vacuum state refers to all the quasiparticles occu-
pying the lower level. Once the system is being quenched,
quasiparticles with momentum around the middle range of
k spectrum (i.e., k ∼ π/2) are excited to the upper level.
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FIG. 4. Schematic diagram of the DQPTs of 1D TFIM in the
diagonalized space. The dynamics of quench around DQPT can be
represented as a series of excitations among the two-level systems.
The green and red dots correspond to the relaxed and excited quasi-
particles, respectively. The faded color dots represent a superposition
of relaxed and excited quasiparticles at low k values beyond the
critical time. Note that the quantum state of the system around the
critical time is not only the state shown in the image but also a
superposition of similar states. Subsequently the system would relax
starting from the high k modes.

At DQPT, they drop to lower levels and are followed by
excitation of k modes at lower-half k values. At later times,
all the excited modes will gradually relax and return back to
lower level. This occupation shift is when DQPTs occur. This
phenomenon also occurs in DQPTs where the quench does not
cross any underlying transition points in the XY model [23].
A brief discussion of the LAS of the XY model is given in the
Supplemental Material [72].

The general quench dynamics for TFIM are also studied.
Figure 5 shows the rate functions for |ψn(gi )〉 being the

(1) ground state |0(gi )〉;
(2) one-mode excited-state η

†
k′η

†
−k′ |0(gi )〉;

(3) lower-half excited-state
∏kN/4

k′=k1
η

†
k′η

†
−k′ |0(gi )〉;

(4) fully excited-state
∏kN/2

k′=k1
η

†
k′η

†
−k′ |0(gi )〉,

where km = (2m − 1)π/N for various quench parameters.
There are obvious distinctions in the four cases. Figures 5(a)

and 5(b) show a divergence in the critical time (as indicated by
the bright lines) at g = 1, the equilibrium critical point sepa-
rating the FM and PM phases. For the one-mode excited-state
LR in Fig. 5(b), critical lines appear in places where they are
absent in the ground-state rate function. In addition, forward
and backward quenches are fairly symmetric in cases (a) and
(b), whereas for higher excited states in cases (c) and (d),
this symmetry is broken, and the behavior of LRS becomes
more dramatic that the critical boundary starts to blur and
kinks pass through the boundary. For the higher excited states,
nonanalyticities are observed in the LRS for quenches within
the same phase whereas the ground-state rate function goes
smoothly as expected. The higher the excited state the denser
the nonanalyticites in the LRS it possesses. It is still unclear
whether these nonanalyticities that occurred in LAS satisfy
the conditions to be a valid phase transition and it would be
an interesting topic for further studies.

IV. 1D ANNNI MODEL

A variation of the quantum Ising model, also known as
the ANNNI model, has also been shown to have exhibited
DQPTs, and the next-nearest-neighbor interaction will further
alter the characteristics of DQPT [38–41]. Here we provide a
different point of view from the LAS to explain the dynami-
cally critical phenomenon of the system. The Hamiltonian of
ANNNI model is given by

H (�, g) = −J
N∑

j=1

(
σ x

j σ
x
j+1 + �σ x

j σ
x
j+2 + gσ z

j

)
, (17)

with � controlling the next-nearest-neighbor interaction
strength. When � = 0, the model is reduced to the quan-
tum Ising model in Eq. (4), where it can be diagonalized
and quasiparticle picture interpretation applies. There are
attempts to approximate transformation to retain the quasipar-
ticle picture using mean-field Jordan-Wigner transformation
[40]. Nonetheless, this work would present the numeri-
cal findings. The equilibrium ground-state phase diagram

FIG. 5. LRS with various final parameters, namely, gi = 0.1 → gf from 0.2 to 2 for forward quench (top) and gi = 2 → gf from 1.9 to 0.1
for backward quench (bottom) for (a) ground state, (b) single-mode excited state, (c) lower-half excited state, and (d) fully occupied excited
state. Colors represent the intensity of λn(t ).
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FIG. 6. Same colorplots as Fig. 5 for the ANNNI model. The first two rows represents quench dynamics for positive � with forward
quench on the top and backward quench on the bottom, while the last two rows show the same setup for negative �. Columns starting from
the left stand for ground-state, first excited-state, middle energy-state, and highest energy-state LRs, respectively.

of the model consists of four phases—the PM phase, the
FM phase, an antiphase (AP) phase with spin configuration
of the form | ↑↑↓↓↑↑ · · · 〉, and an intermediate floating
phase between the PM and the AP phases [38] within the
concerned parameter space. In the following, we consider
quenching the system between the PM and the FM phase,
where the phase boundary for � < 0 is given by the equa-
tion 1 + 2� = gc + g2

c�/[2(1 + �)] [38]. We show that the
LAS can give insights into the magnetic property of the
system.

We first analyze the general quench dynamics for the
ANNNI model as we did in the previous section. The same
colorplots as for TFIM are displayed in Fig. 6 where the
LRS for the ground state, the first excited state, the excited
state of energy right in the middle of the spectrum, and the
highest excited state are considered for � = 0.15 [(a) and (b)]
and � = −0.15 [(c) and (d)], respectively. From the plots we
identify similarities for the two models originating from the
same universality class. Note that for a small system size,
the excited-state rate functions could behave very differently
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FIG. 7. LES of the quenched N = 10 ANNNI model from PM
phase to FM phase with � = 0.15 (top), � = 0 (middle), and � =
−0.15 (bottom). The black curves correspond to the ground-state
LE. The numbers in parentheses refer to the magnetization of each
involved excited state. Vertical dashed lines indicate the first critical
time when DQPT happens.

among each other compared with those for a larger system
size in the case of the Ising model. Nevertheless, the general
features can still be seen. The streamlined green peaks for the
low-energy states in the first two columns in Fig. 6 approach
the corresponding critical points gc(�) asymptotically for
both �s. As for the higher excited states, the nonanalytical
peaks cross the underlying equilibrium phase boundary and
the overall magnitudes are higher than those for the lower
energy states (last two columns in Fig. 6). The effect of the
NNN interaction can also be seen from the plots. Namely, for
the LR of the low-energy states, the kinks for negative � are
less prominent than that of positive � [Figs. 6(a) and 6(b)],
and the length between two consecutive kinks are slightly
longer for negative � [Figs. 6(c) and 6(d))] for the reason we
will present below. On the other hand, the dynamics start to
become ambiguous for higher energy states as seen in the two
rightmost columns in Fig. 6.

In the following we explore the physics during DQPT in
the ANNNI model by means of LAS. Figure 7 shows LAS in
a 10-site system with three different NNN interaction strength

0
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0(t
)
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 = -0.15
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Time

0
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1
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z(t
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0.2
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0(t
)

FIG. 8. Quench dynamics and the corresponding time-varying
magnetization of the ANNNI model with 10-spin chain. The sys-
tem is quenched from gi = 1.3 to gf = 0.2 with the corresponding
critical times indicated by colored dashed lines. The inset shows the
LRs for � = 0 and −0.15 for N = 20.

�s: −0.15, 0, and 0.15. The � = 0 case refers to the TFIM
and is plotted here for comparison. Only the eigenstates with a
relatively high contribution in the LAS and their correspond-
ing magnetizations are shown in the figure. Notice that all
these highly contributed eigenstates are nondegenerate. From
the figure we observe a general DQPT process in the model
as follows: For all considered values of �, the system is first
excited to low-lying excited states followed by an increase of
overlap to the higher excited states with lower magnetization
in the vicinity of DQPT, and then it relaxes to lower energy
states, restoring the high magnetization.

The effect of turning on the NNN interaction causes the
system to lean on the eigenstates of weak magnetic character
for positive �, whereas it hinders the drop of magnetization
and even prevents relaxation in the case where � is negative,
aside from delaying DQPTs. This is the direct consequence
of the NNN interaction being negative. The negativity of
the interaction introduces a “frustration” on the spins, where
the spins “hesitate” whether to align parallel to their nearest
spins or antiparallel to their next-nearest neighbors to best
minimize energy. This “hesitation” multiplies during dynam-
ical transition where a collective spin flip takes place so that
spin flipping for negative � is reduced. The immediate effect
would be the lesser number of effective states contributing to
DQPT than the non-negative � cases and a later critical time
as seen from Fig. 7.

LAS also reveals some surprising features in the mag-
netization dynamics. Figure 8 shows the ground-state rate
function and the corresponding time-evolving magnetization
as given by

〈Mz(t )〉 = 1

N

N∑
j=1

〈
�

f
i (t )

∣∣σ z
j

∣∣� f
i (t )

〉
, (18)
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FIG. 9. Explicit values of the term G∗
m(t )Gn(t )〈� i

m(0)|σ z
j |� i

n(0)〉 for the three �s in three fixed times: (a) Before DQPT, (b) at DQPT, and
(c) after DQPT. The quench is done on an N = 10 system with quench pair (gi, gf ) = (1.3, 0.2). The red color represents positive values and
blue color represents negative values. Diagonal terms (m = n) are highlighted by the diagonal black lines.

where |� f
i (t )〉 = e−iH (�,g f )t |ψ0(�, gi )〉.The peaks in λ0(t )

become more prominent as the system size increases (see inset
of Fig. 8) and are truly nonanalytic for all �s showcased
in Ref. [38]. Note that each minimum of 〈Mz(t )〉 does not
align strictly with the respective critical times, but qualitative
importance can be well illustrated. As � increases from a
negative value to a positive value, the time difference between
the magnetization minimum and the rate function peak re-
duces. For a positive �, the system’s magnetization becomes
negative in the vicinity of DQPT, whereas it stays positive for
a negative �.

To understand these, we can express 〈Mz(t )〉 in Eq. (18) in
terms of the LAS as

〈Mz(t )〉 = 1

N

N∑
j=1

∑
m,n

G∗
m(t )Gn(t )

〈
� i

m(0)
∣∣σ z

j

∣∣� i
n(0)

〉
, (19)

where |� i
n(0)〉 = |ψn(�, gi )〉. In a sense, the magnetization

is weighted by the spectral behavior of the system. We plot-
ted the individual terms in the summation of Eq. (19) for
different �s at different times in Fig. 9. Only real values
are displayed since imaginary parts sum to zero. We observe
that the off-diagonal terms of Mz(t ) are finite and symmet-
ric along the diagonal as (G∗

m(t )Gn(t ))† = G∗
n (t )Gm(t ), and

they have great contribution to the time-evolving magne-
tization especially at critical time. Obviously σ z

j does not
commute with the Hamiltonian, so σ z

j is not necessarily
diagonal in the initial eigenstate basis. However, since the
matrix elements of σ z

j are fixed, it is the LAS Gn(t ) guar-
anteeing some particular dynamical structure of the system
during dynamical phase transition. Specifically, the “active”
off-diagonal terms are the most and most spread out in the
spectrum. At DQPT, the system is the most energetic that
it would stay in various high-energy states and preferably

superposition pairs of eigenstates [|ψm(�, gi )〉, |ψn(�, gi )〉]
in a way to minimize the magnetization in the z direc-
tion. Note that most of the contributions come from the
superposition pairs, and in the midst of the contributions
some pairs give the largest negative values. This is particu-
larly true for positive �, where the number of negative terms
indicated as blue dots is more and possesses the lowest neg-
ative value among the three �s, as shown in the first plot of
Fig. 9(b).

The spectrally weighted magnetization also shows distin-
guishable features away from critical time. Figures 9(a) and
9(c) captures the instants of G∗

m(t )Gn(t )〈� i
m(0)|σ z

j |� i
n(0)〉 be-

fore and after the first DQPT, respectively. In whichever time,
the effective terms concentrate on the lower-energy spectrum
(lower-left corner of the plots), while the nonzero NNN in-
teraction slightly triggers higher excitations. Similar to the
mechanism of DQPT of TFIM, the quench stimulates the
system through the lower spectrum, followed by the strongest
superimposed state such that those pair states contribute, off-
diagonally by calculation, to minimizing magnetization in
our studied quench case. After DQPT, the system relaxes to
low-lying states as presented by the vanishing of off-diagonal
and higher-energy-state terms in Fig. 9(c). Note that the neg-
ative � case retains some more off-diagonal and higher-half
spectrum terms because of the “frustration” explained above.

V. CONCLUSION

In this work, we have introduced the LAS to investigate
the physical nature of DQPTs in many-body systems. As
examples we studied the LAS and the rate functions on a
1D transverse-field Ising model and a 1D ANNNI model.
The former system displays a population redistribution at the
vicinity of DQPTs in the momentum space. In particular, the
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excitations originally concentrated in the middle range of k
values shift to the lower-half range at critical time and relax
to the lower levels after the transition. We demonstrated too
that LAS plays a role in the evolution of the observables in
quenching, for instance, the minimization of transverse mag-
netization in the study of ANNNI model. From that we infer
that at DQPT the system, whether or not frustrated, tends to
stay in excited-state pairs in which their combined magnetic
property achieves a vanishing or even flipped magnetization.

LAS is a conceptually simple but fundamental analy-
sis method where we directly diagnose the dynamics of
the time-evolving systems without the knowledge of the

order parameters. This encourages its application to other
many-body systems. It is of particular interest to see how
LAS emerges in describing physics behind DQPTs for other
quantum models, for example, the potential to establish link
to order parameters.
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