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Interband magnon drag in ferrimagnetic insulators
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We propose a new drag phenomenon, an interband magnon drag, and report on interaction effects and
multiband effects in magnon transport of ferrimagnetic insulators. We study a spin-Seebeck coefficient Sm, a
magnon conductivity σm, and a magnon thermal conductivity κm of interacting magnons for a minimal model
of ferrimagnetic insulators using a 1/S expansion of the Holstein-Primakoff method, the linear-response theory,
and a method of Green’s functions. We show that the interband magnon drag enhances σm and reduces κm,
whereas its total effects on Sm are small. This drag results from the interband momentum transfer induced by the
magnon-magnon interactions. We also show that the higher-energy band magnons contribute to Sm, σm, and κm

even for temperatures smaller than the energy difference between the two bands.
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I. INTRODUCTION

Magnon transport is the key to understanding spintron-
ics and spin-caloritronics phenomena of magnetic insulators
[1–3]. For example, a magnon spin current is vital for the spin
Seebeck effect [2,4–7]. Magnon transport is important also for
other relevant phenomena [8–13].

There are two key issues about magnon transport in ferri-
magnetic insulators. One is about multiband effects. Yttrium
iron garnet (YIG) is a ferrimagnetic insulator used in various
spintronics or spin-caloritronics phenomena [1–3,8–12]. Its
magnons have been often approximated as those of a fer-
romagnet. However, a study using its realistic model [14]
showed that not only the lowest-energy band magnons, which
could be approximated as those of a ferromagnet, but also
the second-lowest-energy band magnons should be considered
except for sufficiently low temperatures. Since the experi-
ments using YIG are performed typically at room temperature
[1–3,8,9,11,12], it is necessary to clarify the effects of the
higher-energy band magnons on the magnon transport. The
other is about interaction effects. The magnon-magnon in-
teractions are usually neglected. However, their effects may
be drastic in a ferrimagnet because they can induce the in-
terband momentum transfer, which is expected to cause an
interband magnon drag by analogy with various drag phe-
nomena [15–40]. Nevertheless, it remains unclear how the
magnon-magnon interactions affect the magnon transport.

In this paper, we provide the first step towards resolving
the above issues and propose a new drag phenomenon, the
interband magnon drag. We derive three transport coefficients
of interacting magnons for a two-sublattice ferrimagnet and
numerically evaluate their temperature dependences. We show
that the interband magnon drag enhances a magnon conduc-
tivity and reduces a magnon thermal conductivity, whereas
its total effects on a spin-Seebeck coefficient are small. We
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also show that the higher-energy band magnons contribute to
these transport coefficients even for temperatures lower than
the energy splitting of the two bands.

II. MODEL

Our ferrimagnetic insulator is described by

H = 2J
∑
〈i, j〉

Si · S j − h
N/2∑
i=1

Sz
i − h

N/2∑
j=1

Sz
j, (1)

where the first term is the Heisenberg exchange interaction be-
tween nearest-neighbor spins, and the others are the Zeeman
energy of a weak magnetic field (|h| � J). (The ground-state
magnetization is aligned parallel to the magnetic field.) We
have disregarded the dipolar interaction and the magnetic
anisotropy, which are usually much smaller than J [14,41].
For concreteness, we consider a two-sublattice ferrimagnet on
the body-centered cubic lattice (Fig. 1); i’s and j’s in Eq. (1)
are site indices of the A and B sublattice, respectively. There
are N/2 sites per sublattice. Our model can be regarded as
a minimal model of ferrimagnetic insulators because a fer-
rimagnetic state, the spin alignments of which are given by
Si = t (0 0 SA) for all i’s and S j = t (0 0 − SB) for all j’s,
is stabilized for J > 0 with the weak magnetic field. We set
h̄ = 1, kB = 1, and a = 1, where a is the lattice constant.

To describe magnons of our ferrimagnetic insulator, we
rewrite Eq. (1) by using the Holstein-Primakoff method [42].
By applying the Holstein-Primakoff transformation [43–45]
to Eq. (1) and using a 1/S expansion [43,44,46] and the
Fourier transformation of magnon operators, we can write
Eq. (1) in the form

H = HKE + Hint. (2)

Here HKE represents the kinetic energy of magnons,

HKE =
∑

q

(
a†

q bq
)( εAA εAB(q)

εAB(q) εBB

)(
aq

b†
q

)
, (3)
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FIG. 1. Our ferrimagnetic insulator. The up or down arrows rep-
resent the spins on the A or B sublattice, respectively. The x, y, and z
axes are also shown.

where εAA = 2J0SB + h, εAB(q) = 2
√

SASBJq, εBB = 2J0SA −
h, and Jq = 8J cos qx

2 cos qy

2 cos qz

2 ; Hint represents the leading
terms of magnon-magnon interactions,

Hint = − 1

N

∑
q1,q2,q2,q4

δq1+q2,q3+q4

⎛
⎝2Jq1−q3

a†
q1

aq3
b†

q4
bq2

+
√

SA

SB
Jq1

aq1
b†

q2
bq3

bq4
+
√

SB

SA
Jq1

bq1
a†

q2
aq3

aq4

⎞
⎠ + H.c.

(4)

We can also express HKE as a two-band Hamiltonian by using
the Bogoliubov transformation [43–45]:

HKE =
∑

q

[εα (q)α†
qαq + εβ (q)βqβ

†
q ], (5)

where εα (q) = h + J0(SB − SA) + �εq, εβ (q) = −h +
J0(SA − SB) + �εq, and �εq =

√
J2

0 (SA + SB)2 − 4SASBJ2
q .

For SA > SB, we have εα (q) < εβ (q). Note that the
Bogoliubov transformation is given by aq = (Uq)Aααq +
(Uq)Aββ†

q and b†
q = (Uq)Bααq + (Uq)Bββ†

q , where (Uq)Aα =
(Uq)Bβ = cosh θq, (Uq)Aβ = (Uq)Bα = − sinh θq, and these
hyperbolic functions satisfy cosh 2θq = [J0(SA + SB)]/�εq

and sinh 2θq = (2
√

SASBJq)/�εq. Then, by using the
Bogoliubov transformation, we can decompose Hint into
the intraband and the interband components [47]. Because of
these properties, our model is a minimal model to study the
two key issues explained above.

III. DERIVATIONS OF TRANSPORT COEFFICIENTS

We consider three transport coefficients: a spin-Seebeck
coefficient Sm, a magnon conductivity σm, and a magnon
thermal conductivity κm. They are given by Sm = L12, σm =
L11, and κm = L22, where Lμη’s are defined as

jS = L11ES + L12

(
−∇T

T

)
, (6)

jQ = L21ES + L22

(
−∇T

T

)
. (7)

Here jS and jQ are magnon spin and heat, respectively, current
densities, ES is a nonthermal external field, and ∇T is a

temperature gradient. (Note that one of the possible choices
of ES is a magnetic-field gradient [48].) L21 = L12 holds ow-
ing to the Onsager reciprocal theorem. It should be noted
that although κm is generally given by κm = L22 − L21L12

L11
,

our definition κm = L22 is sufficient to describe the thermal
magnon transport at low temperatures at which the magnon
picture is valid because the L22 gives the leading temperature
dependence. Since a magnon chemical potential is zero in
equilibrium, jQ = jE , where jE is a magnon energy current
density. Hereafter we focus on the magnon transport with ES

or (−∇T/T ) applied along the x axis.
We express Lμη’s in terms of the correlation functions

using the linear-response theory [23,49–54]. First, L12 is
given by

L12 = lim
ω→0

�R
12(ω) − �R

12(0)

iω
, (8)

where �R
12(ω) = �12(i
n → ω + iδ) (δ = 0+),

�12(i
n) =
∫ T −1

0
dτei
nτ

1

N

〈
Tτ Jx

S (τ )Jx
E

〉
, (9)

and 
n = 2πT n (n > 0). Here Tτ is the time-ordering oper-
ator [51], and Jx

S and Jx
E are spin and energy, respectively,

current operators. They are obtained from the continuity
equations [55–57] (see Appendix A); the results are

Jx
S = −

∑
q

∑
l,l ′=A,B

vx
ll ′ (q)x†

ql xql ′ , (10)

Jx
E =

∑
q

∑
l,l ′=A,B

ex
ll ′ (q)x†

ql xql ′ , (11)

where vx
ll ′ (q) = (1 − δl,l ′ )

∂εAB (q)
∂qx

, xqA = aq, xqB = b†
q,

ex
BB(q) = −ex

AA(q) = εAB(q) ∂εAB (q)
∂qx

, and ex
AB(q) = ex

BA(q) =
1
2 (εAA − εBB) ∂εAB (q)

∂qx
. In deriving Eqs. (10) and (11), we have

omitted the corrections due to Hint because they may be
negligible [23]. Then we can obtain L11 by replacing Jx

E in
�12(i
n) by Jx

S , and L22 by replacing Jx
S (τ ) in �12(i
n) by

Jx
E (τ ). Thus the derivation of L12 is enough in obtaining Lμν’s.

In addition, since we can derive L12 in a similar way to the
derivations of electron transport coefficients [23,33,50,54,58],
we explain its main points below. (Note that the Bose-Einstein
condensation of magnons is absent in our situation.)

By substituting Eqs. (10) and (11) into Eq. (9) and per-
forming some calculations (for the details see Appendix B),
we obtain

L12 = L0
12 + L′

12. (12)

First, L0
12, the noninteracting L12, is given by (see Appendix B)

L0
12 = 1

πN

∑
q

∑
ν,ν ′=α,β

vx
ν ′ν (q)ex

νν ′ (q)I (I)
νν ′ (q), (13)

where vx
ν ′ν (q) = ∑

l,l ′=A,B vx
ll ′ (q)(Uq)lν ′ (Uq)l ′ν , ex

νν ′ (q) =∑
l,l ′=A,B ex

ll ′ (q)(Uq)lν (Uq)l ′ν ′ , and

I (I)
νν ′ (q) =

∫ ∞

−∞
dz

∂n(z)

∂z
ImGR

ν (q, z)ImGR
ν ′ (q, z). (14)

Here n(z) = (ez/T − 1)−1, GR
α (q, z) = [z − εα (q) + iγ ]−1,

GR
β (q, z) = −[z + εβ (q) + iγ ]−1, and γ is the magnon
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damping. Next, L′
12, the leading correction due to the

first-order perturbation of Hint, is given by (see Appendix B)

L′
12 = 1

π2N2

∑
q,q′

∑
ν1ν2,ν3,ν4

vx
ν1ν2

(q)ex
ν3ν4

(q′)Vν1ν2ν3ν4 (q, q′)

× [
I (I)
ν1ν2

(q)I (II)
ν3ν4

(q′) + I (II)
ν1ν2

(q)I (I)
ν3ν4

(q′)
]
, (15)

where

I (II)
νν ′ (q) =

∫ ∞

−∞
dzn(z)Im

[
GR

ν (q, z)GR
ν ′ (q, z)

]
, (16)

Vν1ν2ν3ν4 (q, q′) = 4Jq−q′
∑

l (Uq)lν1 (Uq)l̄ν2
(Uq′ )l̄ν3

(Uq′ )lν4 , and l̄
is B or A for l = A or B, respectively. Then we obtain

L11 = L0
11 + L′

11, L22 = L0
22 + L′

22, (17)

where L0
11, L′

11, L0
22, and L′

22 are obtained by replacing ex
νν ′ (q)

in Eq. (13) by −vx
νν ′ (q), ex

ν3ν4
(q′) in Eq. (15) by −vx

ν3ν4
(q′),

vx
ν ′ν (q) in Eq. (13) by −ex

ν ′ν (q), and vx
ν1ν2

(q) in Eq. (15) by
−ex

ν1ν2
(q), respectively.

Since we suppose that the magnon lifetime τ = (2γ )−1 is
long enough to regard magnons as quasiparticles, we rewrite
Eqs. (13) and (15) by taking the limit τ → ∞. First, Eq. (13)
reduces to

L0
12 ∼ L0

12α + L0
12β, (18)

where

L0
12ν ∼ 1

N

∑
q

vx
νν (q)ex

νν (q)τ
∂n[εν (q)]

∂εν (q)
. (19)

(The detailed derivation is described in Appendix C.)
This expression is consistent with that obtained in the
Boltzmann theory with the relaxation-time approximation
[59]. Equation (18) shows that L0

12 ≈ L0
12α at sufficiently low

temperatures for SA > SB owing to ∂n[εα (q)]
∂εα (q) � ∂n[εβ (q)]

∂εβ (q) . Simi-
larly, we obtain

L0
11 ∼ L0

11α + L0
11β, L0

22 ∼ L0
22α + L0

22β, (20)

where L0
11ν and L0

22ν are obtained by replacing ex
νν (q) in

Eq. (19) by −vx
νν (q) and by replacing vx

νν (q) by −ex
νν (q),

respectively. Then, as we show in Appendix C, Eq. (15)
reduces to

L′
12 ∼ L′

12-intra + L′
12-inter1 + L′

12-inter2, (21)

where L′
12-intra is the correction due to the intraband

interactions,

L′
12-intra = L′

12-intra-α + L′
12-intra-β, (22)

L′
12-intra-ν = − 2

N2

∑
q,q′

vx
νν (q)ex

νν (q′)τVνννν (q, q′)

× ∂n[εν (q)]

∂εν (q)

∂n[εν (q′)]
∂εν (q′)

, (23)

and L′
12-inter1 and L′

12-inter2 are the corrections due to the inter-
band interactions,

L′
12-inter1 = − 2

N2

∑
q,q′

vx
αα (q)ex

ββ (q′)τVααββ (q, q′)

× ∂n[εα (q)]

∂εα (q)

∂n[εβ (q′)]
∂εβ (q′)

− 2

N2

∑
q,q′

vx
ββ (q)ex

αα (q′)τVββαα (q, q′)

× ∂n[εβ (q)]

∂εβ (q)

∂n[εα (q′)]
∂εα (q′)

, (24)

L′
12-inter2 = L′

12-inter2-α + L′
12-inter2-β

= (L′
Eα + L′

Sα ) + (L′
Eβ + L′

Sβ ), (25)

L′
Eν = 2

N2

∑
q,q′

vx
νν (q)ex

αβ (q′)τVνναβ (q, q′)

× ∂n[εν (q)]

∂εν (q)

n[εα (q′)] − n[−εβ (q′)]
εα (q′) + εβ (q′)

, (26)

L′
Sν = 2

N2

∑
q,q′

vx
αβ (q)ex

νν (q′)τVαβνν (q, q′)

× n[εα (q)] − n[−εβ (q)]

εα (q) + εβ (q)

∂n[εν (q′)]
∂εν (q′)

. (27)

Here the Vν1ν2ν3ν4 (q, q′)’s are given by

Vνννν (q, q′) = Vααββ (q, q′) = Vββαα (q, q′)

= 2Jq−q′ sinh 2θq sinh 2θq′ , (28)

Vνναβ (q, q′) = Vαβνν (q′, q)

= − 2Jq−q′ sinh 2θq cosh 2θq′ . (29)

Equation (24) shows that the interband components of the
magnon-magnon interactions cause the energy-current-drag
correction and the spin-current-drag correction, which are, in
the case for SA > SB, the first and the second term, respec-
tively, of Eq. (24). Furthermore, Eqs. (26) and (27) show
that other interband components cause the energy-current-
drag corrections L′

Eν’s and the spin-current-drag corrections
L′

Sν’s. Since these interband components cause the interband
momentum transfer, L′

12-inter1 and L′
12-inter2 are the corrections

due to the interband magnon drag. The similar corrections are
obtained for L′

11 and L′
22:

L′
11 ∼ L′

11-intra + L′
11-inter1 + L′

11-inter2, (30)

L′
22 ∼ L′

22-intra + L′
22-inter1 + L′

22-inter2, (31)

where L′
11-intra and L′

22-intra are the corrections due to the intra-
band interactions,

L′
11-intra = L′

11-intra-α + L′
11-intra-β, (32)

L′
11-intra-ν = 2

N2

∑
q,q′

vx
νν (q)vx

νν (q′)τVνννν (q, q′)

× ∂n[εν (q)]

∂εν (q)

∂n[εν (q′)]
∂εν (q′)

, (33)

L′
22-intra = L′

22-intra-α + L′
22-intra-β, (34)
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L′
22-intra-ν = 2

N2

∑
q,q′

ex
νν (q)ex

νν (q′)τVνννν (q, q′)

× ∂n[εν (q)]

∂εν (q)

∂n[εν (q′)]
∂εν (q′)

, (35)

and L′
11-inter1, L′

11-inter2, L′
22-inter1, and L′

22-inter2 are the correc-
tions due to the interband interactions,

L′
11-inter1 = 4

N2

∑
q,q′

vx
αα (q)vx

ββ (q′)τVααββ (q, q′)

× ∂n[εα (q)]

∂εα (q)

∂n[εβ (q′)]
∂εβ (q′)

, (36)

L′
11-inter2 = L′

11-inter2-α + L′
11-inter2-β, (37)

L′
11-inter2-ν = − 4

N2

∑
q,q′

vx
νν (q)vx

αβ (q′)τVνναβ (q, q′)

× ∂n[εν (q)]

∂εν (q)

n[εα (q′)] − n[−εβ (q′)]
εα (q′) + εβ (q′)

, (38)

L′
22-inter1 = 4

N2

∑
q,q′

ex
αα (q)ex

ββ (q′)τVααββ (q, q′)

× ∂n[εα (q)]

∂εα (q)

∂n[εβ (q′)]
∂εβ (q′)

, (39)

L′
22-inter2 = L′

22-inter2-α + L′
22-inter2-β, (40)

L′
22-inter2-ν = − 4

N2

∑
q,q′

ex
νν (q)ex

αβ (q′)τVνναβ (q, q′)

× ∂n[εν (q)]

∂εν (q)

n[εα (q′)] − n[−εβ (q′)]
εα (q′) + εβ (q′)

. (41)

As well as L′
12-inter1 and L′

12-inter2, L′
11-inter1, L′

11-inter2, L′
22-inter1,

and L′
22-inter2 are the interband magnon drag corrections.

IV. NUMERICAL RESULTS

We numerically evaluate Sm, σm, and κm. We set J = 1,
h = 0.02J , and (SA, SB) = ( 3

2 , 1). SA : SB = 3 : 2 is consistent
with a ratio of FeT to FeO sites in the unit cell of YIG [41]. The
reason why (SA, SB) = ( 3

2 , 1) is considered is that the tran-
sition temperature derived in a mean-field approximation in
this case with J = 3 meV at h = 0 [i.e., Tc = (16/3)JSA(SB +
1) ∼ 557 K] is close to the Curie temperature of YIG, TC.
To perform the momentum summations numerically, we di-
vide the first Brillouin zone into a Nq-point mesh and set
Nq = 243(= N/2) (for more details, see Appendix D). The
temperature range is chosen to be 0 < T � 10J (∼ 0.6Tc) be-
cause a previous study [60] showed that the magnon theory
in which the magnon-magnon interactions are considered in
the first-order perturbation theory can reproduce the perpen-
dicular spin susceptibility of MnF2 up to about 0.6TN, where
TN is the Néel temperature. For simplicity, we determine τ

by τ−1 = γ0 + γ1T + γ2T 2, where γ0 = 10−2J , γ1 = 10−4,
and γ2 = 10−3. (The results shown below remain qualitatively
unchanged at h = 0.08J and 0.16J , as shown in Appendix E.)

TABLE I. The effects of the drag terms on L12(= Sm), L11(=
σm), and L22(= κm). |L12| is enhanced by L′

12-intra and reduced
by L′

12-inter1 and L′
12-inter2. L11 is enhanced by L′

11-intra, L11-inter1, and
L′

11-inter2. L22 is enhanced by L′
22-intra and reduced by L′

22-inter1 and
L′

22-inter2.

Transport coefficient Intra term Inter1 term Inter2 term

|L12| Enhanced Reduced Reduced
L11 Enhanced Enhanced Enhanced
L22 Enhanced Reduced Reduced

We begin with the temperature dependence of Sm. Fig-
ure 2(a) shows that in the range of 0 < T � 2J L12 ≈ L0

12α

holds, whereas for T � 3J the contribution from L0
12β is non-

negligible. For example, at T = 6J we have L0
12/L0

12α ∼ 0.7.
This result indicates that the higher-energy band magnons
contribute to Sm even for T < [εβ (q) − εα (q)] = 7.96J . This
may be surprising because their contributions are believed
to be negligible at such temperatures. Then, Fig. 2(a) shows
that the magnitude of Sm is enhanced by the intraband cor-
rection L′

12-intra[= L(a)
12 − L0

12], whereas it is reduced by the
interband corrections L′

12-inter2[= L(b)
12 − L(a)

12 ] and L′
12-inter1[=

L0
12 + L′

12 − L(b)
12 ] (Table I). Among these corrections, L′

12-intra
gives the largest contribution. (As we will see below, this
contrasts with the result of L11 or L22, for which the largest
contribution comes from L′

11-inter2 or L′
22-inter2, respectively.)

The reason why the interband magnon drag corrections
L′

12-inter2 and L′
12-inter1 are small is that the energy-current-drag

contributions and spin-current-drag contributions [e.g., L′
Eα

and L′
Sα in Eq. (25)] are opposite in sign and are nearly

canceled out. Figure 2(a) also shows L0
12 + L′

12 ≈ L0
12. These

results suggest that the total effects of the interband magnon
drag on Sm are small.

We turn to σm and κm. Their temperature dependences
are shown in Figs. 2(b) and 2(c). First, we see the β-band
magnons contribute to L11 for T � 4J and to L22 for T � 3J .
This result is similar to that of L12 and indicates that the
multiband effects are significant also for σm and κm. The
largest effects on L22 are due to the property that ex

νν (q)
includes εν (q) [more precisely, ex

αα (q) = vx
αα (q)εα (q) and

ex
ββ (q) = −vx

ββ (q)εβ (q)]. Then, Figs. 2(b) and 2(c) show that
σm is enhanced by L′

11-intra, L′
11-inter2, and L′

11-inter1, and that
κm is enhanced by L′

22-intra and reduced by L′
22-inter2 and

L′
22-inter1 (Table I). [Note that L′

μη-intra = L(a)
μη − L0

μη,
L′

μη-inter2 = L(b)
μη − L(a)

μη , and L′
μη-inter1 = L0

μη + L′
μη − L(b)

μη .]
In contrast to L′

12, the largest contributions to L′
11 and L′

22
come from L′

11-inter2 and L′
22-inter2, respectively. Since L′

11-inter2,
L′

11-inter1, L′
22-inter2, and L′

22-inter1 are the interband magnon
drag corrections, the above results suggest that the interband
magnon drag enhances σm and reduces κm. This implies
that the interband magnon drag could be used to enhance
the spin current and to reduce the energy current. Since
this drag results from the interband momentum transfer
induced by the magnon-magnon interactions, its effects
could be controlled by changing the band splitting energy
considerably via external fields. (Such control is meaningful
if and only if the magnon picture remains valid.) Note
that for ferrimagnetic insulators the effects of the weak
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FIG. 2. The temperature dependences of (a) Sm(= L12), (b) σm(= L11), and (c) κm(= L22) for (SA, SB ) = ( 3
2 , 1) at h = 0.02J . L(a)

μη and
L(b)

μη are defined as L(a)
μη = L0

μη + L′
μη-intra and L(b)

μη = L0
μη + L′

μη-intra + L′
μη-inter2, respectively. Note that L0

μη = L0
μηα + L0

μηβ and L′
μη = L′

μη-intra +
L′

μη-inter1 + L′
μη-inter2. For Sm, the L0

12β is non-negligible for T � 3J and the largest term of the drag terms is L′
12-intra, which enhances |Sm|. For σm,

the L0
11β is non-negligible for T � 4J and the largest term of the drag terms is L′

11-inter2, which enhances σm. For κm, the L0
22β is non-negligible

for T � 3J and the largest term of the drag terms is L′
22-inter2, which reduces κm. The effects of the other drag terms are summarized in Table I.

magnetic field on the band splitting energy are negligible
because this energy for h = 0 is of the order of J . (The actual
analysis about the possibility of controlling the interband
magnon drag is a future problem.)

V. DISCUSSIONS

We discuss the validity of our theory. Since Hint could be
treated as perturbation except near TC, we believe our theory is
appropriate for describing the magnon transport for T < TC.
It may be suitable to treat the magnon-magnon interactions in
the Holstein-Primakoff method because the unphysical pro-
cesses that can appear in a S = 1/2 ferromagnet [61] are
absent in our case. Then the effects of the magnon-phonon
interactions may not change the results qualitatively. First,
since the interaction-induced magnon polaron occurs only at
several values of h [62], its effect can be avoided. Another
effect is to cause the temperature dependence of τ [63,64],
and it could be approximately considered as the temperature-
dependent τ . Although the phonon-drag contributions might
change Sm [21], experimental results [59] suggest that such
contributions are small or negligible.

We make a short comment about the relation between
our theory and the Boltzmann theory. Our theory is based
on a method of Green’s functions, which can describe the
effects of the damping and the vertex corrections appropri-
ately. In principle, these effects can be described also in the
Boltzmann theory if the collision integral is treated appropri-
ately [65]. However, in many analyses using the Boltzmann
theory, the collision integral is evaluated in the relaxation-time
approximation, in which the vertex corrections are completely
omitted. Since our interband magnon drag comes from the
vertex corrections due to the first-order perturbation of the
quartic terms, the similar result might be obtained also in the
Boltzmann theory if the interband components of the collision
integral are treated appropriately.

We remark on the implications of our results. First, our
interband magnon drag is distinct from a magnon drag in
metals. For the latter, magnons drag an electron charge cur-
rent via the second-order perturbation of a sd-type exchange
interaction [25]. Second, the interband magnon drag is pos-
sible in various ferrimagnetic insulators and other magnetic

systems, such as antiferromagnets [47,56,66] and spiral mag-
nets [57,67]. Note that the possible ferrimagnetic insulators
include not only YIG, but also some spinel ferrites, such
as CoFe2O4 and NiFe2O4 [68,69]. Third, our theory can be
extended to phonons and photons. Thus it may be useful for
studying transport phenomena of various interacting bosons.
Fourth, our results will stimulate further studies of YIG. For
example, the reduction in |Sm| due to the multiband effect
could improve the differences between the voltages observed
in the spin-Seebeck effect and obtained in the Boltzmann
theory of the ferromagnet [59] at high temperatures because
the voltage is proportional to Sm.

VI. CONCLUSION

We have studied Sm, σm, and κm of interacting magnons
in the minimal model of ferrimagnetic insulators. We derived
them by using the linear-response theory and treating the
magnon-magnon interactions as perturbation. We showed that
some interband components of the magnon-magnon interac-
tions give the corrections to these transport coefficients. These
corrections are due to the interband magnon drag, which is
distinct from the magnon drag in metals. Then we numerically
calculated the temperature dependences of Sm, σm, and κm

for (SA, SB) = ( 3
2 , 1) and h = 0.02J . We showed that the total

effects of the interband magnon drag on Sm become small,
whereas it enhances σm and reduces κm. The latter result
may suggest that the interband magnon drag could be used
to enhance the spin current and reduce the energy current. For
Sm, the interband corrections become small because they lead
to the energy-current-drag contributions and spin-current-drag
contributions, which are opposite in sign and are nearly can-
celed out. We also showed that the contributions from the
higher-energy band magnons to Sm, σm, and κm are non-
negligible even for temperatures lower than the band splitting.
This result indicates the importance of the multiband effects.
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APPENDIX A: DERIVATIONS OF EQS. (10) AND (11)

We explain the details of the derivations of Jx
S and Jx

E ,
Eqs. (10) and (11). As described in the main text, they are
obtained from the continuity equations. Such a derivation is
explained, for example, in Ref. [55].

We begin with the derivation of Jx
S . (Note that the following

derivation, which is applicable to collinear magnets, can be
extended to noncollinear magnets.) We suppose that the z
component of a spin angular momentum, Sz

m, satisfies

dSz
m

dt
+ ∇ · j (S)

m = 0, (A1)

where j (S)
m is a spin current operator at site m. Using this

equation, we have

d

dt

(∑
m

RmSz
m

)
= −

∑
m

Rm∇ · j (S)
m

=
∑

m

j (S)
m = J (S)

l . (A2)

Here l is A or B when the sum
∑

m takes over sites on the A
or the B sublattice, respectively. In deriving the second equal
in Eq. (A2), we have omitted the surface contributions. Jx

S is
given by the x component of JS , where

JS = J (S)
A + J (S)

B . (A3)

Combining Eq. (A2) with the Heisenberg equation of motion,
we obtain

J (S)
l = i

∑
m

Rm
[
H, Sz

m

]
, (A4)

where H is the Hamiltonian of the system considered. Then,
since we focus on the magnon system described by H =
HKE + Hint, where HKE and Hint are given in the main text,
and treat Hint as perturbation, we replace H in Eq. (A4) by
HKE and Sz

m in Eq. (A4) either by SA − a†
mam for l = A or by

−SB + b†
mbm for l = B; as a result, we obtain

J (S)
A = i

∑
〈i, j〉

∑
m

Rm
[
h0

i j, SA − a†
mam

]
, (A5)

J (S)
B = i

∑
〈i, j〉

∑
m

Rm
[
h0

i j,−SB + b†
mbm

]
, (A6)

where HKE = ∑
〈i, j〉 h0

i j and h0
i j = (2JSB + δi, jh)a†

i ai +
(2JSA − δi, jh)b†

jb j + 2J
√

SASB(a†
i b†

j + aib j ). Note that the
replacement of H by HKE may be suitable because the
corrections due to Hint are next-leading terms; and that
the replacement of Sz

m by SA − a†
mam or by −SB + b†

mbm

corresponds to the Holstein-Primakoff transformation of the
ferrimagnet. After some algebra, we can write Eqs. (A5) and
(A6) as follows:

J (S)
A = −i2J

√
SASB

∑
〈i, j〉

Ri(aib j − a†
i b†

j ), (A7)

J (S)
B = i2J

√
SASB

∑
〈i, j〉

R j (aib j − a†
i b†

j ). (A8)

Combining these equations with Eq. (A3), we have

JS = −i2J
√

SASB

∑
〈i, j〉

(Ri − R j )(aib j − a†
i b†

j ). (A9)

Then, by using the Fourier coefficients of the magnon
operators,

ai =
√

2

N

∑
q

aqeiq·Ri , b†
j =

√
2

N

∑
q

b†
qeiq·R j , (A10)

we can rewrite Eq. (A9) as follows:

JS = −2J
√

SASB

∑
q

∂Jq

∂q
(aqbq + a†

qb†
q)

= −
∑

q

∂εAB(q)

∂q
(x†

qBxqA + x†
qAxqB), (A11)

where Jq = J
∑z

j=1 eiq·(Ri−R j ) = 8J cos qx

2 cos qy

2 cos qz

2 ,
εAB(q) = 2J

√
SASBJq, xqA = aq, and xqB = b†

q. Note that
z is the number of nearest-neighbor sites (z = 8). The x
component of Eq. (A11) gives Eq. (10).

In a similar way, we can obtain the expression of Jx
E . (The

following derivation is similar to that for an antiferromagnet
[56].) First, we suppose that the Hamiltonian at site m, hm,
satisfies

dhm

dt
+ ∇ · j (E )

m = 0, (A12)

where j (E )
m is an energy current operator at site m. Because of

this relation, the energy current operator JE can be determined
from

JE = J (E )
A + J (E )

B , (A13)

where J (E )
l is given by

J (E )
l = i

∑
m,n

Rn[hm, hn], (A14)

the sum
∑

m take over sites on the A or the B sublattice,
and the sum

∑
n take over sites on sublattice l . Then, to

calculate the commutator in Eq. (A14), we consider the con-
tributions only from HKE and neglect the corrections due to
Hint, as in the derivation of J (S)

l . As a result, hm for m ∈ A is
given by

h0
mA = (2SBzJ + h)a†

mam + √
SASB

∑
j

Jm j (ambj + a†
mb†

j ),

(A15)

and that for m ∈ B is given by

h0
mB = (2SAzJ − h)b†

mbm + √
SASB

∑
i

Jim(aibm + a†
i b†

m).

(A16)

Here m ∈ A or B means that m is on the A or B sublattice, re-
spectively, and Ji j = Jji = J for nearest-neighbor sites i and j.
Note that

∑N/2
i=1 h0

iA + ∑N/2
j=1 h0

jB = HKE. In our definition, the
energy current operator includes the conribution from the Zee-
man energy [see Eqs. (A14)–(A16)]. Combining Eqs. (A15)
and (A16) with Eqs. (A13) and (A14), we have

JE = i
∑
m,n

Rn
[
h0

mA, h0
nA

] + i
∑
m,n

Rn
[
h0

mB, h0
nB

]

+ i
∑
m,n

Rn
[
h0

mA, h0
nB

] + i
∑
m,n

Rn
[
h0

mB, h0
nA

]
. (A17)
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Then we can calculate the commutators in Eq. (A17) by
using the commutation relations of the magnon operators
and the identities [AB,C] = A[B,C] + [A,C]B and [A, BC] =
[A, B]C + B[A,C]; the results are[

h0
mA, h0

nA

] = SASB

∑
j

Jm jJn j (a
†
nam − a†

man), (A18)

[
h0

mB, h0
nB

] = SASB

∑
i

JimJin(bmb†
n − bnb†

m), (A19)

[
h0

mA, h0
nB

] = SASB

∑
j

JmnJm j (b jb
†
n − bnb†

j )

+ [2Jz(SA − SB) − 2h]
√

SASBJmn

× (ambn − a†
mb†

n)

+ SASB

∑
i

JmnJni(a
†
i am − a†

mai ), (A20)

[
h0

mB, h0
nA

] = SASB

∑
j

JmnJn j (bmb†
j − b jb

†
m)

+ [−2Jz(SA − SB) + 2h]
√

SASBJnm

× (anbm − a†
nb†

m)

+ SASB

∑
i

JnmJmi(a
†
nai − a†

i an). (A21)

By substituting these equations into Eq. (A17) and performing
some calculations, we obtain

JE = 2i
∑
m,n, j

(Rn − Rm)SASBJn jJjma†
nam

− 2i
∑
m,n,i

(Rn − Rm)SASBJniJimbnb†
m

+ i
∑
m,n

(Rn − Rm)[2Jz(SA − SB) − 2h]
√

SASB

× Jmn(ambn − a†
mb†

n). (A22)

As in the derivation of JS , we can rewrite Eq. (A22) by using
the Fourier coefficients of the magnon operators [Eq. (A10)];
as a result, we have

JE = −
∑

q

2
√

SASBJq2
√

SASB
∂Jq

∂q
(a†

qaq − bqb†
q)

−[ J0(SA − SB) − h]2
√

SASB
∂Jq

∂q
(aqbq + a†

qb†
q).

(A23)

Since εAA = 2J0SB + h, εBB = 2J0SA − h, and εAB(q) =
2
√

SASBJq, we can write Eq. (A23) as follows:

JE = −
∑

q

εAB(q)
∂εAB(q)

∂q
(a†

qaq − bqb†
q)

+
∑

q

1

2
(εAA − εBB)

∂εAB(q)

∂q
(aqbq + a†

qb†
q)

=
∑

q

∑
l,l ′=A,B

ell ′ (q)x†
ql xql ′ , (A24)

where eAA(q) = −eBB(q) = −εAB(q) ∂εAB(q)
∂q and eAB(q) =

eBA(q) = 1
2 (εAA − εBB) ∂εAB (q)

∂q . Equation (A24) for the x com-
ponent is Eq. (11).

APPENDIX B: DERIVATIONS OF EQS. (13) AND (15)

We derive Eqs. (13) and (15). As described in the main
text, their derivations can be done in a similar way to the
derivations of electron transport coefficients [23,50,54,58]:
the transport coefficients can be derived by using a method of
Green’s functions [51]. We first derive L0

12, the noninteracting
L12, and then derive L′

12, the leading correction to L12 due to
the first-order perturbation of Hint.

First, we derive L0
12, Eq. (13). Substituting Eqs. (10) and

(11) into Eq. (9), we have

�12(i
n) = − 1

N

∑
q,q′

∑
l1,l2,l3,l4=A,B

vx
l1l2 (q)ex

l3l4 (q′)

×
∫ T −1

0
dτei
nτ 〈Tτ x†

ql1
(τ )xql2 (τ )x†

q′l3 xq′l4〉

= − 1

N

∑
q,q′

∑
l1,l2,l3,l4=A,B

vx
l1l2 (q)ex

l3l4 (q′)

× G(II)
l1l2l3l4

(q, q′; i
n), (B1)

where 
n = 2πT n with n > 0. (Note that the n and m used
in this section are different from those used in Appendix A.)
Equation (B1) provides a starting point to derive L0

12 and
L′

12. To derive L0
12, we calculate G(II)

l1l2l3l4
(q, q′; i
n) in the ab-

sence of Hint by using Wick’s theorem [51]; the result is

G(II)
l1l2l3l4

(q, q′; i
n) = δq,q′T
∑

m

Gl2l3 (q, i
n + i
m)

× Gl4l1 (q, i
m), (B2)

where Gll ′ (q, i
m) is the magnon Green’s function in the
sublattice basis with 
m = 2πT m and an integer m,

Gll ′ (q, i
m) = −
∫ T −1

0
dτei
mτ 〈Tτ xql (τ )x†

ql ′ 〉. (B3)

Then the magnon operators in the sublattice basis, xql and
x†

ql , are connected with those in the band basis, xqν and x†
qν ,

through the Bogoliubov transformation,

xql =
∑

ν=α,β

(Uq)lνxqν, (B4)

where xqα = αq, xqβ = β†
q , (Uq)Aα = (Uq)Bβ = cosh θq, and

(Uq)Aβ = (Uq)Bα = − sinh θq; as described in the main text,
these hyperbolic functions satisfy cosh 2θq = J0 (SA+SB )

�εq
and

sinh 2θq = 2
√

SASBJq

�εq
. Thus Gll ′ (q, i
m) is related to the

magnon Green’s function in the band basis, Gν (q, i
m):

Gll ′ (q, i
m) =
∑

ν=α,β

(Uq)lν (Uq)l ′νGν (q, i
m), (B5)
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FIG. 3. The contours used for the integrations in (a) G(II)
αα (q, i
n), (b) G(II)

αβ (q, i
n), (c) G(II)
βα (q, i
n), and (d) G(II)

ββ (q, i
n). The horizontal
dashed lines correspond to Imz = −
n.

where

Gα (q, i
m) = 1

i
m − εα (q)
, Gβ (q, i
m) = − 1

i
m + εβ (q)
.

(B6)

Combining Eq. (B5) with Eqs. (B2) and (B1), we have

�12(i
n) = − 1

N

∑
q

∑
ν,ν ′=α,β

vx
ν ′ν (q)ex

νν ′ (q)

×T
∑

m

Gν (q, i
n+m)Gν ′ (q, i
m)

= − 1

N

∑
q

∑
ν,ν ′=α,β

vx
ν ′ν (q)ex

νν ′ (q)G(II)
νν ′ (q, i
n),

(B7)

where

vx
ν ′ν (q) =

∑
l1,l2=A,B

vx
l1l2 (q)(Uq)l1ν ′ (Uq)l2ν, (B8)

ex
νν ′ (q) =

∑
l3,l4=A,B

ex
l3l4 (q)(Uq)l3ν (Uq)l4ν ′ . (B9)

Then we can rewrite G(II)
νν ′ (q, i
n) in Eq. (B7) as follows:

G(II)
νν ′ (q, i
n) =

∫
C

dz

2π i
n(z)Gν (q, i
n + z)Gν ′ (q, z)

+ T [Gν (q, i
n)Gν ′ (q, 0)

+ Gν (q, 0)Gν ′ (q,−i
n)], (B10)

where n(z) is the Bose distribution function, n(z) =
(ez/T − 1)−1, and C is one of the contours shown in
Fig. 3. Using Eqs. (B10) and (B6), we obtain

G(II)
νν ′ (q, i
n) =

∫ ∞

−∞

dz

2π i
n(z)

{
GR

ν (q, z + i
n)
[
GR

ν ′ (q, z) − GA
ν ′ (q, z)

] + [
GR

ν (q, z) − GA
ν (q, z)

]
GA

ν ′ (q, z − i
n)
}
, (B11)

where GR
ν (q, z) is the retarded magnon Green’s function,

GR
α (q, z) = 1

z − εα (q) + iγ
, GR

β (q, z) = − 1

z + εβ (q) + iγ
, (B12)

GA
ν (q, z) is the advanced one, and γ is the magnon damping. By combining Eq. (B11) with Eq. (B7) and performing the analytic

continuation i
n → ω + iδ with δ = 0+, we have

�R
12(ω) = �12(i
n → ω + iδ) = − 1

N

∑
q

∑
ν,ν ′=α,β

vx
ν ′ν (q)ex

νν ′ (q)
∫ ∞

−∞

dz

2π i
n(z)

× {
GR

ν (q, z + ω)
[
GR

ν ′ (q, z) − GA
ν ′ (q, z)

] + [
GR

ν (q, z) − GA
ν (q, z)

]
GA

ν ′ (q, z − ω)
}
. (B13)

By using G(z + ω) = G(z) + ω∂G(z)
∂z + O(ω2) and performing the partial integration, we obtain

L0
12 = lim

ω→0

�R
12(ω) − �R

12(0)

iω

= − 1

4N

∑
q

∑
ν,ν ′=α,β

vx
ν ′ν (q)ex

νν ′ (q)
∫ ∞

−∞

dz

π

∂n(z)

∂z

[
GR

ν (q, z)GR
ν ′ (q, z) − 2GR

ν (q, z)GA
ν ′ (q, z) + GA

ν (q, z)GA
ν ′ (q, z)

]

= 1

N

∑
q

∑
ν,ν ′=α,β

vx
ν ′ν (q)ex

νν ′ (q)
∫ ∞

−∞

dz

π

∂n(z)

∂z
ImGR

ν (q, z)ImGR
ν ′ (q, z). (B14)

In deriving this equation, we have used the symmetry relations vx
ν ′ν (q) = vx

νν ′ (q) and ex
νν ′ (q) = ex

ν ′ν (q). Equation (B14) is
Eq. (13).
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Next, we derive L′
12, Eq. (15). By using Eq. (B1), we can write the correction due to the first-order perturbation of Hint as

follows:

��12(i
n) = + 1

N

∑
q,q′

∑
l1,l2,l3,l4=A,B

vx
l1l2 (q)ex

l3l4 (q′)
∫ T −1

0
dτei
nτ

∫ T −1

0
dτ1〈Tτ x†

ql1
(τ )xql2 (τ )x†

q′l3 xq′l4 Hint(τ1)〉. (B15)

[Note that Hint has been defined in Eq. (4).] By using Wick’s theorem [51], we can calculate 〈Tτ x†
ql1

(τ )xql2 (τ )x†
q′l3 xq′l4 Hint(τ1)〉;

the result is

〈Tτ x†
ql1

(τ )xql2 (τ )x†
q′l3 xq′l4 Hint(τ1)〉 = − 1

N

∑
l5,l6,l7,l8=A,B

Vl5l6l7l8 (q, q′)Gl5l1 (q, τ1 − τ )Gl2l6 (q, τ − τ1)Gl7l3 (q′, τ1)Gl4l8 (q′,−τ1),

(B16)

where Gll ′ (q, τ ) = T
∑

m e−i
mτ Gll ′ (q, i
m),

Vl5l6l7l8 (q, q′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4J0 (l5 = l6 = l, l7 = l8 = l̄ ),
4Jq−q′ (l5 = l8 = l, l6 = l7 = l̄ ),

2Jq′
√

SA
SB

(l5 = l6 = B, l7 = l, l8 = l̄ ),

2Jq

√
SA
SB

(l5 = l, l6 = l̄, l7 = l8 = B),

2Jq′
√

SB
SA

(l5 = l6 = A, l7 = l, l8 = l̄ ),

2Jq

√
SB
SA

(l5 = l, l6 = l̄, l7 = l8 = A),

(B17)

and l̄ = B or A for l = A or B, respectively. Then, by substituting Eq. (B16) into Eq. (B15) and carrying out the integrations, we
obtain

��12(i
n) = − 1

N2

∑
q,q′

∑
l1,l2,...,l8=A,B

vx
l1l2 (q)ex

l3l4 (q′)Vl5l6l7l8 (q, q′)T 2
∑
m,m′

Gl5l1 (q, i
m)Gl2l6 (q, i
n+m)

× Gl7l3 (q′, i
n+m′ )Gl4l8 (q′, i
m′ ). (B18)

Furthermore, we can rewrite this equation by using the Bogoliubov transformation [i.e., Eq. (B4)]; the result is

��12(i
n) = − 1

N2

∑
q,q′

∑
ν1,ν2,ν3,ν4=α,β

vx
ν1ν2

(q)ex
ν3ν4

(q′)Vν1ν2ν3ν4 (q, q′)�G(II)
ν1ν2ν3ν4

(q, q′; i
n), (B19)

where

Vν1ν2ν3ν4 (q, q′) =
∑

l5,l6,l7,l8=A,B

Vl5l6l7l8 (q, q′)(Uq)l5ν1 (Uq)l6ν2 (Uq′ )l7ν3 (Uq′ )l8ν4 , (B20)

�G(II)
ν1ν2ν3ν4

(q, q′; i
n) = T 2
∑
m,m′

Gν1 (q, i
m)Gν2 (q, i
n+m)Gν3 (q′, i
n+m′ )Gν4 (q′, i
m′ ). (B21)

Since vx
ν1ν2

(q) and ex
ν3ν4

(q′) are odd functions in term of qx and q′
x, respectively, and Gν (q, i
m)’s are even functions, the finite

terms of Vν1ν2ν3ν4 (q, q′) in Eq. (B19), i.e., the terms which are finite even after carrying out
∑

q,q′ , come only from VABBA(q, q′) =
VBAAB(q, q′) = 4Jq−q′ [Eq. (B17)]; because of this property, we can replace Eq. (B20) by

Vν1ν2ν3ν4 (q, q′) =
∑

l=A,B

4Jq−q′ (Uq)lν1 (Uq)l̄ν2
(Uq′ )l̄ν3

(Uq′ )lν4 . (B22)

Then, as in G(II)
νν ′ (q, i
n) [Eq. (B10)], we can replace the sums in Eq. (B21) by the corresponding integrals:

�G(II)
ν1ν2ν3ν4

(q, q′; i
n) =
[ ∫

C

dz

2π i
n(z)Gν1 (q, z)Gν2 (q, z + i
n)+A

][ ∫
C′

dz′

2π i
n(z′)Gν3 (q′, z′ + i
n)Gν4 (q′, z′)+A′

]
= G(II)

ν2ν1
(q, i
n)G(II)

ν3ν4
(q′, i
n), (B23)

where A = T [Gν1 (q, 0)Gν2 (q, i
n) + Gν1 (q,−i
n)Gν2 (q, 0)], A′ = T [Gν3 (q′, i
n)Gν4 (q′, 0) + Gν3 (q′, 0)Gν4 (q′,−i
n)], and C
or C′ is one of the contours shown in Fig. 3. By substituting Eq. (B11) into Eq. (B23) and performing the analytic continuation
i
n → ω + iδ (δ = 0+), we have

��R
12(ω) = ��12(i
n → ω + iδ)

= − 1

N2

∑
q,q′

∑
ν1,ν2,ν3,ν4=α,β

vx
ν1ν2

(q)ex
ν3ν4

(q′)Vν1ν2ν3ν4 (q, q′)
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×
∫ ∞

−∞

dz

2π i
n(z)

{[
GR

ν1
(q, z) − GA

ν1
(q, z)

]
GR

ν2
(q, z + ω) + GA

ν1
(q, z − ω)

[
GR

ν2
(q, z) − GA

ν2
(q, z)

]}

×
∫ ∞

−∞

dz′

2π i
n(z′)

{
GR

ν3
(q′, z′ + ω)

[
GR

ν4
(q′, z′) − GA

ν4
(q′, z′)

] + [
GR

ν3
(q′, z′) − GA

ν3
(q′, z′)

]
GA

ν4
(q′, z′ − ω)

}
. (B24)

Then, by performing the calculations similar to the derivation of Eq. (B14), we obtain

L′
12 = lim

ω→0

��R
12(ω) − ��R

12(0)

iω

= 1

4π2iN2

∑
q,q′

∑
ν1,ν2,ν3,ν4=α,β

vx
ν1ν2

(q)ex
ν3ν4

(q′)Vν1ν2ν3ν4 (q, q′)
[
F (I)

ν1ν2
(q)F (II)

ν3ν4
(q′) + F (II)

ν1ν2
(q)F (I)

ν3ν4
(q′)

]
, (B25)

where

F (I)
νν ′ (q) = −1

2

∫ ∞

−∞
dz

∂n(z)

∂z

[
GR

ν (q, z)GR
ν ′ (q, z) + GA

ν (q, z)GA
ν ′ (q, z) − 2GA

ν (q, z)GR
ν ′ (q, z)

]

= 2
∫ ∞

−∞
dz

∂n(z)

∂z
ImGR

ν (q, z)ImGR
ν ′ (q, z), (B26)

F (II)
νν ′ (q′) =

∫ ∞

−∞
dz′n(z′)

[
GR

ν (q′, z′)GR
ν ′ (q′, z′) − GA

ν (q′, z′)GA
ν ′ (q′, z′)

]

= 2i
∫ ∞

−∞
dz′n(z′)

[
ReGR

ν (q′, z′)ImGR
ν ′ (q′, z′) + ImGR

ν (q′, z′)ReGR
ν ′ (q′, z′)

]
. (B27)

A combination of Eqs. (B26), (B27), and (B25) gives Eq. (15).

APPENDIX C: DERIVATIONS OF EQS. (18), (19), AND (21)–(27)

We explain the details of the derivations of Eqs. (18), (19), and (21)–(27). These equations are obtained by deriving the
expressions of L0

12 and L′
12 in the limit τ → ∞, where τ = (2γ )−1 is the magnon lifetime.

First, we derive Eqs. (18) and (19). Using Eq. (B12), we have

ImGR
α (q, z) = − γ

[z − εα (q)]2 + γ 2
, (C1)

ImGR
β (q, z) = γ

[z + εβ (q)]2 + γ 2
. (C2)

Since τ → ∞ corresponds to γ → 0, we can express I (I)
νν ′ (q) [i.e., Eq. (14)] in this limit as follows:

I (I)
αα (q) ∼ ∂n[εα (q)]

∂εα (q)

∫ ∞

−∞
dz

γ 2

{[z − εα (q)]2 + γ 2}2
= π

2γ

∂n[εα (q)]

∂εα (q)
, (C3)

I (I)
ββ (q) ∼ π

2γ

∂n[εβ (q)]

∂εβ (q)
, (C4)

I (I)
αβ (q) = I (I)

βα (q) ∼ 0. (C5)

Combining these equations with Eq. (13), we have

L0
12 ∼ L0

12α + L0
12β, (C6)

L0
12ν = 1

N

∑
q

vx
νν (q)ex

νν (q)
∂n[εν (q)]

∂εν (q)
τ. (C7)

These are Eqs. (18) and (19).
Next, we derive Eqs. (21)–(27). Since L′

12 is given by Eq. (15), the remaining task is to derive the expression of I (II)
νν ′ (q) in the

limit τ → ∞. By performing the similar calculations to the derivations of Eqs. (C3)–(C5), we obtain∫ ∞

−∞
dzn(z)ReGR

α (q, z)ImGR
α (q, z) = −γ

∫ ∞

−∞
dzn(z)

z − εα (q)

{[z − εα (q)]2 + γ 2}2

= −γ

∫ ∞

−∞
dzn(z)

∂

∂z

{
−1

2

1

[z − εα (q)]2 + γ 2

}
∼ −π

2

∂n[εα (q)]

∂εα (q)
, (C8)
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FIG. 4. The temperature dependences of Sm(= L12), σm(= L11), and κm(= L22) at h = 0.08J and 0.16J . h is 0.08J in (a), (c), and (e)
and 0.16J in (b), (d), and (f). L(a)

μη and L(b)
μη are defined as L(a)

μη = L0
μη + L′

μη-intra and L(b)
μη = L0

μη + L′
μη-intra + L′

μη-inter2, respectively. Note that
L0

μη = L0
μηα + L0

μηβ and L′
μη = L′

μη-intra + L′
μη-inter1 + L′

μη-inter2.

∫ ∞

−∞
dzn(z)ReGR

α (q, z)ImGR
β (q, z) = γ

∫ ∞

−∞
dzn(z)

z − εα (q)

{[z − εα (q)]2 + γ 2}{[z + εβ (q)]2 + γ 2} ∼ −π
n[−εβ (q)]

εα (q) + εβ (q)
, (C9)∫ ∞

−∞
dzn(z)ReGR

β (q, z)ImGR
α (q, z) = γ

∫ ∞

−∞
dzn(z)

z + εβ (q)

{[z + εβ (q)]2 + γ 2}{[z − εα (q)]2 + γ 2} ∼ π
n[εα (q)]

εα (q) + εβ (q)
, (C10)∫ ∞

−∞
dzn(z)ReGR

β (q, z)ImGR
β (q, z) = −γ

∫ ∞

−∞
dzn(z)

z + εβ (q)

{[z + εβ (q)]2 + γ 2}2

= −γ

∫ ∞

−∞
dzn(z)

∂

∂z

{
−1

2

1

[z + εβ (q)]2 + γ 2

}
∼ −π

2

∂n[εβ (q)]

∂εβ (q)
. (C11)

By combining these equations with Eq. (16), we can express
I (II)
νν ′ (q) in the limit τ → ∞ as follows:

I (II)
αα (q) ∼ −π

∂n[εα (q)]

∂εα (q)
, (C12)

I (II)
ββ (q) ∼ −π

∂n[εβ (q)]

∂εβ (q)
, (C13)

I (II)
αβ (q) = I (II)

βα (q) ∼ π
n[εα (q)] − n[−εβ (q)]

εα (q) + εβ (q)
. (C14)
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Substituting these equations and Eqs. (C3)–(C5) into Eq. (15),
we obtain

L′
12 ∼ L′

12-intra + L′
12-inter1 + L′

12-inter2, (C15)

where

L′
12-intra =

∑
ν=α,β

L′
12-intra-ν, (C16)

L′
12-intra-ν = − 2

N2

∑
q,q′

vx
νν (q)ex

νν (q′)τVνννν (q, q′)

× ∂n[εν (q)]

∂εν (q)

∂n[εν (q′)]
∂εν (q′)

, (C17)

L′
12-inter1 =

∑
ν=α,β

{
− 2

N2

∑
q,q′

vx
νν (q)ex

ν̄ν̄ (q′)τVννν̄ν̄ (q, q′)

× ∂n[εν (q)]

∂εν (q)

∂n[εν̄ (q′)]
∂εν̄ (q′)

}
, (C18)

and

L′
12-inter2 =

∑
ν=α,β

(L′
Eν + L′

Sν ), (C19)

L′
Eν = 2

N2

∑
q,q′

vx
νν (q)ex

αβ (q′)Vνναβ (q, q′)τ

× ∂n[εν (q)]

∂εν (q)

n[εα (q′)] − n[−εβ (q′)]
εα (q′) + εβ (q′)

, (C20)

L′
Sν = 2

N2

∑
q,q′

vx
αβ (q)ex

νν (q′)Vαβνν (q, q′)τ

× n[εα (q)] − n[−εβ (q)]

εα (q) + εβ (q)

∂n[εν (q′)]
∂εν (q′)

. (C21)

In Eq. (C18), ν̄ = β or α for ν = α or β, respectively.
Equations (C15)–(C21) are Eqs. (21)–(27).

APPENDIX D: REMARK ON THE NUMERICAL
CALCULATION

To calculate L0
μη and L′

μη numerically, we perform the
momentum summations using a Nq-point mesh of the first
Brillouin zone. Since the sublattice of our ferrimagnetic insu-
lator is described by a set of primitive vectors, a1 = t (1 0 0),
a2 = t (0 1 0), and a3 = t (0 0 1), the primitive vectors for
the reciprocal lattice are b1 = t (2π 0 0), b2 = t (0 2π 0), and
b3 = t (0 0 2π ). Thus, in the periodic boundary condition,
momentum q is written in the form

q = mx

Nx
b1 + my

Ny
b2 + mz

Nz
b3, (D1)

where 0 � mx < Nx, 0 � my < Ny, and 0 � mz < Nz with
NxNyNz = Nq = N/2. As a result, the first Brillouin zone is
divided into the (NxNyNz )-point mesh. In the numerical calcu-
lation, we set Nx = Ny = Nz = 24 (i.e., Nq = 243).

APPENDIX E: NUMERICAL RESULTS AT h =
0.08J AND 0.16J

We present the additional results of the numerical cal-
culations, the temperature dependences of Sm, σm, and κm

at h = 0.08J and 0.16J . They are shown in Figs. 4(a)–4(f).
Comparing these figures with Fig. 2, we see the results ob-
tained at h = 0.08J and 0.16J are similar to those obtained
at h = 0.02J . Namely, the properties obtained at h = 0.02J
remain qualitatively unchanged for other values of h.
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