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Heat pulse propagation and nonlocal phonon heat transport in one-dimensional harmonic chains
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Phonons are the main heat carriers in semiconductor devices. In small devices, heat is not driven by a local
temperature gradient, but by local points of heat input and removal. This complicates theoretical modeling. Study
of the propagation of vibrational energy from an initial localized pulse provides insight into nonlocal phonon heat
transport. We report simulations of pulse propagation in one dimension. The 1d case has tricky anomalies, but
provides the simplest pictures of the evolution from initially ballistic toward longer time diffusive propagation.
Our results show surprising details, such as diverse results from different definitions of atomistic local energy,
and failure to exhibit pure diffusion at long times. Boltzmann phonon gas theory, including external energy
insertion, is applied to this inherently time-dependent and nonlocal problem. The solution, using relaxation time
approximation for impurity scattering, does not closely agree with the simulated results.
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I. INTRODUCTION

When heat is inserted in a local region of a semiconductor,
phonons [labeled by Q = (�q, j), wavevector and branch] carry
heat ballistically until they scatter. The mean free path �Q of
different phonons is very diverse. At large distances from the
source, the local heat current j(r, t ) is no longer ballistic. The
propagation of current becomes increasingly diffusive. Mod-
elling of the crossover from ballistic to diffusive is difficult. It
can be illuminated by simulations of simple model cases. The
one-dimensional chain is the simplest model, with only one
branch of phonons. In spite of the worry of oversimplifying
the problem, the clarity of one-dimensional pictures provides
some useful insights.

Figure 1 shows the local energy at atom sites on a
one-dimensional chain of N = 200 atoms coupled by nearest-
neighbor harmonic springs. The system has periodic boundary
conditions. At time t = 0−, the chain is in its ground state.
At t = 0, one or two central atoms are disturbed, starting a
pulse. No further external disturbance is applied. The classical
time evolution is computed from Newton’s laws. This is the
simple example analyzed in this paper. In Sec. II, the chain
and the pulses are defined. In Sec. III, the definition of “local
energy” is analyzed and found to be more interesting than
expected. In Sec. IV, a continuum description is chosen and
shown to explain the different results shown in Fig. 1. In
Sec. V, the Boltzmann equation is written for the nonlocal
time-dependent problem, and its collisionless limit is shown
to agree with the previously chosen continuum description.
In Sec. VI, simulations are repeated for an ensemble of
mass-disordered chains, showing evolution in time in a direc-
tion toward diffusive energy propagation. In Sec. VII, “pure”
diffusion is defined, and shown to have imperfect ability to ac-
curately explain heat propagation at long times. Section VIII

*philip.allen@stonybrook.edu

returns to the Boltzmann description, with scattering from
mass disorder added. The one-dimensional chain presents dif-
ficulties in the perturbative description of such scattering. The
relaxation-time approximation (RTA) gives a sensible-looking
approximate formula but is found not to agree accurately with
the simulated energy propagation. Section IX gives a brief
presentation of the effect of anharmonic scattering on the 1d
pulses. Section X summarizes the conclusions.

The main points of this paper are: (1) To clarify the ideas of
local heat and local temperature. (2) To study the “crossover”
from the ballistic propagation of Fig. 1 toward diffusive heat
propagation when phonons start to evolve toward a local equi-
librium T (r, t ) because of scattering [1,2]. (3) To test the form
and the accuracy of a nonlocal Boltzmann equation descrip-
tion [3].

II. THE HARMONIC LINEAR CHAIN

The chain has atoms of mass M = 1 separated by dis-
tance a = 1 and connected by springs of constant K =
1. The harmonic normal modes have frequency ωQ =
ωM sin(Qa/2) where ωM = 2

√
K/M = 2. Time is measured

in units
√

M/K = 2/ωM = 1. The modes propagate at veloci-
ties vQ = vM cos(Qa/2)sign(Q) where vM = √

(K/M )a = 1.
The unit of energy is E0 = 1 = Ka2 = Mv2

M = Mω2
Ma2/4.

The leading edges of the pulse propagate at the speed of
sound, ±vM = ±1, as is seen at t = 30 in Fig. 1.

The Hamiltonian of the chain is

H =
∑

�

[
P2

�

2M
+ 1

2
K (u� − u�+1)2

]
. (1)

Atoms have displacements u� around average positions r� =
�a. The general solution of Newton’s equations of motion is

u�(t ) =
√

1

N

∑
Q

AQ cos(Q�a − ωQt + φQ). (2)
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FIG. 1. Circles connected by solid lines are the computed local
energy Ea(�) at t = 30 for three types of pulses [see Eq. (3) and
Table I]. All three pulses evolve from energy inserted at t = 0 and
r ∼ 0 into a harmonic chain. The D and V2 pulses are initiated on
atoms 0 and 1, but their positions on the horizontal axis are shifted
by −1/2 to make them symmetric around r = 0. The dashed curves
are models derived from a continuum picture, such as Boltzmann
theory, and given in Eqs. (10), (11), and (12).

There are 2N free parameters, amplitude AQ � 0 and phase
φQ for each normal mode Q. The wavevector has the form
Q = (2π/a)(n/N ), and the integer n lies in the range −N/2 <

n � N/2. The pulses shown in Fig. 1, labeled D, V2, and V1,
are generated by initial disturbances given in Table I. The
“V1” (or “velocity”) pulse has only the central atom given
a velocity v0 at t = 0. The “V2” (or “dual velocity”) pulse has
two central atoms given equal and opposite velocities. The
“D” (or “displacement”) pulse has two central atoms given
equal and opposite displacements at t = 0.

The first result to notice is the interesting diversity of pulse
shapes for different initial disturbances, as was first noticed in

TABLE I. Properties of pulses. The shift �u (in units of a) of ini-
tial displacement, or �v (in units of vM ) of initial velocity, is scaled
so that the new coordinates (u0 + �u0, u1 + �u1, v0 + �v0, v1 +
�v1), of atoms � = 0 and 1, have total extra energy Epulse = 1. The
values in the table give Epulse = 0 at T = 0, i.e., when u�(t ) = 0 for
t < 0.

Name �u0 �u1 �v0 �v1

V1 0 0
√

2 0
V2 0 0 –1 1
D −1/

√
3 1/

√
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FIG. 2. The harmonic V2 pulse at temperature T = 0 and time
t = 30, using three ways [Eqs. (3)–(5)] of assigning potential energy
to a local site energy E (�). In (a) and (b), the pulse energy is Epulse =
E0 = ∑

� E (�). The area under the curves is E0, chosen to be 1. In
(c), however, the energy has two parts,

∑
�[KE (�) + PE (� + 1/2)].

The values in the graph have been arbitrarily doubled so that the total
energy, also 1, is the area under the graph. These graphs demonstrate
that the “continuum picture” of energy density (the dashed curves in
Fig. 1) is more sensible than these local pictures.

Ref. [4]. The first issue to resolve is whether local energy is
well defined.

III. DEFINING LOCAL ENERGY

Local energy E (�, t ) cannot be unambiguously defined
[5]. In classical physics it should obey

∑
� E (�, t ) = H. The

version plotted in Fig. 1 is defined as

Ea(�, t ) = Mv�(t )2

2
+ K

4
[(u�−1(t ) − u�(t ))2

+ (u�(t ) − u�+1(t ))2]. (3)

Each atom is assigned its own kinetic energy, and half of
the potential energy of the springs to its left and right. This
is a commonly used definition, but is not unique. Two other
sensible choices for distributing potential energy to different
sites are

Eb(�) = Mv2
�

2
+ K

2

[(
2u2

� − u�(u�−1 + u�+1)
]
, (4)

Ec(�) = Mv2
�

2
and Ec(� + 1/2) = V

2
(u� − u�+1)2. (5)
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FIG. 3. Pulses of total energy
∑

� �Ea(�) = E0 = 1 at t = 20, inserted at t = 0 to harmonic chains whose random positions and velocities
at t = 0− are thermalized at temperature T = 0.3 (Etot,th = 0.3N). The local energies �Ea(�) shown in the graphs are the differences between
Ea(�, t = 20) with and without pulse insertion. The first graph shows D pulses inserted with two typical initial conditions. The other graphs
show, in red, the results averaged over 1000-member ensembles with random thermal initial conditions. The black results repeat the zero-
temperature pulses shown in Fig. 1. The finite T pulse shapes, after ensemble averaging, are converging towards the zero-temperature pulse
shapes.

The conventional version Ea will be used in this paper, but it
is interesting to see how it compares with versions Eb and Ec,
as shown in Fig. 2. The large oscillations seen in version (c)
are surprising, and the smoothness seen in version (b) is even
more surprising. This diversity illustrates our second result,
a well-known fact: Local energy at the atom level is not a
clear concept. However, if local energy is averaged over a
few nearby atoms, it becomes less diverse. The ambiguity also
exists in quantum treatments. Marcolongo et al. [6] and Ercole
et al. [7] have shown how this ambiguity does not affect the
computation of bulk transport. In the next section we will see
that local energy makes more sense in a continuum theory than
an atomistic theory.

Figure 1 shows Ea(�, t ) for pulses, inserted at t = 0 into
zero-temperature (i.e., stationary, T = 0) chains. Figure 3
shows the same pulse forms, at t = 20, inserted into chains
with a preexisting thermal distribution of velocities and dis-
placements. In T > 0 cases, the initial pulse amplitudes
(�u0,1 or �v0,1) are scaled from those in Table I to make the
total extra energy

∑
� �Ea(�) of all pulses of the ensemble

equal to 1. The pulse profiles in Figs. 1 and 3 were computed
in two different ways: (1) by numerical integration of New-
ton’s laws, and (2), by finding the coefficients AQ and φQ in
Eq. (2). These coefficients are independent of time, and can
be found if the positions u� and velocities v� = du�/dt are
known at any chosen time:

AQei(φQ−ωQt ) =
√

1

N

∑
�

[
u�(t ) + i

v�(t )

ωQ

]
e−iQ�a. (6)

For the T = 0 case, values of AQ and φQ are given in Table II.
They are derived from the t = 0+ positions and velocities
shown in Table I at t = 0.

The chains are harmonic, so the pulses propagate ballis-
tically. The left or right parts have root mean square (rms)

displacements r̄ defined as

r̄(t ) ≡
[∑

�(�a)2�E (�, t )∑
� �E (�, t )

]1/2

. (7)

The rms displacements increase at speeds vrms = dr̄/dt ≈
vM/

√
n, with n = 2, 4, 6 for the V1, V2, and D pulses,

respectively. These values are derived from the continuum
description described next.

IV. A CONTINUUM DESCRIPTION

The energy content of each normal mode is

E (Q) = 1
2 Mω2

QA2
Q. (8)

Using values of AQ from Table II, the mode energies are also
shown in Table II. A continuum description uses spatially
averaged atomic coordinates, and requires a new definition of
local energy density E (r, t ). An appropriate definition for a
pulse originating at (r, t ) = (0, 0) is

�E (r, t ) =
∑

Q

�E ext
Q δ(r − vQt ). (9)

TABLE II. More properties of pulses: The distribution among
normal modes Q of the phonon amplitude AQ, phase φQ, and energy,
for the pulses of Table I inserted at T = 0.

Amplitude AQ Phase Modal energy
Name from Eq. (6) φQ �E ext

Q

V1 �v0√
NωQ

π

2
E0
N

V2 2�v0√
NωQ

sin( Qa
2 ) π − Qa

2
2E0
N sin2( Qa

2 )

D 2�u0√
N

sin( Qa
2 ) − π

2 − Qa
2

8E0
3N sin4( Qa

2 )
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After integrating over Q, the results for the three pulses are

�EV 1(r, t ) = E0

πvMt

(
1 −

( r

vMt

)2)−1/2

θ (vMt − |r|), (10)

�EV 2(r, t ) = 2E0

πvMt

(
1 −

( r

vMt

)2)1/2

θ (vMt − |r|), (11)

�ED(r, t ) = 8E0

3πvMt

(
1 −

( r

vMt

)2)3/2

θ (vMt − |r|). (12)

The total energy
∫

dr�E (r, t ) is E0 in all three cases. These
formulas are shown as dashed lines in Figs. 1 and 3. The con-
tinuum model agrees well with an average of nearby values
of the local atomic energy E (�) for all of the three pulse types
Eα (�). The rms centers of energy of the propagating pulses are
then

r̄continuum(t ) ≡
[∫

drr2�E (r, t )∫
dr�E (r, t )

]1/2

. (13)

This is where the result dr̄/dt → vM/
√

n (with n = 2, 4, 6)
came from.

It had been our original guess that when the pulse prop-
agates in a thermal background, the fine structure in E (�)
would disappear and the result would resemble the continuum
version E (r, t ). The computation in Fig. 3 shows that this
guess was wrong. The fine structure remains. A proof that this
should happen is given in the Supplemental Material [8].

V. NONLOCAL BOLTZMANN
EQUATION, COLLISIONLESS

The formulas given in Eqs. (10), (11), and (12) came from
a sensible hypothesis, Eq. (9), which will now be derived from
Boltzmann theory. Pulse behavior is fundamentally nonlocal,
i.e., not determined by the local deviation of temperature
T (r, t ) from background T0. The usual local Boltzmann equa-
tion is very successful [9] in describing the bulk thermal
conductivity κ , appearing in the Fourier law j = −κ∇T ,
where the temperature gradient ∇T is constant in space and
time, or varying slowly on the scale of phonon mean free
paths �Q and lifetimes τQ. Pulse propagation requires an ex-
tension of the usual local version. For at least 60 years [10–12]
there have been developments of Boltzmann theory aimed at
studying systems driven at small distance scales, i.e., distances
comparable to quasiparticle mean free paths; there are many
recent studies, for example, Refs. [3,4,13–20]. There are also
models outside of Boltzmann theory that work even when
geometries are too complex [21] for the Boltzmann method.

The Peierls Boltzmann equation [22] (PBE) uses quan-
tum wave/particle duality to describe the system as a gas
of phonon particles in a continuous space with coordinate r,
rather than discrete sites r� = �a on a lattice. Phonons can
be treated either as classical or quantum particles. A correct
treatment of Boltzmann theory with the full scattering opera-
tor (∂NQ/∂t )coll gives the same low frequency (and spatially
homogeneous) transport properties as a self-consistent treat-
ment by Green-Kubo theory to second order in interactions
[23–27]. The fundamental object is NQ(r, t ), the occupancy
per unit volume V (where V = length L in 1d) of phonon
mode Q at (r, t ). The spatial sum

∫
drNQ(r, t ) = NQ(t ) is the

mode occupancy. The PBE is

∂NQ

∂t
= −vQ

∂NQ

∂r
+

(
∂NQ

∂t

)
coll

+
(

∂NQ

∂t

)
ext

. (14)

Local energy is E (r, t ) = (1/V )
∑

Q h̄ωQNQ(r, t ). Heat cur-
rent density is j(r, t ) = (1/V )

∑
Q h̄ωQvQNQ(r, t ). Local

energy is conserved. Summing Eq. (14) over Q (after multi-
plying by h̄ωQ) gives

∂E (r, t )

∂t
= −∇ j(r, t ) +

(
∂E (r, t )

∂t

)
ext

. (15)

This holds because collisions conserve energy locally,∑
Q h̄ωQ(∂NQ/∂t )coll = 0. We will use the quantum ver-

sion, with an equilibrium Bose-Einstein distribution NQ →
nQ(T0) = [exp(h̄ωQ/kBT0) − 1]−1, and take the classical limit
nQ(T ) = kBT/h̄ωQ when comparing with simulations.

The scattering (or collision) term (∂NQ/∂t )coll tries to drive
the local distribution to a local thermal distribution. Writing
the distribution as nQ(T (r, t )) + Q(r, t ), where Q is the
deviation from local equilibrium, and linearizing, Eq. (14)
becomes

∂nQ

∂T

∂T

∂t
+ ∂Q

∂t
= −vQ

(
∂nQ

∂T

∂T

∂r
+ ∂Q

∂r

)

−
∑

Q′
CQQ′Q′ +

(
∂NQ

∂t

)
ext

, (16)

where −CQQ′ is the linearized scattering operator. The atoms
are driven by external manipulation that changes the Newto-
nian state {u�, v�} to {u� + �u�, v� + �v�} at t = 0, for � = 0
and 1. It changes the phonon amplitudes and phases to give
the starting pulse shape. A continuum version of the change
must be created by the term (∂NQ/∂t )ext in the Boltzmann
equation. External driving (∂NQ/∂t )ext has only recently ap-
peared in phonon Boltzmann theory [2,16,28,29]; its form
and significance is still open to discussion. Boltzmann theory
does not deal directly with amplitudes AQ. These are indirectly
included via the mode energy MA2

Qω2
Q/2 → h̄ωQ(NQ + 1/2).

Coherent phase relations φQ between different quasiparti-
cles Q cannot be handled. A choice for the external term
(∂NQ/∂t )ext driving the distribution function NQ away from
equilibrium is (

∂NQ

∂t

)
ext

= �E ext
Q

h̄ωQ
δ(r)δ(t ). (17)

A very similar version of Boltzmann theory applied to time-
domain thermoreflectance was given in Ref. [2]. The energy
inserted by the pulse into mode Q is h̄ωQ × �Next

Q , where
�Next

Q = ∫
dr

∫
dt (∂NQ(r, t )/∂t )ext. The total pulse energy

given to the system is clearly correct:

EBoltzmann
pulse =

∑
Q

�E ext
Q . (18)

Because of linearity and periodic boundary conditions, it is
convenient to Fourier transform to NQ(k, ω),

NQ(k, ω) = 1

L

∫ L/2

−L/2
dr

∫ ∞

−∞
dtNQ(r, t )e−i(kr−ωt ). (19)
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Equation (16) becomes∑
Q′

CQQ′Q′ + i(kvQ − ω)Q

= − i(kvQ − ω)
∂nQ

∂T
�T (k, ω) + �E ext

Q

h̄ωQ
. (20)

In the harmonic case, there are no collisions and CQQ′ = 0.
The solution in Fourier space is

∂nQ

∂T
�T (k, ω) + Q(k, ω) = �E ext

Q /h̄ωQ

i(kvQ − ω − iη)
. (21)

The left-hand side is �NQ(k, ω) = NQ(k, ω) − nQ(T0). Trans-
forming back to (r, t ) space,

�NQ(r, t ) = L

2π

∫
dk

∫
dω

2π

�E ext
Q /h̄ωQ

−i(ω + iη − kvQ)
ei(kr−ωt )

= �E ext
Q

h̄ωQ
δ(r − vQt ). (22)

The local energy density is

Ēpulse(r, t ) =
∑

Q

h̄ωQ�NQ(r, t ) =
∑

Q

�E ext
Q δ(r − vQt ).

(23)
This agrees exactly with Eq. (9). These results provide confi-
dence in the insertion term added to the Peierls Boltzmann
equation. We also learn that, in the continuum description,
harmonic pulse shapes [Eqs. (10)–(12)] are independent of T ,
because the temperature T0 in the Boltzmann treatment did not
have to be specified. The less obvious result, that harmonic
pulse shapes in the atomistic version are also independent of
T , is explained in the Supplemental Material [8].

VI. MASS DISORDER

Disorder adds an interesting complication to heat con-
duction in 1d harmonic crystals [30,31], namely Anderson
localization [32]. In disordered metals of dimension 2 or
less, ignoring electron-electron interactions, all single-particle
electron eigenstates are localized [33]. At T = 0, an electron
inserted into a localized state cannot propagate. Localization
of phonons is similar [34–36], except that small Q acoustic
phonons have to travel very long distances before localiza-
tion appears [37]. Reference [38] gives the example of a
wave packet propagating on a weakly mass-disordered chain.
Ballistic propagation is seen at short distances and times,
diffusive propagation at intermediate ones, and Anderson
localization at long distances and times. When T > 0, in-
teractions with phonons allow a localized electron to hop to
neighboring localized states, which causes slow diffusion. An-
harmonic interactions have a similar effect [39] on localized
phonons in insulators. If disorder is not too great, phonon
quasiparticles are a realistic model at intermediate times and
distances. Ballistic phonons eventually scatter from disorder
and evolve toward diffusive at moderate to long distances and
times, before localizing. A perturbative treatment of scattering
can likely describe the evolution before localization sets in.

We now add mass defects to allow deviation from ballistic
propagation, by randomly choosing 10% of the atoms, and

increasing their masses from M = 1 to M∗ = 1.5. Results at
various times for a D pulse are shown in Fig. 4. The lattice
is still harmonic, but the Hamiltonian is no longer diagonal
in the plane-wave basis, Eq. (2). Before ensemble averaging,
the pulse shape varies depending on the locations of the mass
defects relative to the point of pulse insertion. The D-pulse
shapes of Fig. 4 have been averaged over 100 different random
placements of the altered masses.

The pulse shape at t = 10
√

M/K is not much altered
from pure ballistic behavior. The pulse has propagated only
a distance of ±10 atoms, and encountered typically only two
impurities. As time proceeds, there is increasing deviation
from the ballistic pulse shape predicted in Eq. (12), and shown
in the red curves. By t = 40, the fraction of the energy at
distances <10a has failed to diminish the way ballistic prop-
agation does. The energy in the intermediate 10 − 30 atoms
has diminished more than ballistic propagation does. The
crossover toward diffusion is underway. The disorder is weak,
so the Anderson localization lengths ξQ are mostly longer than
the propagation distance (�40a) studied here.

VII. PURE DIFFUSION

The opposite extreme from ballistic propagation is pure
diffusion. The equation for the energy �E propagating dif-
fusively from a pulse P is(

∂

∂t
− D

d2

dr2

)
�E (r, t ) = P(r, t ) = E0δ(r)δ(t ). (24)

This follows from energy conservation, Eq. (15), provided
there is a local relation j = −κdT/dr between current j(r, t )
and temperature T (r, t ). It also uses as the definition of tem-
perature �E (r, t ) = C�T (r, t ). Then the diffusion constant is
D = κ/C where κ and C are bulk thermal conductivity and
specific heat. The solution of Eq. (24) is

�Ediff (r, t ) = E0√
4πDt

e−r2/4Dtθ (t ), (25)

where θ (t ) is the Heaviside function.
Pure diffusion is inconsistent with a quasiparticle picture

of pulse evolution. One argument is that it violates the rule
that lattice vibrational energy cannot propagate faster than the
speed of sound vM . It is not necessarily a large violation. An
estimate of the size uses κ ≈ Cv� = Cv2τ . The diffusive ex-
ponent r2/4Dt is then approximately (t/4τ )(r/vMt )2 (where
� and τ are rough measures of mean free path and lifetime
of phonons). Therefore, when t = 4τ , there is some diffusive
energy at r > vMt , which decays rapidly as r/vMt or t/4τ

increases.
Another argument for the inapplicability of pure diffusion

to quasiparticles is that mean free paths of small Q acoustic
phonons typically diverge as a power, �Q ∝ 1/Qp, causing D
to diverge. This is a correct result, not an error of perturbation
theory. A formula for D = κ/C is found from the standard
RTA solution of Boltzmann theory for κ in the bulk limit,

D =
∑

Q CQv2
QτQ∑

Q CQ
→ 1

N

∑
Q

v2
QτQ. (26)
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FIG. 4. Total energy profile Ea(�) of a D pulse at T = 0, after spreading in the lattice with 10% of the masses increased by 1.5. The
profiles are averaged over 100 random realizations of mass disorder. Time is in units

√
M/K . The red curves are the ballistic prediction of

Eq. (12). The value of E0 has been rescaled from 1 to 0.27, corresponding to u0 = 0.3, which is the value chosen for this and subsequent
computations.

The second form is the classical limit where CQ =
h̄ωQdnQ/dT → kB. When 1/τQ arises from mass disorder, the
small Q scattering rate 1/τQ in d = 1 goes as (Q2) [30,40–43],
shown explicitly in Appendix A. The divergence is not limited
to one dimension. Small Q scattering from mass defects is
closely analogous to Rayleigh scattering of light from density
fluctuations. In 3d, both light and phonon scattering have Q4

dependencies at small Q. The Q sum needed to compute D or
κ diverges as 1/Q2 in both d = 1 and d = 3, unless another
scattering process adds a term to 1/τQ that blocks the diver-
gence. When T is small enough that mean free paths �Q =
vQτQ reach sample dimensions L, the zero denominator from
the diverging defect term becomes nonzero due to boundary
scattering L = vQτboundary. Glassbrenner and Slack analyze
experiments, which illustrate this [44]. It is seen in clean but
isotopically disordered crystals [45–47]. Equation (26) can be
replaced by

D =
∑

Q

v2
Q[(1/τQ)disorder + |vQ|/L]−1. (27)

The sum now converges, diverging for large L as D ∝ √
L

in d = 1. The
√

L scaling of κ in d = 1 was noticed earlier
[30,48]. The resulting D is plotted versus L/a in Fig. 5. Our
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Impurity and boundary scattering

FIG. 5. The diffusivity in bulk RTA theory, from Eqs. (27) and
(A4), using Eq. (28) for the disorder scattering, with the dimen-
sionless strength ε = 1/90. The diffusivity diverges as

√
(L/ε) as

L → ∞.

Newtonian simulation on a loop of 200 atoms has no boundary
scattering because of periodic boundary conditions. If we had
used instead rough boundaries, then L in Eq. (27) would be
100a, resulting in D = 35ωMa2/2 (see Appendix A).

In spite of the inapplicability of Eq. (25), it is interesting
to compare it to the numerical results. Figure 6 compares the
simulation result of the disordered D pulse at t = 40 (the last
graph of Fig. 4) with the formulas for pure ballistic and pure
diffusive propagation. For the majority of atoms (all but atoms
10–14) the computed pulse energy is closer to the green curve
illustrating pure diffusion (with D = 1.8) than to the red curve
of pure ballistic behavior. However, the agreement with pure
diffusion is poor, and more important, the choice D = 1.8 was
chosen to give a curve for �E (r, t = 40) reasonably close to
the simulation, but it is totally unrealistic, corresponding to a
nanoscale sample with boundaries at L ≈ ±3a, as seen from
Fig. 5.
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FIG. 6. The same t = 40 pulse energy profile Ea(�) as in Fig. 4,
but showing only x > 0 and averaging the left and right propagating
portions. The red curve is the ballistic prediction of Eq. (12), and the
blue curve is the diffusive prediction of Eq. (25), with diffusion con-
stant D = 35a2ωM/2 as explained in the text. The green curve is the
same, except D = 1.8a2ωM/2 is used to make diffusion appear closer
to the computed pulse profile. The dashed curve is the Boltzmann
prediction (with no boundary scattering) using version (1) of RTA,
shown in Eq. (30) and explained in Sec. VIII. All “theoretical” curves
are scaled to E0 = 0.27 to agree with the numerical simulation.
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VIII. BOLTZMANN THEORY WITH MASS DISORDER

How does nonlocal Boltzmann theory treat pulse shape
evolution as altered by disorder? Here we answer this question
within the relaxation time approximation (RTA), and find that
the results have the correct trend but do not agree closely
with simulations. The collision operator CQQ′ in Eq. (20) is
replaced in RTA by 1/τQδQQ′ , where 1/τQ is the diagonal
element CQQ,

1/τQ = εωM
sin2(Qa/2)

cos(Qa/2)
. (28)

This is derived in Appendix A, Eq. (A3). The RTA solution is
a modified version of Eq. (21),

Q(k, ω) = −i(kvQ − ω) ∂nQ

∂T �T (k, ω) + �E ext
Q /h̄ωQ

1/τQ + i(kvQ − ω)
.

(29)

This gives N equations (one for each mode Q), for the N un-
known functions Q(k, ω). There is an additional unknown,
the local temperature shift �T (k, ω). An extra equation, to
supplement Eq. (29), is needed.

The requirement of energy conservation says that∑
Q h̄ωQ(dQ/dt )coll = 0. The correct scattering opera-

tor satisfies this automatically, but the RTA version,
(dE/dt )coll,RTA = −∑

Q h̄ωQQ/τQ = 0, is not automati-
cally satisfied. Forcing Q to satisfy this equation as well
as the linearized PBE is one way to obtain the extra
equation needed to determine �T (k, ω) and �T (r, t ). This
definition of temperature, which we call “version (1)”, is not
a normal one. A possible alternative is to define temperature
in terms of the local energy, E (r, t ) = ∑

Q h̄ωQnQ(T (r, t ))
or E (k, ω) = ∑

Q h̄ωQ(dnQ/dT )�T (k, ω). This, called “ver-
sion (2)”, is the definition of �T (k, ω) used in the full
Boltzmann equation with the correct scattering operator. It
requires the deviation Q(r, t ) to have no net energy. This
definition of temperature is quite normal—it is sensible in
a quasiparticle theory, although perhaps not demanded by
nonequilibrium thermodynamics.

The two possible versions of the extra equation, needed in
RTA, are then

(1)
∑

Q

h̄ωQQ,RTA

τQ
= 0; or (2)

∑
Q

h̄ωQQ,RTA = 0. (30)

We find that version (1) gives a more realistic answer,
in agreement with previous numerical [49] and theoretical
[2,28,29] work.

The pulse energy predicted by version (1) is shown in
Fig. 6. It deviates less from ballistic than does the simulation,
but in the correct direction. Energy profiles predicted by both
versions of the RTA Boltzmann theory are in Fig. 7 for the
D pulse at t = 40. Details of the computational procedure
are given in Appendix B and in the Supplemental Material
[8]. Version (1) of RTA theory correctly keeps the total pulse
energy equal to E0 as t increases, while version (2) does
not. Version (2) has another weakness, namely the predicted
shape of the evolving pulse in Fig. 7 is very different from
the simulated results in Fig. 6, unlike version (1) where the
Boltzmann-RTA pulse shape is sensible. However, version
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ΔT, L=∞
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ΔE=ΔT, v.2, L=∞

Boltzmann, RTA

FIG. 7. RTA predictions for the total energy profile Ea(�) of a D
pulse at t = 40 and T = 0, after spreading in the lattice with 10%
of the masses increased by 1.5. The input energy E0 is set to 0.27,
for comparison with numerical results. The red and black curves use
version (1) of Eq. (30), and the blue curve uses version (2). The total
energy (solid curves) correctly agrees with E0 in version (1), but in
version (2), is smaller by a factor 0.415. In version (1), the thermal
energy is (incorrectly, we believe) larger than E0 by a factor 1.58.

(1) has a temperature profile �T (r, t ) in Fig. 7 that differs
from �E (r, t ) without physical justification, unlike version
(2), which correctly equates kBT (r, t ) and �E (r, t ).

Figure 8 shows version (1) RTA results for long times to
illustrate a slow approach toward something related to, but
not closely agreeing with, pure diffusion, Eq. (25). The RTA
diffusivity D = 1.8 used in the dashed curve of Fig. 8 uses an
unrealistically small sample size, ≈6a, as mentioned already.
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FIG. 8. Boltzmann results using RTA, with impurity but no
boundary scattering, at three times, t = 40, 160, and 640. Time is
in units 2/ωM = 1. The scale factors 1, 4, and 16 are used to keep the
correct area (E0 = 0.27) while scaling the horizontal distance vMt
to 40 to make the results fit on a single graph. The dashed line is
pure diffusion ∝ exp(−x2/4Dt ) [Eq. (25)] at t = 40, with the same
arbitrary diffusivity D = 1.8ωMa2/2 used in Fig. 6, chosen just to
illustrate pure diffusion.
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FIG. 9. Displacement (D) pulse at time t = 20 after insertion at T = 0 and t = 0. The harmonic (K2) force constant is 1. (a) has V3 = 1
and V4 = 0; (b) has V3 = 0 and V4 = 1. The pure harmonic result (V3 = V4 = 0) is shown for comparison in both panels. To see the effect of
anharmonicity, initial pulse amplitudes on atoms 0 and 1 were given large values, 0.3 and −0.3, respectively. The initial anharmonic energy in
(a) is −0.27 × the initial harmonic energy (0.27E0), and in (b) +0.12 × the initial harmonic energy (0.27E0).

These results confirm the arguments in Sec. VII that pure
diffusion disagrees with quasiparticle theories.

Why do the Boltzmann-RTA results not agree well with the
numerical pulse shapes? The reason could be a mixture of two
problems: (1) inadequacy of second order Fermi golden rule,
related to incipient Anderson localization; and (2) use of RTA
instead of correct local energy-conserving scattering.

IX. ANHARMONIC

The famous work of Fermi, Pasta, Ulam (FPU) and Tsin-
gou (FPUT) [50] found unexpected anomalies in the opposite
limit of our pulse propagation, namely the zero temperature
behavior of the lowest harmonic normal mode of the fixed-end
chain, when forces differ from harmonic by one or the other
of two choices for the anharmonic nearest-neighbor coupling,

H′
3 = V3

3

∑
�

(r�+1 − r�)3 (V3 = αK, the α − model);

(31)

H′
4 = V4

4

∑
�

(r�+1 − r�)4 (V4 = βK, the β − model).

(32)

Heat conduction in weakly anharmonic linear lattices has
been studied [51] and reviewed [52]. Recent work [53–55]
seems to confirm (at least qualitatively) that perturbation the-
ory works in the regime studied here. If so, the perturbative
picture says that mean free paths will diminish as T increases
[56,57]. A crossover to diffusive behavior, which FPU indi-
cates might not happen at T = 0, may well happen at T > 0,
at rates that increase as T increases.

We have looked at T = 0 anharmonic D-pulse propagation,
using both third-order (V3, also known as “FPU − α”) and
fourth-order (V4, also known as “FPU − β”) anharmonicity.
The coefficients α and β in Eqs. (31) and (32) were set to
1. Local energy E (�, t ) is defined as in Eq. (3): The total
(harmonic and anharmonic) potential energy of a spring is
assigned half to each neighboring atom. The results are in
Fig. 9. The initial pulse (u0,1 = ±0.3) is the same as in previ-
ous computations, except the total energy is no longer 0.27E0

as in previous computations, because there is additional an-
harmonic energy, −27% in V3 and +12% in V4. The initial

pulse has the same harmonic amplitudes AQ and phases φQ as
previously, but anharmonic terms alter these fairly quickly. As
the pulse spreads and �E (�, t ) spreads out, anharmonic forces
diminish. Amplitudes and phases evolve less, becoming more
stable. As t increases, local energy propagation from (x, t )
reverts more closely to ballistic. This is especially noticeable
in the V3 case, where atoms 10 − 16 seem little affected by
anharmonic effects. The V3 case might be especially diffi-
cult to analyze perturbatively, because in lowest order and
1d, anharmonic decay is essentially kinematically forbidden,
requiring higher order effects to change AQ and φQ. It would
be interesting to study the anharmonic pulse at finite T where
anharmonic effects do not disappear as the pulse propagates.

X. CONCLUSIONS

Time evolution of pulse energy gives useful pictures and
insights into nonlocal phonon transport. The main conclusions
are: (1) Different forms of pulse insertions give interest-
ingly diverse pulse energy shapes. (2) Atomistic local energy
E (�, t ) is not uniquely defined and has surprisingly different
details when different sensible definitions are used. (3) A
continuum picture works well and enables simple formulas
for ballistic propagation. (4) A nonlocal version of Boltzmann
theory for the collisionless phonon gas is very successful, and
the phonon insertion term (∂NQ/∂t )ext has an unambiguous
form. (5) Mildly disordered harmonic systems have interest-
ing pulse evolution, but are not well explained by nonlocal
Boltzmann theory in relaxation time approximation (RTA).
Ambiguity about temperature definition in RTA is a difficulty;
previous ideas are confirmed. (6) Pure diffusion does not
work at the local level, when phonon quasiparticles are good
approximations, even after long pulse evolution times. (7) The
pulse evolution of 1d anharmonic chains at T > 0 deserves
further study.
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APPENDIX A: PHONON RELAXATION
FROM MASS DISORDER

The Fermi golden rule for phonon decay by defects is
1/τQ = (2π/h̄)

∑
Q′ |VQQ′ |2δ(h̄ωQ − h̄ωQ′ ). When the inter-
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action VQQ′ arises from mass disorder, the decay rate is

(
1

τQ

)
imp

= π

2h̄

Ni

N

(
�M

M∗

)2

(h̄ωQ)2D(ωQ), (A1)

where �M = M∗ − M is the mass difference between impu-
rities (M∗) and pure (M) masses, and Ni/N is the fraction of
impurities. The density of vibrational states of the ordered
harmonic chain is

D(ω) = 1

h̄N

∑
Q

δ(ω − ωQ) = 2

π h̄

1(
ω2

M − ω2
)1/2 . (A2)

Then the decay rate is

1

τQ
= ε

ω2
Q(

ω2
M − ω2

Q

)1/2 , where ε = Ni

N

(
�M

M∗

)2

, (A3)

and ε = 1/90 in our simulations.
The formula (27) for boundary-limited diffusivity can be

written as

D(L) = ωMa2

2

s

πε

∫ π/2

0
dx

cos3 x

cos2 x + s sin2 x
, (A4)

where s = 2Lε/a and ωMa2/2 = 1 is the unit of diffusivity.
At large s, the diffusivity scales as

√
s/ε ∝ √

(L/ε).

APPENDIX B: SOLUTION OF BOLTZMANN
EQUATION IN RTA

Using Eq. (29) and version (1) of Eq. (30), the equation for
�T is

kB�T(1)(k, ω) = A(k, ω)

B(k, ω)
, (B1)

where

A(k, ω) = 1

N

∑
Q

�E ext
Q /τQ

1/τQ − i(ω − kvQ)
, (B2)

B(k, ω) = 1

N

∑
Q

1

τQ

−i(ω − kvQ)
[ h̄ωQ

kB

∂nQ

∂T

]
1/τQ − i(ω − kvQ)

. (B3)

Once �T(1)(k, ω) is computed, the corresponding local energy
�E(1)(k, ω) can be found and Fourier transformed to get
�E(1)(r, t ),

�E(1)(k, ω) ≡
∑

Q

h̄ωQ[NQ − nQ(T0)]

= C(k, ω)kB�T(1)(k, ω) + D(k, ω), (B4)

where

C(k, ω) = 1

N

∑
Q

1/τQ
[ h̄ωQ

kB

∂nQ

∂T

]
1/τQ − i(ω − kvQ)

, (B5)

D(k, ω) = 1

N

∑
Q

�E ext
Q

1/τQ − i(ω − kvQ)
. (B6)

The factor in square brackets ([ ]) in Eqs. (B3) and (B5) [and
later in Eq. (B9)] becomes 1 in the classical limit, which is
needed for comparison with the numerical pulse spreading.

To implement version (2), use the simpler condition

�E(2)(k, ω) = kB�T(2)(k, ω). (B7)

Using Eq. (29) and version (2) of Eq. (30), the equation for
�E is

�E(2)(k, ω) = kB�T(2)(k, ω) = D(k, ω)

F (k, ω)
, (B8)

where, except for omission of factors of 1/τQ in the numera-
tor, D(k, ω) is the same as A(k, ω) and F (k, ω) is the same as
B(k, ω). To be explicit,

F (k, ω) = 1

N

∑
Q

−i(ω − kvQ)
[ h̄ωQ

kB

∂nQ

∂T

]
1/τQ − i(ω − kvQ)

. (B9)

Details of the numerical calculations, especially the diffi-
cult Fourier transforms needed to get pulse shapes in (x, t )
space, are in the Supplemental Materials [8].

APPENDIX C: LAPLACE TRANSFORM METHOD
OF VERMEERSCH ET AL.

Vermeersch et al. [2] used mixed Fourier (for space
variables r ↔ k) and Laplace (for time variables t ↔ ω)
transforms to solve for the case of a V1 pulse in one dimen-
sion. They used version (1) of Eq. (30), but did not transform
from (k, ω) to (r, t ). However, they found interesting identities
in Laplace space, which we will here pursue for arbitrary
E ext

Q , not just the V1 choice E ext
Q = E0/N . The basis for their

identities are the Fourier equations

1

N

∑
r

F (r, t ) = [F (k, t )]k=0, (C1)

1

N

∑
r

r2F (r, t ) = −
[

d2

dk2
F (k, t )

]
k=0

. (C2)

Together, these give a result for a mean square displacement

〈r2〉F =
∑

r r2F (r, t )∑
r F (r, t )

, (C3)

where F is an arbitrary distribution.
When the time variable is transformed to Laplace

space rather than Fourier space, Q(r, ω) becomes∫ ∞
0 dt exp(−ωt )Q(r, t ). The symbol ω previously used

for the Fourier variable is now used for the Laplace variable.
The solution of the Boltzmann equation is then exactly the
same as previously, Eqs. (B1) and (B4), except that the
Fourier variable −iω becomes the Laplace variable ω. Using
the fact that sums over Q contains pairs Q and −Q with
v−Q = −vQ, which causes imaginary parts to vanish, and
using the notations CQ = h̄ωQdnQ/dT and �Q = vQτQ, the
functions that determine �T (k, ω) and �E (k, ω) are

A(k, ω) = 1

N

∑
Q

�E ext
Q (1 + ωτQ)

(1 + ωτQ)2 + (k�Q)2
, (C4)

B(k, ω) = 1

N

∑
Q

CQ

τQ

[
1 − (1 + ωτQ)

(1 + ωτQ)2 + (k�Q)2

]
, (C5)
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C(k, ω) = 1

N

∑
Q

CQ(1 + ωτQ)

(1 + ωτQ)2 + (k�Q)2
, (C6)

D(k, ω) = 1

N

∑
Q

�E ext
Q τQ(1 + ωτQ)

(1 + ωτQ)2 + (k�Q)2
. (C7)

Then recalling that �T (k, ω) = A(k, ω)/B(k, ω), Eqs. (C4)
and (C5) give Eq. (4) of Vermeersch et al. in the V1 case.
They use CQ → kB, the classical limit, and set E ext

Q = E0 →
1 (which they call a unit pulse). The general answer for the
integrated temperature rise of a pulse is

dT (ω) ≡ 1

N

∑
r

�T (r, ω) = 1

ω

∑
Q

�E ext
Q

1+ωτQ∑
Q

CQ

1+ωτQ

. (C8)

For the V1 pulse in the classical limit, this gives the to-
tal pulse temperature rise as

∑
r kB�T (r, ω) = E0/ω. Then

the inverse Laplace transform gives the result of Ref. [2],∑
r kB�T (r, t ) = E0. However, for other pulse forms of E ext

Q ,
there is no analytic inverse Laplace transform of Eq. (C8).
Also, Vermeersch et al. incorrectly identify

∑
r kB�T (r, t )

with the pulse energy
∑

r �E (r, t ). This identification is ver-
sion (2) of Eq. (30), but is inconsistent with version (1),
which they (sensibly) adopt as the preferred RTA approxima-
tion. Fortunately, the erroneous identification of �E (r, t ) with
kB�T (r, t ) goes away in the V1 case when summed over all
r. Using the correct RTA version

�E (k, ω) = kB
A(k, ω)

B(k, ω)
C(k, ω) + D(k, ω), (C9)

gives the result

�E (k = 0, ω) = 1

ωN

∑
Q

�E ext
Q = E0

ω
(C10)

for all �E ext
Q , not just the V1 case. Doing the inverse Laplace

transform then shows that the RTA in version (1) correctly
conserves the pulse energy in time,∑

r

�E (r, t )RTA,(1) = E0, (C11)

not just for the V1 pulse, but for arbitrary choice of �E ext
Q .

This is not surprising; version (1) of Eq. (30) enforces overall
energy conservation in RTA. Version (2) does not and does
not obey Eq. (C11). The Vermeersch et al. identification of
�E (k, ω) with kB�T (k, ω) is correct in the k = 0 limit, but
only for the V1 pulse, not for others.

Now examine the mean square displacements, using
Eq. (C2). For the case �T (k, ω) = A(k, ω)/B(k, ω), the
answer in Laplace space is

nT (ω) ≡ 1

N

∑
r

r2�T (r, ω) = 2

∑
Q

�E ext
Q �2

Q

(1+ωτQ )3∑
Q

ωCQ

(1+ωτQ )

+ 2

∑
Q

�E ext
Q

(1+ωτQ )[∑
Q

ωCQ

(1+ωτQ )

]2

∑
Q

CQ�2
Q/τQ

(1 + ωτQ)3
. (C12)

For the V1 pulse this simplifies to

1

N

∑
r

r2�T (r, ω) = 2

ω2

∑
Q

CQ�2
Q/τQ

(1+ωτQ )2∑
Q

CQ

(1+ωτQ )

, (C13)

which is Eq. (6) of Vermeersch et al.
The point of these calculations is that in principle we could

do inverse Laplace transforms to get nT (t ) from nT (ω) and
dT (t ) from dT (ω), and then take their ratio nT (t )/dT (t ) to get
the mean square displacement 〈r2(t )〉T of the pulse temper-
ature profile �T (r, t ). Analytic inversions are not available.
Vermeersch et al. instead look at the limit of high ωτQ, which
should give 〈r2(t )〉T at small times t , and also at the limit of
low ωτQ, which should give 〈r2(t )〉T at large times t .

At large ωτQ, the ω dependencies of nT (ω) and dT (ω) are

1

N

∑
r

r2�T (r, ω) → 2

ω3

∑
Q

[
�E ext

Q

/
τQ

]
v2

Q

/ ∑
Q

[CQ/τQ]

+O
(

1

ω4

)
, (C14)

1

N

∑
r

�T (r, ω) → 1

ω

∑
Q

[
�E ext

Q

/
τQ

]/ ∑
Q

[CQ/τQ]

+O
(

1

ω2

)
. (C15)

The inverse Laplace transform of 2/ω3 is t2, and of 1/ω is 1.
Then we get ballistic behavior in the short time limit,

〈r2〉T → 〈v2〉T t2 (C16)

where the mean square velocity of the temperature pulse is

〈v2〉T →
∑

Q

[
�E ext

Q

/
τQ

]
v2

Q

/ ∑
Q

[
�E ext

Q

/
τQ

]
. (C17)

This agrees with Eq. (8) of Vermeersch et al. in the V1 case.
It also resembles our result for the collisionless energy pulse
propagation, namely Eqs. (9) or (23) plus Eq. (13). However,
in contrast with the collisionless limit, there is an extra Q and
T -dependent factor 1/τQ in the weights of 〈v2〉 in Eq. (C17).
This is clearly wrong; collisions cannot alter the free phonon
ballistic propagation velocity at short times when few or no
collisions occur.

At small ωτQ, the ω dependencies of nT (ω) and dT (ω) are

1

N

∑
r

r2�T (r, ω) → 2

ω2

[ ∑
Q �E ext

Q

][ ∑
Q CQ�2

Q/τQ
]

[
∑

Q CQ]2

+O
(

1

ω

)
, (C18)

1

N

∑
r

�T (r, ω) → 1

ω

[∑
Q

�E ext
Q

]/[∑
Q

CQ

]

+O(1). (C19)

The inverse Laplace transform of 2/ω2 is 2t , and of 1/ω is 1.
Then we get diffusive behavior in the long time limit,

〈r2〉T → 2Dt, where D = κ/C

κ =
∑

Q

CQ�2
Q/τQ and C =

∑
Q

CQ. (C20)
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This result is independent of how the pulse inserts energy
�E ext

Q , and the diffusivity D has the correct macroscopic
value. This contradicts the argument that pure diffusion is not
in the nonlocal PBE.

Why would the nonlocal PBE give correct long time dif-
fusion but incorrect short time ballistic? The answer, we
think, is that version (1) of RTA, namely energy conservation∑

Q h̄ωQQ/τQ does not work when τQ → ∞.
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