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Subdiffusive Thouless time scaling in the Anderson model on random regular graphs
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The scaling of the Thouless time with system size is of fundamental importance to characterize dynamical
properties in quantum systems. In this work, we study the scaling of the Thouless time in the Anderson model
on random regular graphs with on-site disorder. We determine the Thouless time from two main quantities: the
spectral form factor and the power spectrum. Both quantities probe the long-range spectral correlations in the
system and allow us to determine the Thouless time as the timescale after which the system is well described
by random matrix theory. We find that the scaling of the Thouless time is consistent with the existence of a
subdiffusive regime anticipating the localized phase. Furthermore, to reduce finite-size effects, we break energy
conservation by introducing a Floquet version of the model and show that it hosts a similar subdiffusive regime.
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I. INTRODUCTION

Understanding the emergence of ergodicity in closed quan-
tum many-body systems has received a lot of attention in
the last two decades [1–6]. Despite the unitary dynamics,
it is believed that generic quantum many-body systems lo-
cally thermalize under their dynamics. However, in a seminal
work, Basko, Aleiner, and Altshuler [7] provided evidence
that interacting systems subject to quenched disorder can un-
dergo a transition separating an ergodic/thermal phase from
a localized one even at finite temperature. This phenomenon
generalizes the paradigm of Anderson localization [8] to
the case of interacting particles and has stimulated exten-
sive research on the resulting many-body localization (MBL).
Subsequently, several works confirmed the existence of the
transition numerically [9–13] and characterized different as-
pects of the two phases, ranging from dynamical entanglement
production to Fock-space structure [10,14–30]. In the er-
godic phase, the system locally thermalizes and the eigenstate
thermalization hypothesis holds [1–6,9,11,31–34]. The MBL
phase is characterized by the emergence of a robust form
of integrability, which is described by an extensive num-
ber of quasilocal integrals of motion [35–38]. The existence
of an MBL phase has opened new exciting possibilities,
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e.g., the discovery of new quantum phases of matter out-of-
equilibrium such as discrete time crystals [39–44] and might
have important applications to quantum memory realizations.

Although MBL has been extensively studied, many of its
aspects remain puzzling and they are still under intense de-
bate. For instance, the mechanism and nature of the transition
is still unclear (see also the discussion in [45]). This is, for
instance, exemplified by early scaling attempts which yield
critical exponents in conflict with general constraints, i.e., the
so-called Harris bounds [46–54]. The Fock-space structure
and the multifractal nature of the eigenstates close to the MBL
transition within the ergodic side have been at the center of
a recent spur of research activity [24–28,30]. In the ergodic
phase, numerical simulation has found subdiffusive transport
at intermediate timescales [32,33,55–64], contrary to the ex-
pected diffusive behaviors of a metal. The subdiffusion has
been argued to stem from the existence of rare Griffith regions
which suppress transport. However, the existence of these
regions and of the corresponding subdiffusive behavior as a
phase, separated from the diffusive one, is still under intense
investigation and it is not clear whether a phase transition
between diffusion and subdiffusion exists. Furthermore, sev-
eral recent works have been questioning the existence of a
genuine MBL transition [65–67]. In these works, using exact
diagonalization (ED), a systematic flow towards the ergodic
regime was observed with increasing system sizes, which
would imply that MBL is not a stable phase of matter. Subse-
quent works pointed out, however, that this result might be due
to the limitation in system sizes reached using ED [68–70],
or by a large finite-size crossover regime before the MBL
phase [45,71,72]. For instance, also systems having a firmly
established metal-insulator transition, such as the Anderson
model on random regular graphs (RRGs) (locally tree-like
graphs without boundaries, see Fig. 1) [68,70], present similar
finite-size corrections compared to the MBL problem in one
dimension.
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FIG. 1. Sketch of a random regular graph (RRG) with diameter
L = 6 and N = 2L = 64 nodes and branching number K = 2, i.e.,
each node has K + 1 = 3 neighbors. The particle can hop along the
edges (black lines) of the graph with hopping amplitude t = 1 and
is subject to on-site disorder μi (color intensity) on the nodes of the
graph (red dots of different intensity).

Settling this controversy is hindered by the exponential
scaling of the Hilbert space with the size of the system
and other approaches to make progress are therefore needed.
Given these difficulties, a promising route is to focus on more
tractable models that reproduce the main features of MBL
systems. Following the original idea of mapping a disordered
quantum dot to a localization problem in the Fock space [73],
the problem of Anderson localization in hierarchical struc-
tures [74], such as RRGs, has been suggested to be a useful
proxy to describe MBL systems [75,76]. In this spirit, the
sites of the RRG are interpreted as Fock space basis states of
the noninteracting model, the on-site energies as renormalized
random fields/potentials, and the hopping between sites as an
interaction connecting noninteracting states. The reduction of
the (one-dimensional) MBL problem to the Anderson model
on the RRG is a simplification on several accounts: (i) the
structure of the Fock space is a hypercube with extensive
connectivity of nodes, while in RRG models the connectivity
is fixed and intensive; (ii) the disorder in real space translates
to correlated disorder in Fock space, while in the RRG model
the on-site energies are uncorrelated; (iii) the hypercube has
many short-range loops unlike RRG, but for both structures
the typical loop size is a finite fraction of the graph diameter.

Despite these differences, a range of works showed that
the two models share similarities in their ergodicity-breaking
behavior [77–87], dynamical [88–94] properties, as well as
finite-size corrections [95–98]. Thus, a better understanding
of the Anderson model on the RRG could shed light on the
MBL problem.

Furthermore, the Anderson model on the RRG is not just a
proxy for the interacting problem but exhibits a rich and inter-
esting phenomenology on its own. Recently, it was argued that
the Anderson model on the RRG might host a new intermedi-
ate phase in between the ergodic and the localized one. This
phase, dubbed the nonergodic extended (NEE) phase [75–79],
might be composed by critical/multifractal states, i.e., states

(a) (b)

FIG. 2. (a) Spectral form factor and (b) power spectrum of Flo-
quet model Eq. (2) for the system size L = 14 and disorder strength
W/T = 4.0, 10.0, 16.0 in units of the Floquet half-period T . The
Thouless time τTh and Thouless momentum kTh are defined as the
point where the spectral form factor or power spectrum fit aligned
with the GOE prediction. The black dashed lines are the GOE be-
havior, KGOE(τ ) ∼ τ and PGOE(k) ∼ 1/k. The black solid lines are
the Poisson behavior, KPoisson(τ ) ∼ O(1) and PPoisson(k) ∼ 1/k2. The
Heisenberg time is the point where the GOE and Poisson values meet
at τ = 1 and k = 0.5.

having strong space fluctuations. Thus, unlike the Anderson
model on the hypercubic lattice Zd with d > 2, where multi-
fractal states appear only at the localization transition point,
in the RRG an entire phase composed by critical states might
exist [99]. However, several works pointed out that this inter-
mediate phase in RRG might be merely a finite-size effect and
therefore ergodicity would be restored in the thermodynamic
limit [84,92,94–96,98]. Another intriguing suggestion is the
possible existence of a subdiffusive phase. By inspecting the
spread of a particle initially localized in one of the sites
of the RRG, the authors of [88–91] provided evidence that
the transport at finite timescales could be subdiffusive. This
subdiffusive propagation was found for a range of disorder
strengths within the extended phase and long timescales. This
propagation should be compared with the behavior of the An-
derson model on the hypercubic Zd lattice, where subdiffusion
happens only at the critical point.

Our work aims to shed light on the existence of sub-
diffusion in the Anderson model on the RRG solely from
the spectral perspective. Our main probes are the spectral
form factor and the power spectrum. Both the spectral form
factor [65,68,70] and the power spectrum [100–104] are mea-
sures of long-range correlations between eigenvalues of the
Hamiltonian. Importantly, these two measures are efficient
probes for the dynamics in the system. The Thouless time,
tTh, defined as a timescale beyond which the system dynamics
is universal and described by the random matrix theory of
Gaussian ensembles [105] (see Fig. 2) can be extracted from
the spectral form factor and the power spectrum. The Thouless
time can be interpreted as the time that a particle needs to
diffuse throughout the system. As a result, depending on the
scaling of tTh ∼ L1/β with system size L (diameter of the
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graph in the case of RRG), one can define different kinds of
propagation based on the scaling exponent β, ranging from
superdiffusion, β > 1, and diffusion, β = 1 to subdiffusion,
0 < β < 1, and localization, β → 0. In particular, the Thou-
less time should be compared to the Heisenberg time, tH ∼ 2L,
which is the largest meaningful timescale and is defined as
the inverse level spacing of the energy spectrum. The system
is localized if tTh/tH goes to a finite constant in the thermo-
dynamic limit. By analyzing the scaling of tTh with system
size L, we confirm the existence of a subdiffusive regime and
discuss its finite-size effects. To better pin down the subdiffu-
sive behavior by reducing finite-size effects, we allow energy
fluctuations by introducing a Floquet version of the Anderson
model on the RRG. In agreement with the static model, we
find also for the Floquet model subdiffusive transport for a
wide range of parameters anticipating the Anderson transition.

The rest of the work is organized as follows. In Sec. II
we define the static and Floquet models and discuss their
phase diagrams. In Sec. III, we introduce the two dynamical
probes, the spectral form factor, and the power spectrum. The
main results of our work are presented in Sec. IV and Sec. V
contains concluding remarks.

II. MODELS

We consider a single-particle hopping on a RRG with N
sites, subject to on-site disorder {μi}. The Hamiltonian is
given by

H =
N∑

i=1

μi|i〉〈i| −
∑

{i, j}∈E

|i〉〈 j|, (1)

where {μi} are independent random variables with box dis-
tribution [−W/2,W/2] and the sum in the second term runs
over the edges {i, j} of the graph, i.e., the set of connections
between sites in a given realization of the RRG (cf. Fig. 1 for
an example, where edges are indicated by lines). Each site
of an RRG has a fixed number of neighbors K + 1, where
K is the branching number, while the precise configuration
of edges in the graph is subject to random sampling. In this
work, we focus on the smallest nontrivial branching number
K = 2 different from a one-dimensional problem, such that
each site has three neighbors. The total number of nodes in
the graph is N = 2L, but we refer to it via the diameter of the
graph L ∼ ln N to make the analogy with the Hilbert space
of 1/2-spin chains of length L. This model has an Anderson
localization transition at WAT ≈ 18.1 [76,79,81,96], which is
blurred by a finite-size crossover regime and appears at lower
disorder in finite graphs [45,84,92,94–96,98]. For instance,
the average level spacing for L = 17 has crossings close to
W ≈ 16 (see Fig. 3).

The Hamiltonian in Eq. (1) hosts a single-particle mobility
edge, which separates extended from localized states as a
function of energy and its density of states has a nontrivial
shape peaked close to the edges of the spectrum (see Ap-
pendix A and cf. [106]). To overcome finite-size effects from
the localized energy bands and from the energy dependence
of the density of states, we introduce a Floquet version of the
Anderson model on RRG

U = exp(−iH1 T ) exp(−iH2 T ), (2)

(a)

(b)

FIG. 3. Average consecutive level-spacing ratio 〈r〉 as a function
of disorder W (W/T ) for different matrix size N = 2L . (a) 〈r〉 of
10% of the Hamiltonian spectrum centered at energy E = 0 using
2000–5000 disorder realizations for sizes L < 16 and � 1000 for
L = 17. The gray line is the critical disorder Wc = 18.17 ± 0.01 [96].
(b) 〈r〉 for Floquet model Eq. (2) using 10 000 disorder realizations
for L < 13 and 4000–6000 for L = 14. The solid red and blue lines
are the GOE and Poisson value, respectively. Error bars are given by
68% bootstrap confidence interval.

where H1 and H2 are hopping Hamiltonians as in Eq. (1) on
the same RRG but with different diagonal disorder {μi}. 2T is
the driving period and we set T = 2 for the rest of the work.
The results are not qualitatively affected by the concrete value
of T , see Appendix C for details. Both models, static and
periodic, have transitions from Wigner-Dyson to Poisson level
statistics as can be seen in the average gap ratio r in Fig. 3.

The Anderson localization transition in the static case,
Eq. (1), has been extensively studied [74–79,81,83–86,91–
98] and we expect the transition in the driven model to have
similar features. The advantage of introducing a Floquet drive
is the flat density of states on the unit circle, which allows us to
perform an unbiased study of long-range spectral correlations.

In the following we refer the eigenvalues {En} of the static
model, Eq. (1), as “spectrum” and {θn = arg(ωn)} of the
driven model, Eq. (2), as the eigenphases or quasienergies,
where {ωn = eiθn} are the eigenvalues of U , which lie on the
complex unit circle. We expect that the Floquet model (2)
yields cleaner results for correlations in the spectrum at large
phase differences between the eigenvalues, which is con-
firmed by our numerical results.

III. METHODS

In this section, we introduce the quantities used to study
spectral correlations and detail the computation of the Thou-
less time.
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A. Level spacing

We start with a well-known probe to detect short-range
spectral correlations, which are captured by the statistics of
spacings between two adjacent eigenvalues

si := Ei+1 − Ei. (3)

The spacing ratio, defined as

ri = min(si, si+1)

max(si, si+1)
, (4)

has been found to be a useful resource to separate a delo-
calized phase from a localized one [9,107]. In an ergodic
phase, the spacings between eigenvalues are distributed like
the ones of a Gaussian random matrix. In contrast, in a local-
ized phase energy levels tend to cross each other as a function
of a parameter with little interaction between eigenvalues
and the spacings are thus Poisson distributed. In particular,
for the Gaussian orthogonal ensemble (GOE) the average
spacing ratio is given by the Wigner-Dyson value 〈r〉GOE ≈
0.53590, while for Poisson spectra it is 〈r〉Poisson = 2 ln 2 −
1 ≈ 0.38629 [9,107] where 〈. . .〉 indicates averaging over the
disorder realization of the graph and diagonal disorder as well
as eigenstates.

The averaged energy spacing is the smallest energy scale
in the problem and it defines the Heisenberg time

tH = 2π/〈si〉. (5)

Consequently, the Heisenberg time tH is the largest mean-
ingful timescale in a finite system, on which discrete energy
levels can be resolved. It is proportional to the dimension of
the Hilbert space tH ∝ 2L.

B. Spectral unfolding

The r-statistics defined in Eq. (4) provides only limited
insight into the dynamics of the system because it only in-
volves the computation of small energy scales (asymptotically
large times). As a result, the r-statistics can separate only
a delocalized phase from a localized one, without providing
information about the transport properties.

To inspect finite timescales relevant for the transport, we
have to consider the long-range spectral correlations. How-
ever, before defining the two main measures to analyze energy
correlation, we first need to introduce the notion of spectrum
unfolding. To remove the influence of the nonuniform density
of states in the spectra of the static Hamiltonian, Eq. (1),
we perform an unfolding of the spectrum, which maps the
eigenvalues {En} of the Hamiltonian with nonuniform density
of states to the “unfolded” eigenvalues {εn}, which have a
homogeneous density of states.

Instead of working directly with the density of states, we
use the cumulative distribution function (CDF), which is de-
fined by the fraction of eigenvalues smaller than E :

CDF(E ) = #(En < E )

N
, (6)

where for a given energy E , #(En < E ) ∈ N is the number of
eigenvalues smaller than E . For each disorder realization, this
function is the empirical CDF, a step-wise function with steps
of size 1/N at the positions of the eigenvalues {En}.

To obtain the average CDF over nreal disorder realizations,
we combine the spectra {E (i)

n } of all realizations and sort
the resulting nrealN values. The empirical CDF of these joint
spectra is then a step function with steps of size 1/(nrealN )
at the positions of the sorted values {E (i)

n }. For practical pur-
poses, the obtained average empirical integrated density of
states CDFavg(E ) is smoothed by a cubic spline to minimize
statistical fluctuations.

Each eigenvalue E (i)
n of a realization (i) can then be

mapped to its unfolded and normalized counterpart

ε(i)
n /N = CDFavg(E (i)

n ) ∈ [0, 1], (7)

where the density of states of the unfolded ε(i)
n is constant.

The procedure is illustrated in Fig. 8 in Appendix A. For mea-
suring the Thouless time in units of the mean level spacing,
it is more convenient to work with an equidistant spectrum
with unit mean level spacing, thus we work with the unfolded
spectrum

ε(i)
n ∈ [0, N]. (8)

Note that in the case of the Floquet model defined in Eq. (2),
spectral unfolding is not needed and the simple rescaling
ε(i)

n = Nθ (i)
n /2π yields a uniform spectrum with unit level

spacing similar to ε in Eq. (8). Henceforth the realization
index (i) will be dropped from the unfolded spectrum {ε(i)

n }
and we use only {εn} to denote the nth level of the spectrum,
making the disorder index implicit.

C. Spectral form factor

The first probe that we introduce is the spectral form factor,
defined as [105]

K (τ ) =
〈

1∑
n g2(εn)

∣∣∣∣∣
∑

n

g(εn)e−i2πεnτ

∣∣∣∣∣
2〉

, (9)

where {εn} is the Hamiltonian unfolded spectrum or the Flo-
quet quasienergy spectrum. The function

g(εn) =
{

exp[−(εn − ε̄)2/2η2σ 2], Hamiltonian,
1, Floquet,

(10)

is a filter for mitigating spectral-edge effects in the static
unfolded spectra. ε̄ is the center of the spectrum for a given
disorder realization, σ is the width of the spectrum, and η

is a parameter which controls the relative width of the filter.
To avoid finite size-effects from the localized energy bands
we focus on only 60% of the states centered at the mid-
dle of the spectrum ε̄. In addition, we apply the Gaussian
filter mentioned above and set η = 0.3 through the entire
work, except where specified otherwise. The definition of the
spectral form factor given in Eq. (9) guarantees K (τ ) = 1 at
asymptotic large times τ ≈ τH = 1. The spectral form factor
for GOE spectra is described by a linear growth, KGOE(τ ) ≈
2τ − τ ln(1 + 2τ ) [108] for τ < 1, while for a Poisson spec-
trum, KPoisson(τ ) ≡ 1.

The Thouless time τTh identifies the timescale after which
the dynamics is described by random matrix theory. In partic-
ular, for the times τ < τTh the quantum dynamics is governed
by the locality of the system, quantum correlations spread dy-
namically before reaching the boundary of the system. Thus,
in the way how τTh scales with L, it is possible to probe
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different classes of the propagation of correlations, e.g., diffu-
sion, subdiffusion or localized states. At later times, τ > τTh,
quantum correlations were scrambled to a large extent across
all lengthscales, and thus at such late times the system be-
comes indistinguishable from a random matrix model, leading
to the GOE behavior of the spectral form factor. Hence, the
Thouless time τTh corresponds to the time beyond which K (τ )
ramps linearly and can be approximated with the behavior
of KGOE(τ ), i.e., within a certain threshold [K (τ > τTh) ≈
KGOE(τ )]. Figure 2 shows the typical behavior of K (τ ) for
a fixed system size and several disorder strengths. As one can
observe in Fig. 2, it is possible to identify a timescale τTh,
from which K (τ ) follows the GOE curve (dashed line). In
Appendix B the procedure for extracting the Thouless time
is explained in detail.

To analyze the scaling of the Thouless time with system
size, we rescale it with the actual Heisenberg time in Eq. (5):

tTh = τThtH. (11)

As we will discuss later in Sec. III E, for a diffusive system
in a tree-like structure we expect tTh ∝ L like in the classical
diffusion problems on Bethe lattice [109] or RRG [110], while
in the localized phase, the spectrum is Poissonian and thus
KPoisson(τ ) ≡ 1 and tTh = tH ∝ 2L.

D. Power spectrum

A complementary measure to detect long-range level cor-
relations is the spectral power spectrum. It can be defined
through the spectral statistic {δn} given by

δn := εn − n, (12)

with n ∈ {1, . . . , N} and the Hilbert space dimension N = 2L.
For both models, static and Floquet, 〈εn〉 = n. Consequently,
{δn} measures the distance of the nth level from a rigid
equidistant spectrum.

The sequence {δn} can be interpreted as a discrete “time”
series with zero mean and the index n as “time-point.” A
useful way to analyze this time series {δn} is to consider its
Fourier transform, the power spectrum:

P(k) = 〈|F (δn)|2〉 =
〈

1

N

∣∣∣∣∣
N∑

n=1

gnδn exp

(−2π ikn

N

)∣∣∣∣∣
2〉

. (13)

As for the spectral form factor, we introduced the filter func-
tion [cf. Eq. (10)]

g(n) =
{

exp[−(εn − ε̄)2/2η2σ 2)], Hamiltonian,
1, Floquet,

(14)

to reduce finite-size energy edge effects for the Hamilto-
nian model. N = ∑

n g2
n is the normalization constant of the

Fourier transform in the filtered spectrum. Like for the spec-
tral form factor, ε̄ and σ 2 are the mean and variance of the
unfolded spectrum for each disorder realization. The strength
of the filtering is set to η = 0.3. For reducing edges effects
even further, the edges of the spectrum are cutoff and only
60% of the spectrum centered at the middle of the spectrum
ε̄. 1 � k � Ny is an integer, with Ny = N/2 being the largest
possible meaningful frequency in the system, called the
Nyquist frequency.

For Poisson spectra, when there are no correlations at any
range in the spectrum, this time series is similar to a sam-
ple of a Brownian motion with displacement δn. In the limit
k/N 
 1 and N � 1, the asymptotic form of the power spec-
trum is given by PPoisson(k) = 1/ f 2, where f is the Fourier
frequency f = 2πk/N [111]. In the GOE case, the asymp-
totic form is PGOE(k) = N

2πk = 1/ f . This 1/ f noise has been
argued to be a unique characterization for quantum chaotic
systems [111–113].

The variable k in the power spectrum does not have units of
inverse time, it is rather a dimensionless “energy momentum”
alluding to the fact that it comes from the argument of a
Fourier transform of an energy coordinate. In the same spirit
of the spectral form factor, the dimensionless Thouless en-
ergy momentum kTh is interpreted as the smallest momentum
for which P(k) ∼ PGOE(k) ∝ 1/k̃ with k̃ = k/N (see Fig. 2).
l = 1/k can be interpreted as an average energy distance in the
spectrum, henceforth at distances l > lTh, with lTh = 1/kTh,
the levels are uncorrelated while at l < lTh they are correlated
and well described by random-matrix theory. Figure 2 shows
the power spectrum as a function of k for L = 17 and several
disorder strengths. The dashed line in Fig. 2 is the GOE
behavior, P(k) ∝ 1/ f , from where one can read the Thouless
momentum kTh.

In analogy with the spectral form factor, the Thouless time
is given in units of the Heisenberg time

tTh = kThtH, (15)

where we use the same expression for tH as in Eq. (11). In
Appendix B the procedure for computing kTh is explained in
detail.

E. (Sub)diffusion and Thouless time

Having defined the spectral form factor and the power
spectrum, our main probes we will use to detect long-range
correlations in the energy spectrum, we now discuss the rela-
tions between (sub) diffusion and the scaling of the Thouless
time with L.

Let us start by pointing out the differences between the
propagation in hypercubic, Zd -like, lattices and hierarchical
structures, e.g., RRG or the Bethe lattice. Diffusive dynamics
is usually defined through the spread of an initially local-
ized wave packet. In the Zd lattice, diffusion is quantified
by the Gaussian profile of a propagating wave packet. As
a result, in the Zd lattice the survival probability decays as
�(t ) ∼ t−d/2 and the mean squared displacement �X 2(t ) ∼
t2β with β = 1/2. Subdiffusive propagation is consequently
given by β < 1/2. In particular, the related Thouless
timescales with the linear system size as tTh ∼ L1/β , which
is the time to cross the system. On the other hand, in diffu-
sive processes on tree-like structures the survival probability
decays exponentially fast ∼e−(K )t , with a certain decay rate
(K ), depending on the branching number K , and the mean
square displacement grows as ∼t2β with β = 1 [109,110]. As
a result, linear growth of the Thouless time with the diameter
L (tT h ∼ L) implies diffusion and subdiffusion takes place if
�X 2(t ) ∼ t2β (tTh ∼ L1/β ) with β < 1.

In a localized phase, where the degrees of freedom are
frozen at long times, the Thouless time is comparable with
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 4. Spectral form factor, Eq. (9), for the unfolded Hamiltonian spectrum for different system sizes L = 8, 10, 12, 14, 16 at (a) W = 4.0,
(b) 8.0, (c) 12.0, (d) 14.0 and for Floquet quasienergies for L = 8, 10, 12, 14 at (e) W/T = 4.0, (f) 10.0, (g) 14.0, (h) 16.0. In the static case,
only 60% of the spectrum centered at the middle are taken and the disorder average is performed over 2000–5000 disorder realizations The
time τ ∈ [10−4, 101] is continuous. In the Floquet case, time τ = t/N is discrete and given by an integer t ∈ [1, n] normalized by the matrix
size N , with n = 106 for 8 < L < 14, n = 104 for L = 8, and n = 107 for L = 14.

the Heisenberg time. Indeed, the ratio tTh/tH can be used
as a probe to detect an delocalization-localization transition.
In the extended phase tTh/tH → 0, while in a localized one
tTh/tH ∼ O(1) in the thermodynamic limit.

IV. RESULTS

In the following, we present results obtained by solving the
models in Eqs. (1) and (2) using exact diagonalization tech-
niques and computing the spectral form factor and the power
spectrum to extract the Thouless time as a function of system
size. Unlike the static Hamiltonian case, the critical disorder,
WAT, for the Anderson transition in the Floquet model, Eq. (2),
is unknown. Thus, before starting our investigation on the
long-range correlations, we start with the short-range ones.
This preamble will allow us to obtain a rough estimate of the
critical value for the Floquet model, as well as to determine
the range of disorder strengths in which finite-size corrections
are negligible.

Figure 3 shows the r-statistics as a function of disorder
strength W and several system sizes L for both models. The
critical strength for the static Hamiltonian model in Eq. (1)
was estimated analytically at WAT ≈ 18.1 [76,79,81,96]. As
expected at weak disorder, the r-statistics is GOE and at
strong disorder the spectrum is Poisson. For the available
system sizes, the r-statistics in Eq. (4) shows crossings close
to W ≈ 16 < WAT with an apparent drift towards larger W
for growing graph diameters L, as one can observe in Fig. 3.
Therefore, at W � 16, when our system sizes are smaller than
the correlation volume, the physics will be largely dominated
by finite-size effects, and the system looks already localized.
Since we are interested in the transport properties of the

system, we will hence mainly focus on disorder strengths
W < 16. For our Floquet model of Eq. (2) there is no ex-
act estimate of the critical disorder. The finite-size gap ratio
crossover between the ergodic value and the Poisson one
happens around W/T ≈ 18. This value, W/T ≈ 18, provides
us with a lower bound of the exact critical value and we con-
sider disorders W/T > 18 to be already within the localized
phase. A more precise estimate of the critical disorder of the
Floquet model is not needed here and beyond the scope of
this work. Since we consider transport properties, we focus
on the delocalized part of the phase diagram at a safe distance
from the critical regime. We therefore restrict the discussion
to disorder strengths W < 16 for the Hamiltonian model and
W/T < 18 for the Floquet model.

Having ascertained a reliable delocalized regime for our
simulations, we first look at the raw data for the spectral form
factor K (τ ) and the power spectrum P(k) for the Hamiltonian
and Floquet model. The full data, for several system sizes and
relevant disorder strengths, can be found in Figs. 4 and 5,
respectively. As one can observe in Fig. 4, at weak disor-
der W = 4 and W/T = 6.0, deep in the ergodic phase, the
GOE “ramp” at late time τ , K (τ ) ≈ 2τ , gets longer with the
increasing system size. When approaching the Anderson tran-
sition, the GOE ramp gets shorter until it is barely visible at
disorder strengths W = 14.0 and W/T = 16.0. These disorder
amplitudes are not yet within the localized phase according to
the mean level spacing in Fig. 3, although in a finite system
they show very slow dynamics signaled by very long Thouless
times [90]. In Fig. 5 we show the power spectrum for the same
disorder values. Similarly to K (τ ), at low disorder W = 4.0
and W/T = 4.0 the power spectrum falls on top of the GOE
prediction [P(k) ∼ 1/k], which is shown by the dashed line.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 5. Power spectrum, Eq. (13), for the unfolded Hamiltonian spectrum for different system sizes L = 8, 10, 12, 14, 16 at (a) W = 4.0,
(b) 8.0, (c) 12.0, (d) 14.0 and for Floquet quasienergies for L = 8, 10, 12, 14 at (e) W/T = 4.0, (f) 10.0, (g) 14.0, (h) 22.0. In the static case,
only 60% of the centered at the middle are taken. The “energy momentum” k is normalized by the effective size of the spectrum Ñ = 0.62L ,
thus, the arguments of PGOE(k) and PPoisson(k) are also rescaled by Ñ . In the Floquet case, k is rescaled by the matrix size N = 2L such that the
Nyquist frequency becomes 0.5.

Upon increasing disorder the power spectrum meets the GOE
curve at larger k. At W = 12.0 and W/T = 14.0 the GOE
scaling region gets shorter but still increases with system size,
denoting a flow towards delocalization. On the other hand, at
W = 14.0 and W/T = 16.0 all accessible system sizes seem
to follow the Poisson behavior [PPoisson(k) ∼ 1/k2], although
at W = 14.0 the power spectrum has a small visible offset
from the Poisson value. This offset is also seen in the Floquet
model at W/T = 10.0 for small system sizes, hence that might
be a sign of flow towards delocalization at larger system
sizes, compatible with the previously estimated location of the
Anderson transition in the static model at WAT = 18. At very
strong disorder, W/T = 22, where the Floquet model is likely
in the localized phase (cf. Fig. 3), we find excellent agreement
of the spectral form factor with Poisson statistics.

Based on this data, we now turn to the main aim of this
work, the scaling of the Thouless time with system size
tTh ∼ L1/β(W ). As discussed in Sec. III E, the exponent β is
connected to the transport properties. The Thouless time can
be understood as the time for a particle to propagate through-
out a graph of diameter L. In particular, β = 1 corresponds
to diffusion and 0 < β < 1 to subdiffusion. In Fig. 6 we
show the Thouless time, tTh, extracted from K (τ ) and P(k)
as a function of L on a doubly logarithmic scale for several
disorder strengths W . For comparison in Fig. 6 the Heisenberg
time (dashed line) and the diffusive scaling of the Thou-
less time with β = 1 (solid gray line) are also reported. The
Heisenberg time signals the localization behavior (tTh ∼ tH).
At weak disorder, the scaling of the Thouless time is indeed
compatible with a power law L1/β , while at strong disorder we
observe significant curvature, stemming from the exponential

scaling of the Heisenberg time and tTh ∼ tH in the localized
phase.

From the apparent power-law scaling of the Thouless time
tTh ∼ L1/β , we extract the dynamical exponent β, which is
reported in Fig. 7. We find that even at weak disorder, in
both models β < 1, corresponding to subdiffusion propaga-
tion [90]. Indeed, for disorders W = 6.0 and W/T = 6.0 the
dynamical exponent β ≈ 0.5 and, then decreases upon in-
creasing disorder as expected. At stronger disorder, W = 15.0
and W/T = 15.0, β stops decreasing and becomes difficult
to determine due to the crossover to the exponential scaling,
tTh ∼ tH ∼ 2L, characteristic of a localized phase. Remark-
ably, in the Floquet case, both the spectral form factor and the
power spectrum yield very similar estimates of the Thouless
time for any disorder value and system size, confirming the
expectation that the Floquet model exhibits less finite-size ef-
fects compared with the Hamiltonian case. On the other hand,
we observe a discrepancy at weak disorder W � 8 between
the extracted Thouless time from the spectral form factor and
the power spectrum in the Hamiltonian model in Fig. 7(a).
The result from the spectral form factor seems to have a much
smaller derivative with respect to W between W = 4.0 and
W = 6.0 compared to the dynamical exponent extracted from
the power spectrum in the same range. One possible cause of
this discrepancy could be due to the spectral cutoff used for
mitigating unwanted edge effects (see Appendix B for more
details). Discarding 20% of the states at both edges implies a
reduction of the energy bandwidth. This effective bandwidth
�E sets the smallest timescale we have access to (∼1/�E ).
In the static Hamiltonian model the bandwidth is proportional
to W and independent of L, therefore at small W s and Ls the
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(a) (b) (c) (d)

FIG. 6. Thouless time extracted from (a,c) the spectral form factor and (b,d) the power spectrum as the point, where log(K/KGOE) = 0.4
or log(P/PGOE) = 0.4 for (a,b) Hamiltonian and (c,d) Floquet cases. Each curve corresponds to the different disorder value shown in the
legend. The gray dashed lines show the inverse level spacing (Heisenberg time). The solid gray lines correspond to the diffusive scaling with
an arbitrary prefactor. The set of parameters for the computation of the spectral form factor and the power spectrum is the same as the one of
Figs. 4 and 5.

Thouless time might be out of reach because it is smaller than
the shortest accessible time scale. When the Thouless time is
getting close to the inverse bandwidth, both spectral measures
will be strongly affected by edge effects even in the presence
of the filter Eq. (10). This effect can be observed in Fig. 6 at
L = 8 where tTh is almost equal for W = 4.0 and W = 6.0.
As a result, the spectral form factor and the power spectrum
might behave differently due to edge effects yielding different
scaling when the matrix size is not big enough for bringing the
Thouless time within the bulk of the spectrum. Edge effects
strongly limit the study of the Thouless timescaling at low
disorder in the current system sizes. This effect is absent at

(a) (b)

FIG. 7. Dynamical exponent β for the (a) Hamiltonian and
(b) Floquet models, extracted by fitting tT h ∼ L1/β from the spectral
form factor (blue) and the power spectrum (red) considering only the
five largest system sizes shown in Fig. 6.

the intermediate disorder because the Thouless time is larger
than the inverse energy bandwidth.

V. CONCLUSION

In this work, we studied the long-range spectral correla-
tions in the Anderson model on the random regular graph in
terms of two probes: the spectral form factor and the power
spectrum. We provided numerical evidence that the subdif-
fusive phase in the Anderson model on the random regular
graph, claimed in [88–91], can be probed by the global spec-
tral statistics which does not include any information about
the eigenstate structure. To reduce finite-size effects due to
mobility edges and energy dependence of the density of states,
we removed the constraint of energy conservation by intro-
ducing a Floquet version of the Anderson model on the RRG.
The Floquet model has the advantage of having a structureless
density of states and the absence of mobility edges.

In this setting, we extract the Thouless energy from both
the spectral form factor and the power spectrum, which agree
with each other in the reliable range of Hamiltonian param-
eters and show good algebraic scaling with the diameter of
RRG. The above scaling of the extracted Thouless energy with
the graph size allows us to unambiguously observe the subd-
iffusive character of this dependence in the entire delocalized
phase and find the exponent β < 1 of the subdiffusion. This
finding is in a good agreement with a recent random-matrix
consideration [94] of the RRG where the dynamical charac-
teristics of the model, like the return probability, was claimed
to show the subdiffusion up to zero disorder W = 0. As the
Anderson model on the RRG provides a proxy for the dy-
namics of more realistic many-body disordered systems, our
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consideration provides the ground to the tentative subdiffusive
phase in the finite-size many-body localized regime [45] close
to the true MBL transition and to its observation with the
global spectral probes like the spectral form factor [65,68,70].
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APPENDIX A: UNFOLDING OF THE HAMILTONIAN
SPECTRUM

In this section the unfolding procedure sketched in
Sec. III B is further explained. This procedure is illustrated
in Fig. 8(a). The black line corresponds to the CDF based
on nreal = 1000 realizations of spectra of Hamiltonian (1),
with W = 6.0 and L = 8. The red dashed line is the averaged
CDFavg(E ) fitted using a cubic spline. The orange points are
the eigenvalues E (i) of a single realization of the Hamilto-
nian model while the green points are their unfolded images
ε(i)/N = CDFavg(E (i) ). In the lower panel the density of states
of both folded and unfolded spectra are shown. By design, the

(a)

(b)

FIG. 8. Unfolding of Hamiltonian spectra with parameters L = 8
and W = 6.0. (a) Average cumulative distribution function (CDF) as
a function of eigenvalues E (black) and its fitting using cubic spline
(dashed red). Orange points are E values of a single realization,
green points are their corresponding unfolded values ε/N =CDF(E ).
(b) Density of states of the unfolded (folded) eigenvalues ε

(Ẽ ) average over 1000 graph and diagonal disorder realizations.
Ẽ = (E − Emin)/(Emax − Emin) is the folded spectrum shifted and
rescaled to be between 0 and 1.

(a)

(c) (d)

(b)

FIG. 9. Measures to estimate the Thouless time in the Hamil-
tonian model: log(F/FGOE) with F equal to the (a,c) spectral form
factor and (b,d) the power spectrum for the filtering parameter (a,b)
η = 0.3 and (c,d) η = 0.4. Disorder is set to W = 6.0.

density of states of the unfolded spectrum is constant. The
folded spectra are rescaled to the interval [0,1] for perspective
purposes.

APPENDIX B: EXTRACTING THOULESS TIME FROM
SPECTRAL FORM FACTOR AND POWER SPECTRUM

In this section we explain the procedure of the extracting
of the Thouless time from the equidistant spectra with unit
mean level spacing ε ∈ [0,N]. In the Floquet case (when
spectral edge effects are not present), the spectral form factor
and the power spectrum are computed without filtering and
then compared to the GOE functions KGOE(τ ) = 2τ [108] and
PGOE(k) = N/2π2k [111] mentioned in Secs. III C and III D,
respectively. Henceforth we refer only to the spectral form
factor, however, the procedure is the same for both quantities
with the caveat that k/N is used instead of k. At early τ

we have K > KGOE, consequently we identify the Thouless
time as the smallest τ for which K = KGOE, we instead use
log(K/KGOE) as a measure of the distance between the two
functions. In practice, it is useful to set a threshold like
log[K (τTh)/KGOE] = 0.4 and take the time that satisfies this

(a) (b)

FIG. 10. Measures to estimate the Thouless time in the Floquet
model: log(F/FGOE) with F equal to (a) the spectral form factor and
(b) the power spectrum. Disorder is set to W/T = 10.0.
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(a) (b)

(c) (d)

FIG. 11. Thouless time computed from the spectral form factor
at periods T = 1.5, 1.8, 2.2, 2.5 and disorder W = 8, 12, 16, 20, 24,
28, 32, 36, 40, 44. The procedure for extracting the Thouless time is
the same explained in Fig. 6 of the main text.

relation as τTh. This is illustrated in Figs. 9 and 10. It can
be seen that a finite, but not too small threshold captures the
system size scaling of the curves which encodes the Thouless
time system-size scaling as well. We verified that our results
are not affected by the choice of the threshold beyond the
noise fluctuations, see Figs. 9 and 10.

In the Hamiltonian case, states at the edges of the spec-
trum are usually more localized and so have strong unwanted
influence on the spectral measures. To remove such spurious
effects, the spectrum is first cutoff from the edges. Throughout
this work 20% of the states at each edge were discarded
leaving 60% of the total spectrum centered at the middle of it.
At the end, one works with a spectrum of reduced dimension
Ñ = �0.6N. This cut is made after the unfolding, meaning
that the unfolding is carried out on the whole spectrum before
cutting off the edges. Edge effects are further mitigated by
multiplying a Gaussian function centered at the middle of
the spectrum and reduced variance compared to the effective
spectral width. In other words one does exp(−i2πετ ) →
g(ε) exp(−i2πετ ) with g(ε) given in Eq. (10). The same
applies to the spectral statistic δn = εn − n where its Fourier
transform carries a weight g(εn) given by Eq. (14). The pa-
rameter η controls the variance of the Gaussian filter, in Fig. 9

FIG. 12. Dynamical exponent β extracted from curves in Fig. 11.
The same fitting procedure explained in caption of Fig. 7 of the main
text was used.

the function log(K/KGOE) is shown with η = 0.3 and η = 0.4.
The small difference in filter width does not have major ef-
fects. We set η = 0.3 throughout the main text. Next, the
spectral form factor, the power spectrum, and Thouless time
are computed as explained above.

APPENDIX C: SUBDIFFUSION AT DIFFERENT DRIVING
PERIOD

To check the sensitivity of subdiffusion in the Floquet-
driven RRG to changes in the half-driving period T we
computed the spectral form factor for T = 1.5, 1.8, 2.2, 2.5.
Recall that in the main text T = 2.0 is fixed. First of all, the
gap ratio shows the crossing of the curves for different system
sizes at roughly the same disorder value for all T (not shown),
therefore, we still see a localization transition within the same
range of disorder. In Fig. 11 the Thouless time extracted from
the spectral form factor is plotted. We can see that at low
disorder the scaling the Thouless time is polynomial in L
regardless of the half period T . Indeed Fig. 11 is quite similar
to Figs. 6(c) and 6(d).

To confirm a subdiffusive character of the transport for
different T , we estimate the dynamical exponent fitting
tTh ∼ L1/β for each curve in Fig. 11. The resulting dynamical
exponent β is shown in Fig. 12 as a function of disorder
strength W . We can see that around W � 25 the dynamical
exponents saturate pointing out the localization threshold for
all periods. At weak disorder strengths β < 1 independently
of T . This suggests that the subdiffusion regime does not arise
due to the fine-tuned choice of driving period in the model of
Eq. (2), but it is quite robust and generic.
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