
PHYSICAL REVIEW B 105, 174205 (2022)
Editors’ Suggestion Featured in Physics

Avalanches and many-body resonances in many-body localized systems

Alan Morningstar ,1 Luis Colmenarez ,2 Vedika Khemani,3 David J. Luitz,4,2 and David A. Huse 1,5

1Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
2Max Planck Institute for the Physics of Complex Systems, Noethnitzer Straße 38, Dresden, Germany

3Department of Physics, Stanford University, Stanford, California 94305, USA
4Physikalisches Institut, University of Bonn, Nussallee 12, 53115 Bonn, Germany

5Institute for Advanced Study, Princeton, New Jersey 08540, USA

(Received 25 January 2022; revised 25 April 2022; accepted 27 April 2022; published 12 May 2022)

We numerically study both the avalanche instability and many-body resonances in strongly disordered spin
chains exhibiting many-body localization (MBL). Finite-size systems behave like MBL within the MBL regimes,
which we divide into the asymptotic MBL phase and the finite-size MBL regime; the latter regime is, however,
thermal in the limit of large systems and long times. In both Floquet and Hamiltonian models, we identify some
landmarks within the MBL regimes. Our first landmark is an estimate of where the MBL phase becomes unstable
to avalanches, obtained by measuring the slowest relaxation rate of a finite chain coupled to an infinite bath at
one end. Our estimates indicate that the actual MBL-to-thermal phase transition occurs much deeper in the MBL
regimes than has been suggested by most previous studies. Our other landmarks involve systemwide many-
body resonances: We find that the effective matrix elements producing eigenstates with systemwide many-body
resonances are enormously broadly distributed. This broad distribution means that the onset of such resonances
in typical samples occurs quite deep in the MBL regimes, and the first such resonances typically involve rare pairs
of eigenstates that are farther apart in energy than the minimum gap. Thus we find that the resonance properties
define two landmarks that divide the MBL regimes of finite-size systems into three subregimes: (i) at strongest
randomness, typical samples do not have any eigenstates that are involved in systemwide many-body resonances;
(ii) there is a substantial intermediate subregime where typical samples do have such resonances but the pair of
eigenstates with the minimum spectral gap does not, so the size of the minimum gap agrees with expectations
from Poisson statistics; and (iii) in the weaker randomness subregime, the minimum gap is larger than predicted
by Poisson level statistics because it is involved in a many-body resonance and thus subject to level repulsion.
Nevertheless, even in this third subregime, all but a vanishing fraction of eigenstates remain nonresonant and
the system thus still appears MBL in most respects. Based on our estimates of the location of the avalanche
instability, it might be that the MBL phase is only part of subregime (i) and the other subregimes are entirely in
the thermal phase, even though they look localized in most respects, so are in the finite-size MBL regime.
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I. INTRODUCTION

Many-body localized (MBL) systems fail to reach ther-
mal equilibrium under their own dynamics, and have been a
subject of intense interest over the last decade [1–7]. They
display a form of emergent integrability, characterized by
the presence of an extensive set of local integrals of motion
(l bits) [8,9]. The phenomenology of l bits explains many
distinctive features of the MBL phase, including its unusual
slow dynamics [10–14], and the possibility for localization
protected order in individual highly excited many-body eigen-
states [15–19]. The phase transition between an MBL and a
thermal phase is a unique class of dynamical phase transition,
a complete understanding of which has thus far proved to be
notoriously elusive: analytical treatments are mainly tractable
only under phenomenological frameworks [20–28] and nu-
merical simulations are restricted to very small system sizes
that do not exhibit the asymptotic physics of large systems
[4,10,29–33]. Thus, an interesting complementary approach

to the transition has been to try to understand mechanisms by
which MBL can be destabilized under certain conditions, and
to then build numerical evidence for such mechanisms and de-
velop corresponding phenomenological models to capture the
large-scale consequences of those mechanisms. This has been
exhibited by a body of work that proposed avalanches seeded
by rare Griffiths regions as a mechanism for destabilizing
MBL in disordered systems [34,35], attempted to numerically
observe certain features of avalanches in minimal toy models
[36–38], and determined the consequences of an avalanche-
driven transition in phenomenological renormalization group
(RG) treatments [24,26,28]. There have also recently been
experiments investigating isolated avalanches in cold atomic
systems [39].

In this paper, we make a distinction between the MBL
phase, which is the part of the phase diagram where the
system remains MBL in the limits of an infinite system and
infinite time, and the finite-size MBL regime, which is the
part of the phase diagram for an accessible finite-size system
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(and/or finite time scale) where this size system behaves MBL
in most respects, although larger systems do thermalize. When
we say MBL regimes (plural) this means both the MBL phase
and the finite-size MBL regime.

Our paper advances our understanding of both (i) the
phase transition out of the MBL phase and (ii) the properties
of many-body resonances in the MBL regimes. For (i), we
present a way of estimating a bound on the boundary of the
MBL phase defined by the avalanche instability. This defines
the first of three landmarks that we estimate within the MBL
regimes in this paper. Despite much work on avalanches, the
theory has only started to be integrated with numerical simula-
tions of microscopic systems to produce an estimate of where
the avalanche instability occurs [40], so our paper, along with
subsequent work by Sels [41], advances the state of the art
in this direction. Our bound on the avalanche instability is at
significantly larger disorder strengths than previous finite-size
estimates of the MBL transition [42–44]. For (ii), we identify
two additional system-size-dependent landmarks within the
MBL regimes pertaining to the onset and nature of rare, long-
range resonances in many-body eigenstates. Our estimates
for all three landmarks are well into the MBL regimes, but
it may be the case that the latter two landmarks (pertaining
to resonances) are, for all system sizes, not within the MBL
phase. See Fig. 1 for a schematic representation of the various
landmarks and the distinction between the MBL phase and
regimes.

Our investigations are focused on regimes that were pre-
viously thought to be rather deep in the MBL phase. We
believe that, by doing so, we are beginning to try to remedy
a methodological error that has been made by much of the
MBL research community, the majority of the present authors
included. This error was to focus so strongly on the MBL
phase transition before more thoroughly studying the MBL
phase itself. The MBL phase and, more generally, Anderson
localized phases, are gapless critical phases with slow dy-
namics due to resonances and near-resonances, as emphasized
early on by Mott [13,14,45,46].

The thorough study of the MBL phase appears to have
been delayed partially because the description of that phase
in terms of l bits [8,9] superficially seemed rather simple and
complete, and explained many features of the phase. But that
is incorrect, since those descriptions did not fully address the
nontrivial dynamical properties of resonances and avalanches
in the MBL phase. And since the existence of the MBL phase
is a dynamical phenomenon, a description that neglects im-
portant aspects of its dynamics is certainly incomplete. One
conclusion of the present paper is that the full l-bit description
must include a lot of detailed structure that has generally been
ignored in previous work. Any many-l-bit process, and how
it can be driven by any local operator, is a property of the l
bits. Thus, all the structures of all many-body processes that
can flip any number of l bits must be properly encoded in the
details of the definitions of the l bits and the l-bit Hamilto-
nian; previous work generally assumed the couplings in the
l-bit Hamiltonian are essentially random, ignoring any such
detailed structure and thus neglecting the strong many-body
resonances. In this paper, we begin to explore some aspects
of this many-body structure. We are not suggesting that the
l-bit description of the MBL phase fails, only that such a

FIG. 1. Sketch of the MBL phase diagram. Top: In the infinite
size limit, the transition out of the MBL phase is believed to occur
due to an instability toward the formation of thermalizing avalanches.
The disorder strength at which this occurs marks the L = ∞ limit of
one of our landmarks, denoted Lavch. Bottom: At accessible finite
system sizes L and/or finite times t , we observe the significantly
larger MBL regimes. The finite-L crossover in the mean spectral
gap ratio 〈r〉 from random matrix to Poisson statistics is one con-
venient landmark, denoted Lr , marking the crossover from thermal
behavior into the MBL regimes; 〈r〉 probes the level repulsion be-
tween all neighboring energy levels. The MBL regimes contain a
few additional landmarks that probe the behavior of rare many-body
resonances in eigenstates. At strong disorder exceeding a threshold
marked by Lswr, there are no systemwide resonances (swr) in any of
the eigenstates of typical samples. For weaker disorder, a small num-
ber of eigenstates display systemwide resonances, but the minimum
gap (mg) in the spectrum is nonresonant and shows negligible level
repulsion. The level repulsion in the minimum gap appears at even
weaker disorder within the MBL regime at a landmark denoted by
Lmg. Any of these finite-system landmarks that occur in the finite-
size MBL regime will drift toward the true transition as L and t are
taken to infinity, and some might drift past the transition and end up
within the asymptotic MBL phase.

description needs to capture many fine details of the system
to be dynamically correct.

We also note that recently there have been a number of
papers expressing various levels of skepticism about the sta-
bility of the MBL phase in the limits of large systems and
very long times [47–53], and a number of challenges to those
conclusions [54–58]. While our results do not support (nor
directly contradict) any of these arguments for or against the
existence of the MBL phase, our paper was, in part, motivated
by these works, which certainly have demonstrated that our
understanding of the MBL regimes, transition, and crossovers
is still rather incomplete.

Our finding that the MBL phase transition actually occurs
very deep in the MBL regimes, and far from the numerically
accessible crossover between the finite-size MBL regime and
thermalization, reinforces the idea [59] that the physics of this
crossover is likely quite different from that of the ultimate
phase transition. This suggests that this crossover should prob-
ably be studied as a distinct phenomenon from the MBL phase
transition. For example, this crossover occurs quite generally
in MBL systems in higher dimensions and with longer-range
interactions, while the MBL phase transition is suppressed
due to the avalanche instability in those other cases [34].
Another related point is that the arguments against many-body
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mobility edges [60] apply only to the MBL phase transition
and not to this finite-size MBL regime to thermal crossover,
which very clearly shows apparent mobility edges in numerics
[31].

The rest of the paper is organized as follows. In Sec. II, we
elaborate on the various landmarks mentioned earlier, that we
study in depth later on. We summarize the avalanche argument
and explain our strategy for locating where this instability
destabilizes the MBL phase. We also explain how we think
about many-body resonances in this paper and provide an
overview of how we detect them. In Sec. III, we detail the
concrete spin-1/2 models we use as the basis of our cal-
culations: one is a Floquet random-circuit MBL model in
1D with no extensive conserved quantities while the other
is the Hamiltonian standard model of MBL, the random-field
Heisenberg chain. We also include details of how we couple
each system to a model infinite bath at one end, which we
use to numerically bound the avalanche instability. In Sec. IV,
we begin our study by investigating our first landmark, where
the avalanche instability destabilizes the MBL phase, using
the dynamics of our spin models coupled to infinite baths at
one end. Before estimating the other two landmarks, in Sec. V
we develop a method for undoing the level repulsion between
two eigenstates, thereby obtaining an estimate of a matrix
element responsible for producing many-body resonances in
eigenstates. Equipped with this tool, in Sec. VI we study
the properties of isolated spin chains to understand the two
remaining landmarks pertaining to rare, long-range, many-
body resonances. Finally, we summarize and discuss our
findings.

II. LANDMARKS IN THE MBL REGIMES

In this section, we elaborate on the ideas and necessary
background related to the three landmarks we study in this
paper.

A. Avalanche instability

One of the more accepted theories of what drives the
asymptotic MBL phase transition in systems with quenched
randomness and short-range interactions is the so-called
avalanche instability [34]. It proposes that, at weak enough
disorder, small locally thermal rare regions make MBL un-
stable by seeding an avalanche of ergodic regions that drives
the system to thermalize. In the avalanche theory, the rate
at which a naturally occurring thermal bubble thermalizes
its localized surroundings is what determines how much the
bubble grows. This can be understood concretely by thinking
of a spin chain with random local fields. In an infinite sample
there are (arbitrarily long) rare regions where, just by chance,
the random fields are small and the system locally thermalizes.
This results in a finite local bath that then tends to thermalize
the nearby typical localized regions. The spins that are at a dis-
tance of � spins away from this rare region are, if the avalanche
does reach them, typically thermalized at a rate ∼k−�, where
k is a number that increases as one goes deeper in to the MBL
phase. Once the avalanches due to this thermal region have
proceeded to distance � in both directions, then it has thermal-
ized a total of N + 2� spins, where N is the (preavalanche)

number of spins in the thermal rare region. Thus the many-
body level spacing of this now-enlarged thermalized region is
∼2−(N+2�). As long as this level spacing is smaller than the
spin’s thermalization rate, then the spin does see the thermal
region as a reservoir with an effectively continuous spectrum
and does get entangled with it. The avalanche will stop (�
will stop growing) when these two energies become equal
so the spin can see that the spectrum of the thermal region
is really discrete, namely, when k−� ∼ 2−(N+2�). For k < 4
this never happens, so the avalanche does not stop and the
full system slowly thermalizes. Thus, by this mechanism, the
phase transition out of the MBL phase happens at k = 4,
yielding a critical thermalization rate that scales as 4−�. A
similar scenario has been numerically verified in a minimal
toy model comprising a thermal bubble (modeled by a random
matrix) interacting with a chain of decoupled localized spins
(model l bits) [36].

One of our goals in this paper is to numerically study
the avalanche instability in more realistic microscopic mod-
els of MBL, in which the emergent l bits interact and are
not known a priori. Interactions between l bits means that a
given spin some distance from the thermal bubble can cou-
ple to the bubble via many distinct processes, which makes
it challenging to extract a single thermalization rate for the
spin. In this paper, we present an approach to this challenge
of computing a thermalization rate in a realistic MBL sys-
tem. There is no simple answer that we are aware of in the
case of isolated systems, however, when a finite system is
coupled at one end to an infinite bath, and hence viewed as
an open system with dynamics described by a (Lindblad or
Floquet) superoperator, the thermalization rate can be seen
as the inverse of the timescale on which the system reaches
the (unique and always thermal) equilibrium steady state. The
closest eigenmode to the steady state of the superoperator
encodes this timescale. Hence, the superoperator eigenmodes
provide a direct way to estimate thermalization timescales for
MBL systems. Note that this open system calculation models
only one of the two avalanches that are spreading in both
directions from a large locally thermalizing rare region within
the bulk of a nominally infinite system. The assumption is
that these two avalanches do not directly affect each other,
except through their effect on the thermal bubble’s many-body
density of states. In Sec. IV, we show that as the parameters of
a finite MBL system coupled to an infinite bath at its end are
varied, there is a point at which the thermalization timescale
crosses through a ∼4−L scaling (k = 4); we interpret this as
a finite-size estimate of the avalanche instability-driven MBL
transition in the corresponding isolated system. We assume
that the avalanche instability is what asymptotically drives
the transition out of the MBL phase of a disordered system.
Hence, we expect this landmark measuring the onset of the
avalanche instability to be a better estimate of the true MBL
transition in the limit of large L. This is how we define the
landmark denoted by Lavch.

A closed-system approach to this problem was proposed
in Ref. [40], which used a Wegner-Wilson flow method to
extract l bits and compute spatial decay rates of various cor-
relation functions. However, to our knowledge, none of the
closed-system correlation functions examined in Ref. [40] are
directly related to the relaxation rate of a distant spin due to a
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bath or thermal bubble, which is the quantity that is needed to
make an estimate of the avalanche instability.

B. Appearance of systemwide resonances

Further landmarks (Lswr and Lmg) within the MBL regimes
are related to rare many-body resonances. We should therefore
provide some clarification on how we use the term many-
body resonance, which has been used variously to describe
many physical scenarios ranging from resonances between
thermal blocks in phenomenological RGs to isolated Mott-like
resonances in many-body eigenstates [21,22,61–63]. In the
present paper, an eigenstate of the dynamics is many-body
resonant if it is a superposition of localized states that dif-
fer substantially in extensively many local regions, and the
range of the resonance is the distance over which these local
differences occur. A dynamical implication of this is that if
the system is initialized in one of those localized states, it
will tunnel to the other(s) under the dynamics. A many-body
resonance refers to a set of states that are related by this
definition, for example, eigenstates that are all superpositions
of the same set of localized states. The importance of these
resonances has been discussed in various contexts, including
the dynamical ac response of MBL systems [46] and theories
of finite-size crossovers between MBL and thermalizing sys-
tems [32,33,59,61,64].

In this paper, we study systemwide many-body resonances
rather deep in the MBL regimes, where these resonances
are rare and each such resonance typically involves only
two eigenstates. We examine the properties of these resonant
eigenstates from two perspectives:

From the first perspective, the structure of entanglement in
the eigenstates of the dynamics is a direct probe of many-body
resonances, as is level repulsion in the spectrum. We find that
even deep in the MBL regimes, there is still residual level
repulsion to be understood, including rare strongly repulsive
pairs (resonances) in an otherwise Poisson-like spectrum. One
way to pick out a rare systemwide resonance in an MBL
system is to find the eigenstate with the most quantum mu-
tual information between its end spins. A significant amount
(compared to one bit) of quantum mutual information between
end spins is an indicator that this eigenstate is participating
in a two-state (or few-state) systemwide many-body reso-
nance, and this has resulted in it being a Schrödinger catlike
state [65,84]. Indeed this is one of the measures we use to
identify rare, isolated systemwide many-body resonances in
eigenstates in the MBL regimes. This identifies a system-size
dependent landmark Lswr that separates the MBL regimes into
a stronger-randomness regime where typical samples have no
such resonances and the probability that a sample has such
a resonance is decreasing with increasing L, and a weaker-
randomness regime where the number of such resonances per
sample increases (exponentially) with increasing L.

We find another landmark Lmg by examining the amount
of level repulsion present in the minimum gap (mg), i.e.,
between the two eigenvalues of the dynamics that are nearest
to each other. Poisson statistics predicts that the smallest gap
in the Floquet spectrum of a sample is on average 2π/4L

(2L times smaller than the average gap between all adjacent
eigenvalues), and hence comparing the smallest gap to this

prediction reveals a landmark at which the minimum gap
begins to typically undergo significant level repulsion.

We note that the minimum gap bears additional theoretical
relevance, as assumptions on its scaling are a building block
in the proof for the stability of MBL [66,67], and our analysis
confirms that the assumption of limited level attraction is
indeed comfortably valid for the system sizes we can test.

From the second perspective, the entanglement in, and
level repulsion between, eigenstates is a result of off-diagonal
matrix elements of the Floquet operator or Hamiltonian that
couples states that are more localized than the eigenstates and
that differ extensively. Thus appropriate off-diagonal matrix
elements can also be studied to learn about many-body reso-
nances in MBL systems. If we are able to undo some of the
entanglement and level repulsion by rotating away from the
basis of eigenstates back toward a less entangled basis (closer
to the computational basis), then off-diagonal matrix elements
of the Floquet operator or Hamiltonian in that new basis can
be considered to be the source of the level repulsion—as these
off-diagonal matrix elements get rotated away, the energies
get pushed apart and the states get more entangled. Thus, these
matrix elements characterize the underlying resonance. In
Sec. V, we develop a useful tool in this spirit that allows us to
associate an off-diagonal matrix element that characterizes the
strength of the level repulsion between any two eigenstates.
When the two eigenstates are both catlike superpositions of
two more localized states, we are able to retrieve a matrix
element that is larger than or comparable to the corresponding
gap. When the two eigenstates are not resonant, then the
matrix element is very small in comparison to the gap. This
resonance criterion is similar to the criterion introduced in
Ref. [68] but here we use a different approach to determine
the relevant matrix element. Using this procedure for charac-
terizing resonances with these matrix elements, we are able to
estimate Lswr and Lmg in a second, independent way.

After characterizing the MBL regimes with these matrix
elements, the picture that emerges is as follows: The dis-
tribution of matrix elements is broad on a log scale, and
the typical (or median) matrix element between eigenstates
scales as ∼k−L

t , where kt > 2 is a number that increases
(without limit) as we go deeper (to stronger randomness) into
the MBL regimes. Note that we do find that the apparent
kt is L dependent for the sample sizes that we can study
numerically. Extremely deep in the MBL regimes, kt is large
enough that there are typically no systemwide resonances in
the many-body spectrum. At weaker disorder, marked by the
threshold Lswr, a vanishing fraction of eigenstates begin to be
involved in systemwide resonances. These isolated resonances
involve atypically large matrix elements in the tails of the
distributions. However, as long as kt > 4, the typical matrix
element is small compared to the expected minimum gap in
the spectrum (∼4−L) and level repulsion of that minimum gap
is still typically negligible. In other words, in this intermedate
regime there are eigenstates with rare systemwide many-body
resonances because of atypically large matrix elements, even
though the minimum gap is also typically not involved in a
resonance. At even weaker-randomness within the finite-size
MBL regime where kt < 4, the minimum gap is involved in a
resonance and decreases with L more slowly than predicted by
Poisson level statistics. This distinction allows us to define the
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landmark Lmg, where kt = 4 and the minimum gap changes
from Poissonian to non-Poissonian.

C. Summary of landmarks

For later reference, here is a list of our landmarks, the
symbols with which they are represented (see also Fig. 1), and
how they are estimated with finite-L data:

(1) Lavch: This is where the avalanche instability desta-
bilizes the MBL phase. We estimate it by where the
thermalization rate in our open systems is scaling with L as
∼4−L.

(2) Lswr: This is where the number of systemwide many-
body resonances per sample changes from asymptotically
zero at large L to a number that instead grows with increasing
L. We estimate it by where the number of such resonances per
sample is not changing with L.

(3) Lmg: This is where the minimum spectral gap in a
sample begins/ceases to behave as expected in a Poisson
spectrum with no level repulsion. We estimate it by where the
mean minimum gap is scaling with L as ∼4−L.

(4) Lr : This is the conventional boundary of the MBL
regimes marked by the finite-size crossing of the mean level
spacing ratio 〈r〉.

In the above list, we have also included the reference point
Lr for convenience, since we will need to refer to this point
too; the three landmarks within the MBL regimes that we
study are the first three on this list.

Note that since we are only able to access small system
sizes, we will treat these estimated landmarks as L-dependent
quantities. Of course, their asymptotic locations as L → ∞
are of great interest, but we are not in the asymptotic regime,
so we assert that estimates at accessible L are still meaningful
and help us to better understand the finite-size MBL regimes
and potentially the MBL phase.

One notable feature of our results is that all these land-
marks exhibit similar strong finite-size effects for the size
ranges we can study. This suggests that the strong finite-size
effects in the level statistics that have been widely studied
may not be due to physics that is special to that thermal-to-
finite-size-MBL crossover, but the same physics may also be
producing strong finite-size effects much deeper in the MBL
regimes. At this point, there does not seem to be any concrete
and plausible theoretical understanding of these finite-size
effects, so we have no guidance in how to extrapolate our
estimates of these landmarks to the limit of infinite systems.
However, since they all move monotonically to stronger ran-
domness with increasing system size, our numerical estimates
should be reliable lower bounds on the randomness that these
landmarks go to in the large-system limit.

Now that we have laid out the main ideas of this paper,
in the next section we present the models we use in later
sections to elaborate on these ideas.

III. MODELS

We consider two models of MBL in this paper: one is
a time-periodic (Floquet) quantum circuit that we introduce,
similar to circuits considered in Refs. [69,70], and the other
is the standard random-field Heisenberg (XXX) Hamiltonian

model [10,29,31]. We include the Hamiltonian model to en-
sure all our conclusions are consistent across the Floquet and
Hamiltonian cases, and to make contact with previous work,
but we believe our Floquet model is advantageous in several
respects that we detail in Sec. III A. Both models govern the
unitary dynamics of a one-dimensional system of L qubits
(sites). While in the Hamiltonian model both the total energy
and total Z magnetization are conserved, the Floquet model
has no conservation laws. Both models are designed such that
in the limit of strong disorder the eigenstates of the dynamics
are Fock states of the Pauli Z operators on the L sites. We also
refer to this basis as the computational basis.

In addition, we extend the unitary models by coupling each
to an infinite quantum bath at the left end of the system to
study the avalanche instability. This is achieved in the case
of the Hamiltonian model by introducing a complete operator
basis of three nontrivial Lindblad jump operators on the first
site. This bath relaxes both of the conserved quantities and
corresponds to infinite temperature and zero field. For our
Floquet circuit, we use a Floquet superoperator with a generic
dissipative action on the first site. MBL systems are unstable
when coupled to an infinite thermal bath [37,71–73]. But the
dependence of the rate of thermalization of the farthest spin on
the system length L in this setting indicates whether or not an
infinite MBL system is stable to avalanches initiated by a large
but finite bath. So here we are particularly interested in the
rate at which the system thermalizes due to the infinite bath,
and focus on the decay rates of the slowest decay mode, given
by the eigenvalue of the superoperators closest to the steady
state eigenvalue σ = 1 in the Floquet case, and λ = 0 in the
Lindblad case. Throughout this paper, we use open boundary
conditions in order to access the largest range of distances
within the systems.

A. Floquet random circuit

We introduce a one-dimensional, time periodic, random
unitary circuit which can exhibit MBL. The model consists of
two types of random unitary gates: one-site gates di, and two-
site gates ui coupling site i and i + 1. Tuning the strength of
the two-site gates drives the model through a MBL transition
[69].

The one-site gates di are generated by sampling, for each
site i, a 2 × 2 random matrix from the circular unitary ensem-
ble (CUE) and then diagonalizing it. This means that for each
realization of the circuit, we choose the computational Z basis
to be the eigenstates of all of di. The distribution from which
we sample the two-site gates is invariant under this choice, so
this is a matter of convenience.

The two site gates ui act on site i and i + 1 and are obtained
from

ui = exp

(
i

α
Mi

)
∈ C4×4, (1)

where 1/α controls the interaction strength (α is the relative
disorder strength), and Mi ∈ C4×4 is a random matrix sampled
from the Gaussian unitary ensemble. From these building
blocks, we create the Floquet unitary by first applying a layer
of all of the one-site gates given by Ud = d1 ⊗ d2 ⊗ · · · ⊗ dL,
and then applying the two-site gates in an order given by a
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random permutation π ∈ SL−1:

Uu =
L−1∏
i=1

mat(uπ (i) ), (2)

where mat(ui ) = 12i−1 ⊗ ui ⊗ 12L−i−1 is the matrix represen-
tation of gate ui in the full Hilbert space. There is no gate
connecting site 1 and site L, since we use open boundary con-
ditions. The resulting random circuit is then exemplified by

(3)

The random permutation of gates removes the intrinsic
difference in even and odd system sizes present in brickwork
circuits and is convenient to treat even and odd system sizes
on the same footing.

We use this Floquet model because we think it has enough
advantages over the standard Hamiltonian model of Sec. III B
to justify its introduction. This circuit model is designed to
be free of any conservation laws. This means that we do not
have to consider how the physics of conserved quantities like
energy or particle number interacts with the physics of MBL.
It also means we can treat every eigenstate of the dynamics
on equal footing and study statistics over eigenstates as a
function of solely the disorder strength, without also having to
resolve their dependence on any conserved quantities. In our
quantum circuit, we use gates drawn from isotropic distribu-
tions of random matrices, so we also avoid choosing a special
basis, which is an attractive property when studying universal
aspects of quantum dynamics [74,75]. As mentioned above,
for each realization we do align our computational basis for
each site with the eigenstates of the corresponding single-site
gate, but the two-site gates are still drawn from a distribution
without a special direction even after this alignment.

We also note that the locality of this quantum circuit im-
plies that the computational cost of applying it to a state is
O(L2L ). Thus while the Floquet unitary does not have a sparse
matrix representation, it can be applied one gate at a time,
and so it is compatible with algorithms that rely on matrix-
free matrix-vector products like geometric sum filtering [76],
which we use to access large system sizes.

B. Hamiltonian

We also carry out our study on the standard random-field
Heisenberg model. The Hamiltonian of this model is

H = 1

4

L−1∑
i=1

	σi · 	σi+1 + 1

2

L∑
i=1

hiZi, (4)

where 	σi = (Xi,Yi, Zi ), hi are independent samples of a uni-
form random variable on [−W,W ], and W is the parameter
that tunes the disorder strength. The total magnetization
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FIG. 2. Mean-level spacing ratio 〈r〉 as a function of disorder.
The finite-size crossings drift to larger disorder as L is increased.
For the largest L, the crossings are at α ∼= 5.9 for the Floquet model
left and at W ∼= 3.1 for the Hamiltonian model right. Error bars are
68% bootstrap confidence intervals here and in all other figures, but
are too small to see here. The Floquet model does not have time-
reversal invariance and has CUE-level statistics in its thermal phase,
while the Hamiltonian model does have time-reversal invariance and
hence GOE statistics, thus the difference in the thermal values of
〈r〉CUE ≈ 0.5996 versus 〈r〉GOE ≈ 0.5307 [77].

M = ∑
i Zi is conserved so we restrict ourselves to the sector

M = 0 for even L when we study isolated systems.

C. Model characterization

To get oriented with our Floquet model and compare it to
the more familiar Hamiltonian model, in Fig. 2 we show a
common diagnostic that has been extensively studied in the
context of MBL: the mean level spacing ratio 〈r〉 [4]. This
is a dimensionless quantity which measures the average level
repulsion in the spectrum, and the location of the finite-size
crossing in this quantity marks the crossover between the
thermal regime and the finite-size MBL regime, which we
denote by Lr .

As we will argue below, for the sizes accessible to nu-
merics, this crossover is not a good estimate of where the
thermal-to-MBL phase transition is in the limit of large L.
Instead, the lower bound on the location of the phase transi-
tion, that we estimate by testing for stability to avalanches,
is at a much larger disorder strength than Lr for accessible
L. Since we argue that this feature in 〈r〉 is not a relevant
estimate of the MBL phase transition but instead is a measure
of the finite-size MBL to thermal crossover, we could just
as reasonably have used, say, the midpoints of the changes
in 〈r〉 from its random matrix theory value to its Poisson
value instead of the crossings. But, to keep more contact with
previous work, for now we will stick with using the crossings
to define this landmark.

The mean level spacing ratio is computed by averaging
rn = min(δn, δn−1)/ max(δn, δn−1) over eigenstates and real-
izations, where δn is the magnitude of the spectral gap between
(ordered) eigenvalues n and n + 1. For the Floquet model,
eigenvalues are naturally ordered on the unit circle by increas-
ing phase. For system sizes L � 14, we use all eigenvalues
of U obtained using exact diagonalization, and a number of
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disorder realizations which varies in the range 104 − 4 × 104.
For L � 16, we use the 50 eigenvalues closest to 1, calculated
using geometric sum filtering [76] for 3000−6000 realiza-
tions. For the Hamiltonian model, we average over the middle
fifth of states in the spectrum and 8000−64, 000 disorder
realizations for L � 16. For larger sizes, we take advantage
of the sparseness of H and use shift-invert diagonalization
[31,78] to obtain the central 50 eigenvalues for 500−8000
disorder realizations. We exclude eigenvalues further away
from the center of the spectrum to avoid the most significant
effects of the energy dependence of the eigenstates.

D. Floquet random circuit coupled to an infinite bath

Our unitary Floquet model is described by the Floquet
operator U . It corresponds to the action of the unitary super-
operator SU [ρ] = UρU †. We now formally extend the spin
chain by one extra spin on site 0, in contact with the first
site i = 1. This spin acts as the rightmost spin of a coupled
bath. In each cycle, we reset the state of this spin to a 2 × 2
featureless density matrix 1

21. The coupling to the rest of the
chain is given by u0 = exp(iM0/α), sampled from the same
distribution as the other two-site gates. Tracing out the bath
spin 0 at the end of the cycle, the action of the superoperator
can be expressed diagrammatically as

(5)

In the last step, we have introduced the tensor D, given by

2D
j1, j′1
i1,i′1

=
∑

i0, j0,i′0, j′0

u
(i0,i1 ),(i′0,i

′
1 )

0 u†
0

( j′0, j′1 ),( j0, j1 )
δi0, j0δi′0, j′0 . (6)

This Floquet superoperator S [Eq. (5)] describes the stro-
boscopic dynamics of the density matrix of the system:

ρ(t + 1) = S[ρ(t )] = S[S[ρ(t − 1)]] = St+1[ρ(t = 0)].
(7)

S is represented by a subunitary matrix in operator space, i.e.,
its spectrum {σn} is contained inside the complex unit disk,
|σn| � 1, (cf. Fig. 3). While one eigenvalue σ0 = 1 exists, it
corresponds to the steady state R0 = 1

Z 1, since S[R0] = R0, as
can be seen from Eq. (5) due to the unitarity of U and u0.

We can use the left and right eigenmatrices Li, Ri of S with
SRi = σiRi, LiS = σiLi and Tr(L†

i R j ) = δi j to calculate the
time evolution of any initial state ρ(t = 0):

ρ(t ) = R0 + σ t
1c1R1 +

∑
k>2

σ t
k ckRk, (8)

with ck = Tr(Lkρ(t = 0)). Here, we order the eigenvalues
σi by their modulus, |σi| � |σ j | if j � i, such that σ0 = 1

FIG. 3. Example spectra of the two superoperators for L = 5
spins. Left: Floquet superoperator with α = 3.33. The spectrum
(blue) is strictly contained inside the unit circle (gray). The slowest
mode (red) is the eigenvalue with the largest modulus less than 1.
Right: Liouvillian of the random field Heisenberg model coupled
to a bath. The spectrum lies in the complex left half plane with
nonpositive real parts. The slowest mode (red) is the eigenvalue
whose real part is negative and is closest to zero.

corresponds to the steady state R0 = 1
Z 1, and σ1 is the eigen-

value with the second largest modulus, and thus represents
the slowest relaxation rate 1/τ = − ln |σ1| in the system. The
corresponding mode R1 decays as

σ t
1 = exp(t ln |σ1|), (9)

and therefore τ = −1/ ln |σ1| is the longest timescale in the
system. In an MBL system, this timescale is determined by the
couplings between the bath and the farthest l bit at the other
end of the chain. We calculate the spectral gap using (dense)
shift-invert diagonalization of the superoperator S , targeting
eigenvalues closest to 1 (Euclidian distance in the complex
plane), and we have checked that this captures the slowest
decay rate.

E. Hamiltonian coupled to an infinite bath

To study thermalization rates in the Hamiltonian model,
we introduce a coupling to an infinite bath to the spin located
at the left edge of the chain. The dynamics of this system is
described by the master equation,

dρ(t )

dt
= L[ρ], (10)

L[ρ] = −i[H, ρ] +
∑
μν

Kμν

(
LμρL†

ν − 1

2
{L†

νLμ, ρ}
)

, (11)

where the Lindblad operators Lμ = (X1,Y1, Z1) are the Pauli
operators acting on the leftmost spin. The Lindblad coupling
breaks the U (1) symmetry of the XXX Hamiltonian so all
magnetization sectors are mixed and the full operator Hilbert
space dimension is 4L. The eigenvalues D of the Kosakowski
matrix K are sampled from a uniform distribution and normal-
ized such that TrD = 2. From D, we obtain the Kosakowski
matrix K = U †DU where U is a random matrix from the
CUE, similarly to the sampling in Ref. [79]. As in the Floquet
case in Sec. III D, the solution of Eq. (10) is obtained from the
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eigenmodes of the Lindblad superoperator,

ρ(t ) = R0 + eλ1t c1R1 +
∑
k>2

eλkt ckRk, (12)

where Rk are the right eigenmatrices of L, and ck =
Tr(Lkρ(t = 0)) are the overlaps of the initial state with the left
eigenmatrices of L. Left and right eigenmatrices are orthog-
onal to each other such that Tr(LiR j ) = δi j . The eigenvalue
λ0 = 0 corresponds to the steady state R0 = 1

Z 1, and the
eigenvalue λ1 with the second largest real part Re(λ1) < 0
represents the slowest decay mode in the system. We identify
τ = −1/Re(λ1) as the time scale on which the entire system,
including the farthest l bit, reaches the steady state. As in the
Floquet case, we use shift-invert diagonalization to obtain the
slowest decay rate of the system, exploiting the fact that L is
a sparse matrix.

F. Weak bath-coupling limit of the Floquet circuit

In work following our first manuscript version of this
paper [80], Sels showed that the limit of weak coupling to
the infinite bath is sufficient for studying the slowest rate of
thermalization and allows the numerical calculations to reach
larger system size L [41]. We therefore introduce versions
of our open Floquet and Hamiltonian models (described in
Secs. III D and III E) in this weak coupling limit. This allows
us to extend our analysis of the landmark Lavch to larger
system sizes and disorder than what was done in our initial
version.

In Eq. (5), the ancilla qubit, which acts as the rightmost
spin of the bath, is in a maximally mixed state. The leftmost
spin of the chain is coupled through all channels with this bath
spin, so the dissipation is maximal. To be able to tune the level
of dissipation, we replace the D superoperator by

D[ρ] = ρ

1 + 3γ
+ γ

1 + 3γ

∑
μ

EμρE†
μ, (13)

where Eμ = (X1,Y1, Z1) are Krauss operators on the first spin
and γ is the parameter that tunes the dissipation strength.
The limit γ → 0 recovers unitary dynamics, while γ → ∞
is the maximal dissipation limit similar to the D gate shown
in Eq. (6), with the difference being that dissipation is now
homogeneous on all allowed channels. Equation (13) allows
us to study the weak coupling limit (γ � 1) of the Floquet
dissipative circuit in a controlled manner. We continue to
denote the Floquet superoperator for one period of evolution
by S[ρ] = D[UρU †].

In the unitary limit γ = 0, the eigenvalues and eigenop-
erators of the superoperator S are products of eigenvalues
and eigenstates of the Floquet unitary: σnm = ei(θn−θm ) and
ρnm = |n〉〈m|, where U |n〉 = eiθn |n〉. Thus, there are 2L degen-
erate operators with unit eigenvalue, corresponding to n = m.
In the limit of nonzero but small γ , the dissipation acts as
perturbation of the unitary evolution, allowing a perturbative
treatment in the basis of eigenstates |n〉〈n|. In this subspace,
the matrix elements of the Floquet superoperator are

Snm = 〈m|D[|n〉〈n|]|m〉
= δnm

1 + 3γ
+ γ

1 + 3γ

∑
μ

〈m|Eμ|n〉〈n|E†
μ|m〉. (14)

By diagonalizing this matrix, we obtain a perturbative esti-
mate of the slowest mode and associated rate of thermalization
in the dissipative Floquet dynamics. Note that in this perturba-
tive treatment, we build and diagonalize a matrix of linear size
2L, not 4L as done when working nonperturbatively. We have
set γ = 0.001 throughout the entire text when dealing with
perturbative dissipation. There are additional issues related to
numerical precision explained in detail in Appendix C.

G. Weak bath-coupling limit of the Hamiltonian

Again, to simplify the study of the thermalization rate of
a spin chain coupled to an infinite bath at one end, in the
bath-coupled Hamiltonian system the weak coupling limit is
considered, similar to what was done in Sels’s follow-up to
our original work [41].

In the dissipationless limit (Lindblad superoperator with
Kosakowski matrix set to zero), the eigenvalues of the Lind-
bladian are λ = i(En − Em) with the set of eigenoperators
ρ = |n〉〈m|, where |n〉 are the eigenstates of the Hamiltonian
and En their corresponding eigenvalues. There are 2L zero
eigenvalues and the rest fall on the imaginary axis and come
in conjugate pairs. When the dissipation is perturbative, the
slowest mode is well approximated within the degenerate
subspace of operators |n〉〈n| [41]. Starting from Eq. (11), the
Kosakowski matrix is now diagonal, Kμν = γ δμν with γ =
0.001, and the jump operators remain the same. The matrix
elements of the Linbladian in the degenerate sector read

Lnm = 〈m|L[|n〉〈n|]|m〉
= γ

∑
μ

[〈m|L†
μ|n〉〈n|Lμ|m〉 − δnm〈m|L†

μLμ|n〉]

= −3γ δnm + γ
∑

μ

|〈m|Lμ|n〉|2. (15)

Similar to the Floquet case, the perturbative approximation
reduces the problem of finding the slowest mode to diagonal-
izing a dense matrix of size 2L × 2L rather than diagonalizing
the full 4L × 4L superoperator matrix. Choosing a diagonal
Kosakowski matrix ensures that the resulting matrix Lnm is
Hermitian. We checked that relaxing that condition does not
change the qualitative behavior of the slowest mode. Con-
structing Lnm requires all Hamiltonian eigenstates in all mag-
netization sectors, and the diagonalization of each sector is
carried out separately. The numerical bottleneck is the diago-
nalization of the dense Lindbladian matrix of size 2L. Another
issue is the insufficiency of double precision arithmetic, which
is the case for large L and strong disorder in both Hamilto-
nian and Floquet models. This issue is further addressed in
Appendix C.

IV. OPEN SYSTEM RESULTS

We begin the discussion of our results by considering the
avalanche instability of MBL chains using the two dissipative
models introduced in Secs. III D and III E.

As outlined before, we focus on the spectral gap of the
superoperators S and L describing MBL chains coupled to an
infinite bath at one end, since it encodes the slowest decay rate
1/τ toward the steady state. The coupling to an infinite bath
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FIG. 4. Typical slowest decay rate as a function of disorder
strength. The curves are the (scaled) median of the distribution of
1/τ over realizations for the Floquet and Lindblad superoperators.
The crossings occur when the scaling of the decay rates with system
size is 1/τ ∝ 4−L and thus indicate the location of Lavch. Smaller
sizes L < 7 are calculated using full diagonalization, bigger sizes are
computed using shift-invert diagonalization with target eigenvalue
λ = 0 (Lindblad) and σ = 1 (Floquet). For the open Floquet system,
we used at least 20 000, 20 000, 10 000, 4000, 1000, 500 disorder
realizations for L = 3, 4, 5, 6, 7, 8 respectively. For the Lindblad
operator, we collected 5000, 10 000, 10 000, 8000, 9000, 8000, 1000
disorder realizations for L = 3, 4, 5, 6, 7, 8, 9. Error bars are 68%
bootstrap confidence intervals.

ensures that the system evolves toward an infinite temperature
steady state ρ0 = 1

Z 1 throughout the entire phase diagram, i.e.,
for any strength of disorder. We interpret the slowest decay
rate as the thermalization rate of the chain, and how this
quantity scales with L determines if the associated isolated
chain is unstable to avalanches or not. Exemplary spectra
of the two superoperators are shown in Fig. 3, illustrating
that the spectrum of the Floquet superoperator S is contained
inside the unit disk, while the spectrum of the Liouvillian L
resides in the left half plane of the complex plane, since all
components not in the steady state vanish at long times. The
eigenvalue of S (L) with the second largest modulus (real
part) σ1 (λ1) encodes the slowest timescale τ of decay to the
steady state ρ0 corresponding to σ0 = 1 (λ0 = 0).

A. Slowest decay rate in the presence of an infinite bath

In Fig. 4, we analyze the scaling, with system size L,
of the typical slowest decay rate 1/τ as a function of the
strength of disorder (α in the Floquet case and W in the
Hamiltonian model). At small disorder, deep in the thermal
phase, the slowest rate of decay scales as a power of L, and
is determined by the speed of information scrambling in the
Floquet case (1/τ ∝ L−1), and by hydrodynamic modes in the
Hamiltonian case (1/τ ∝ L−2). On the other hand, in the MBL
phase, the typical decay rate toward the thermal steady state
is exponentially small in L, ∝ k−L. As explained in Sec. II A,
the avalanche instability occurs if the slowest decay rate scales
with L more slowly than 1/τ ∝ 4−L. Thus the product of the
typical decay rate and the scaling factor 4L of the avalanche
instability increases with L in the thermal phase and decreases
with L in the MBL phase. Figure 4 shows this change of
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FIG. 5. Typical decay rate as a function of system size com-
puted using perturbation theory in the weak bath-coupling limit. The
curves are the (scaled) 80th percentile of the distribution of 1/τ over
realizations for the Floquet and Lindblad superoperators. System
sizes are L = 5 − 12 and L = 5 − 14 for Floquet and Lindblad set
ups, respectively. At least 5000 disorder realizations were used for
each set of parameters except for those computed using quadruple
precision and L = 14 (Lindblad) or L = 12 (Floquet), for which
1500–2000 realizations were used. Error bars are 68% bootstrap
confidence intervals.

behavior as a function of the disorder parameter α (W ) in the
open Floquet (Hamiltonian) model.

Ideally, one would perform a scaling collapse of these
curves to estimate the location of the avalanche-driven phase
transition. However, the appropriate form of the scaling func-
tion one should use is not clear; recent RG approaches predict
a two-parameter scaling theory similar in some respects to
Kosterlitz-Thouless scaling, but we know that the small sys-
tem sizes accessible to numerics are far from the scaling
regime controlled by the asymptotic fixed point. Therefore,
we simply identify the location of the finite-size crossing of
the curves in Fig. 4, for the largest systems we can access, as
a lower bound on Lavch in the limit of L → ∞, assuming a
monotonic drift with L. Strikingly, even at the small system
sizes accessible to our open system calculations, Lavch occurs
at much stronger disorder strengths compared to the reference
Lr shown in Fig. 2: roughly at α > 13 in the Floquet case, and
W > 7 in the open Hamiltonian model.

To access larger system sizes, we study the weak bath-
coupling limit that allows a perturbative treatment (see
Secs. III F and III G for more details). The results are pre-
sented in Fig. 5. We look at the 80th percentile, as in Ref. [41],
rather than the median (50th percentile) because it helps to
mitigate issues with numerical precision present at stronger
disorders and larger system sizes (further discussion of the nu-
merical issue is found in Appendix C). In the Floquet model,
the typical rate 1/τ decays faster than 4−L at accessible L
only for α = 33.33 and α = 50, while the curves at smaller
α eventually scale slower than 4−L at the largest system sizes
that we have data for. In the Lindblad model, the decay
rate scales slower than 4−L at disorders W = 14.0, 15.0 and
the largest L, and faster only at W = 20.0, with disorders
W = 16.0, 17.0, 18.0 showing plateaus (within error bars)
that indicate an effective critical region for the present system
sizes. Based on this perturbative analysis, the landmark Lavch
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FIG. 6. Distributions over realizations of the slowest decay
rate 1/τ of the Floquet superoperator for disorder strengths α =
3.33, 6.25, 12.5, 25.0. This is part of the data shown in Fig. 4.

is pushed even farther away from the standard landmark Lr ,
roughly at α > 25 and W > 18 for the Floquet and Lindblad
model, respectively. The resulting wide range of disorder in
between these two landmarks is thus part of the finite-size
MBL regime of the thermal phase that we are exploring in
these finite-size systems.

B. Distributions of the slowest decay rates

The distribution of the slowest decay rates of the Floquet
superoperator are shown in Fig. 6 (cf. Appendix A for data
for the Lindblad superoperator) and are approximately log
normal. The variance of the logarithm of the rate is consistent
with being L independent at the larger values of L. The peaks
of the distributions scale with the system size and the decrease
of the mode of the distribution for larger system sizes L at
large disorder α is reflected in the decrease of the median of
the distribution shown in Fig. 4.

V. UNDOING MANY-BODY RESONANCES

Before moving on to study many-body resonances in
eigenstates in the MBL regime in Sec. VI, in this section we
introduce a tool for studying such resonances. It will allow
us to associate an off-diagonal matrix element, to any two
eigenstates, that is responsible for the level repulsion (how-
ever strong or weak) between those two levels, and some of
the entanglement in those eigenstates.

Many-body resonances between configurations of local de-
grees of freedom manifest themselves as entanglement in the
eigenstates of the dynamics. This entanglement arises during
a basis rotation from a localized basis, in which states are
dynamically connected by off-diagonal matrix elements of
the Floquet unitary (or Hamiltonian) to a basis of entangled
eigenstates, which are not dynamically connected. This idea is
realized explicitly in Wegner-Wilson flows [81], but that is not
what we do below. Instead, we consider a hypothetical flow,
which at its end arrives at the eigenstates of the dynamics.
We are essentially interested in the very last steps of this flow,
which rotate away the last off-diagonal elements of U (or H).
Depending on the location along this hypothetical flow, reso-
nances can be indicated by entanglement in the set of states

that is flowing or by nonzero off-diagonal matrix elements
that couple the states. This description is qualitative, and in
this section we aim to introduce a quantitative procedure for
moving between these two views in a controlled setting.

We want the ability to undo some of the entanglement as-
sociated with many-body resonances that exists in the basis of
eigenstates, and transform to a different, more localized basis
to study the underlying matrix elements that are responsible
for that entanglement, rewinding the hypothetical flow by the
last steps. It is unclear to us how to do this meaningfully
when there are many states involved, so in this section we
describe a method for doing this transformation explicitly
with two states treated in isolation. In other words, we develop
a procedure for transforming any two eigenstates into two
more-localized states that they are superpositions of. Then,
since those two more-localized states are not eigenstates, they
do have a nonzero off-diagonal matrix element that connects
them in the dynamics, and we study these matrix elements in
Sec. VI.

Consider two eigenstates of the dynamics, |α〉 and |β〉.
These can be eigenstates of a Floquet operator or a Hamil-
tonian, but in this section we will consider a Floquet system
for concreteness. We want to find the two states

|a〉 = cos

(
θ

2

)
|α〉 + eiφ sin

(
θ

2

)
|β〉, (16)

|b〉 = −e−iφ sin

(
θ

2

)
|α〉 + cos

(
θ

2

)
|β〉 (17)

that are the orthogonal superpositions of |α〉 and |β〉 that are
as localized as possible. We refer to |a〉 and |b〉 as the demixed
states. The rotation from the two eigenstates to the more local-
ized, demixed states is parametrized by two angles, θ ∈ [0, π ]
and φ ∈ [0, 2π ], on a Bloch sphere whose poles are defined
by the two eigenstates (see Fig. 7). We emphasize that a Bloch
sphere can be constructed from any two orthogonal states, and
here we are defining the two eigenstates to be at the poles,
while the demixed states are rotated away from the poles.

As mentioned earlier, we can imagine the demixing
procedure as a reverse renormalization group flow in this
two-dimensional (2D) subspace that starts at the eigenstates
and moves toward the localized Z basis states as much as
possible, ending at the demixed states. During this process
the Floquet unitary matrix, when expressed in the 2D basis
{|a〉, |b〉}, goes from being diagonal when θ = 0 to having a
nonzero off-diagonal matrix element Uab (and its conjugate)
which couples the states |a〉 and |b〉 under the dynamics. Note
that the matrix elements of the Floquet unitary between the
demixed states and any other eigenstate outside of this 2D sub-
space are still zero, so only one isolated nonzero off-diagonal
matrix element is generated by rotating two of the eigenstates
into a superposition. In the case that the two eigenstates are
a well-isolated, strong, two-state resonance, |a〉 and |b〉 will
both have an O(1) overlap with both |α〉 and |β〉, i.e., θ will
be comparable to π/2 in Eqs. (16) and (17).

In practice, the way we find an appropriate rotation is to
maximize

f (θ, φ) =
L∑

i=1

ZααZaa + ZββZbb (18)
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FIG. 7. The Bloch sphere representing the 2D subspace spanned
by two eigenstates and the rotation to the corresponding two demixed
states. A Bloch sphere can be defined using any two orthogonal
states. Here we associate the poles to the two eigenstates |α〉 and
|β〉, and the points that represent the demixed states |a〉 and |b〉 are
rotated away from the poles at polar and azimuthal angles θ and φ.
Note that orthogonal states in the 2D subspace represented by this
Bloch sphere are antipodal on the surface of the sphere.

over the angles θ and φ, where i runs over sites, we have
suppressed the site index i on the Pauli Z operators, and Zψϕ

is the matrix element 〈ψ |Zi|ϕ〉. We have chosen to maximize
this particular function because it approximates the sum of
squared Z magnetizations over all sites and both demixed
states, F (θ, φ) = ∑L

i=1 Z2
aa + Z2

bb, which is maximized by
the computational basis states, and because the maximum
of f can be found analytically given data on the matrix
elements of Zi in the basis of eigenstates. In considering the
approximation of substituting f for F , we should consider
what we need out of this approximation. As we will see later,
the distribution of matrix elements |Uab| over pairs of states
is very broad on a log scale (see Fig. 9), and this implies the
distribution of θ is also broad [see Eq. (26)]. So, as long as
we can determine θ accurately on a log scale, that is sufficient
for our study (φ is not of much importance). Indeed when
the maximum of F is at θ � 1, the maximum of f will
approximate this very well, and when the maximum of F is at
θ ∼ 1, then all we need is that the maximum of f is at θ ∼ 1
too, and this is indeed the case.

The maximum of f occurs when

cos φ = �R√
�2

R + �2
I

, (19)

sin φ = − �I√
�2

R + �2
I

, (20)

cos θ =
√

�2
D

�2
D + 4�2

R + 4�2
I

, (21)

sin θ =
√

4�2
R + 4�2

I

�2
D + 4�2

R + 4�2
I

, (22)

where the real constants �D, �R, and �I are written in terms
of matrix elements of Zi as

�D =
L∑

i=1

(Zαα − Zββ )2, (23)

�R + i�I =
L∑

i=1

Zαβ (Zαα − Zββ ). (24)

Note that the optimal rotation is always in the upper half of
the Bloch sphere (see Fig. 7) because of the way we have
associated |a〉 to |α〉 and |b〉 to |β〉 in Eq. (18).

Now that we know how to undo a two-state resonance, we
can compute the Floquet unitary matrix elements in the 2D
basis of demixed states:(

Uaa Uab

Uba Ubb

)
= W †

(
Uαα 0

0 Uββ

)
W,

W =
(

cos(θ/2) −e−iφ sin(θ/2)
eiφ sin(θ/2) cos(θ/2)

)
. (25)

Three relevant quantities are the size of the off-diagonal ma-
trix element |Uab|, the adjusted gap between the diagonal
matrix elements |Uaa − Ubb|, and their ratio G [68]. It follows
from Eqs. (25) that

|Uab| = 1

2
|Uαα − Uββ | sin θ, (26)

|Uaa − Ubb| = |Uαα − Uββ | cos θ, (27)

G = |Uab|
|Uaa − Ubb| = tan θ

2
, (28)

where |Uαα − Uββ | is the size of the spectral gap between
the eigenstates |α〉 and |β〉, and the cosine and sine of θ are
given by Eqs. (21) and (22). These quantities characterize the
dynamical resonance in this 2D subspace. Note that Eqs. (26)
and (27) correctly express that as θ is increased from 0 to its fi-
nal value, the repulsion between the diagonal matrix elements
Uaa and Ubb decreases at the cost of generating an off-diagonal
matrix element Uab that couples the two states. This is what we
mean by undoing a resonance and demixing the eigenstates
into their constituent localized states. The eigenstates are, by
definition, not coupled by the dynamics, but they are a result
of mixing states that are coupled by the dynamics, and this is
our way of quantifying that idea to some extent.

Note that we are simply looking at the same operator
(the Floquet operator) in two different bases to identify
resonances, and this is different than tuning the disorder
parameter and detecting Landau-Zener-like avoided crossings
in the spectrum, as in Ref. [64]. However, there is a direct
connection to what was considered in Ref. [64] that we will
now discuss: Let’s imagine that we initialize a realization
of our Floquet circuit at αi = ∞, then tune α down to a
finite value α f < ∞ that we want to consider, as done by
Villalonga and Clark. Along the way, the eigenvalues of the
Floquet unitary would develop some amount of (potentially
very weak) all-to-all level repulsion, and they would traverse
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FIG. 8. Demixing of two neighboring Floquet eigenstates. Z
magnetizations are shown for two neighboring eigenstates (light blue
and red) of one realization of the Floquet model and the correspond-
ing two demixed states (dark blue and red). The pair of neighboring
eigenstates is chosen such that it is the one with the most significant
rotation angle θ on the Bloch sphere [see Eq. (16)], while also
requiring that the resonance spans the system. Top: Floquet model at
α = 12. In a strongly localized system we find a rare two-state reso-
nance and are able to undo the resonance by demixing the eigenstates
into highly magnetized states. Bottom: Floquet model at α = 1. In
the thermal phase, resonances involve many states and so a pair of
eigenstates in isolation are not able to be successfully demixed into
highly magnetized states.

some noticeable avoided level crossings where strong
many-body resonances develop. We are simply choosing to
extract information about any amount of level repulsion and
resonance between any given pair of states by examining the
properties of the two states at α f , rather than examining the
history of the levels from αi to α f . In this way, we can study
both very weak interactions between eigenstates, as well as
strong (resonant) ones, using the same rather simple approach
presented in this section.

The method we have introduced in this section is sensitive
to the existence of two-state resonances, and anything weaker
than that, so it works best at strong disorder where many-
state resonances do not dominate the spectrum. In Fig. 8,
we show the Z magnetizations of two eigenstates and their
corresponding demixed states in both the MBL and thermal
regimes of the Floquet model. In the top panel of Fig. 8, the
two eigenstates are chosen to be the two neighboring states in
the spectrum of a strongly localized system with the largest
angle of rotation θ (maximum G), while also requiring that
the resonance spans the system. We see that the demixing
procedure indeed finds superpositions of the two eigenstates
that are much more magnetized than the initial eigenstates.
This example demonstrates the case of a well-isolated, rare,
two-state resonance in the spectrum of a strongly localized
system. Meanwhile, in the bottom of Fig. 8 we do the same
thing, but for a system that is well into the thermal phase.
In that case, the eigenstates have small initial magnetizations
because they are thermal, and an attempt to find a strongly
magnetized superposition of two neighboring eigenstates does
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FIG. 9. Distributions of matrix elements for end-to-end pro-
cesses in the MBL regime. These distributions are collected over
such pairs of adjacent eigenstates (see main text), and extracted
via the method detailed in Sec. V. Left: The Floquet circuit model.
The data was collected from 104, 104, 1.5 × 103 realizations at α =
10 and L = 8, 10, 12, respectively. Right: The Hamiltonian model.
The data was collected from 104 realizations at W = 6 and L =
10, 12, 14. See Appendix B for a discussion of numerical errors in
finite-precision arithmetic.

not make much progress because the eigenstates are highly
entangled and involved in many-state resonances.

Finally, in Fig. 9 we show distributions, over pairs of states
and realizations, of the off-diagonal matrix elements |Uab| and
|Hab| for various system sizes and at values of the tuning
parameters α = 10 and W = 6. Here we are restricting to
pairs of eigenstates that are adjacent in the spectrum of U or
H , and for which Zaa and Zbb have opposite signs on both
end sites to select pairs of states that could be a systemwide
resonance (like the pair shown in the top panel of Fig. 8). The
purpose of showing these distributions is to emphasize their
extreme broadness, which is growing with L. The distribution
of off-diagonal matrix elements is much broader than the dis-
tribution of gaps, and so rare resonances are primarily caused
by the tail to large off-diagonal matrix elements shown in this
figure.

VI. CLOSED SYSTEM RESULTS

In this section, we study the two landmarks Lswr and Lmg.
As a reminder, these landmarks divide the MBL regime into
three subregimes: Between Lr and Lmg, there are rare long-
range resonances and the minimum gap does exhibit level
repulsion, but the typical eigenstate is well localized and
thus 〈r〉 � 0.39 is near the Poisson value. Next, between Lmg

and Lswr the minimum gap no longer typically exhibits level
repulsion, but due to the heavy tail to large matrix elements
(see Fig. 9), the number of systemwide resonances per sample
increases with increasing system size L. Finally, past Lswr

there are no systemwide resonances at all in a typical sample,
and the trend with increasing system size L is that samples
with such resonances become even more rare.

We use extreme values, over eigenstates, of measures
that indicate a many-body resonance to locate these two
landmarks. To this end, we use our scheme for undoing two-
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FIG. 10. End-to-end resonances: Mutual information and the
maximum entanglement bottleneck. The finite-size crossings are es-
timates of the location of Lswr, which we estimate to be at α > 13
and W > 8.5 for L larger than we can access. The dashed lines
indicate the maximal value of ln 2. The Floquet data is on the left
and the Hamiltonian on the right. The Floquet data makes use of the
full spectrum. The number of realizations used to compute statistics
are 32 × 103 for L � 10, 5 × 103 for L = 12, and 3.5 × 102 for
L = 14. The Hamiltonian data is calculated from the center fifth of
the spectrum in the

∑
i Zi = 0 sector. The number of realizations

used to compute statistics are 64 × 103 for L ∈ {10, 12}, 12 × 103 for
L = 14, and 5 × 102 for L = 16. Top: The median over realizations
of the maximum over eigenstates of the quantum mutual information
between end sites I1,L . The median is used to target typical realiza-
tions. We have dropped data points at high α and W that are affected
by finite numerical precision. Bottom: The median over realizations
of the maximum over eigenstates of Smin, the minimum entanglement
entropy over cuts.

state resonances (described in Sec. V) to understand what
is happening at these landmarks in terms of the matrix ele-
ments associated with many-body resonances. As before, we
consider systems with open boundaries to have the longest
possible distance between sites, and thus the strongest dis-
tinction between short-range and system-wide resonances in
small systems. This is important because short-range reso-
nances are certainly part of the MBL phase itself, whereas
long-range (range ∼L) resonances are important for driving
the system toward thermalizing behavior.

A. Systemwide resonances from long-range
entanglement measures

Our goal is to design measures that mark the disorder
strength at which we can start to expect that a typical MBL
system has at least one pair of eigenstates involved in a
many-body resonance that extends across the entire system
(Lswr). It is important to emphasize that we focus on sys-
temwide resonances here because there is no single point
at which short-range resonances turn on, but there is such
a landmark for systemwide resonances, as we demonstrate
below. In Figs. 10 and 11, we show data on four measures
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FIG. 11. Typical maximum end-to-end G ratio. The crossings are
estimates of Lswr. med(·) denotes the median. The median is used to
target typical realizations, and the maximum is taken over pairs of
neighboring eigenstates that are systemwide (differ in the signs of
their magnetizations on both end sites). Again the Floquet data is on
the left and the Hamiltonian data is on the right. The system sizes
L, disorder strengths α and W , and number of realizations are all the
same as in Fig. 10.

that are sensitive to systemwide resonances, spanning both the
Floquet circuit (left) and the Hamiltonian (right) models.

First consider Fig. 10, which involves two entanglement
entropy-based measures of a given eigenstate, the mutual
information I1,L between the first and last site, and Smin, the
minimum entanglement entropy over all cuts that separate the
system into left and right parts. For each eigenstate |n〉, the
quantum mutual information

I1,L = S1 + SL − S1,L (29)

is defined by the entanglement entropies SA = −Tr(ρA ln ρA)
of a subsystem A, which is in this case given by the first
site {1}, the last site {L}, and the combination of both {1, L}.
The reduced density matrix of the subsystem in eigenstate
|n〉 is obtained by tracing out the complement of A: ρA =
TrA|n〉〈n|. The minimal entanglement entropy in an eigenstate
|n〉 over all cuts which separate the system into a left half
A = {1, 2, . . . , �} and a right half A = {� + 1, . . . , L} is then

Smin = min
�

S1,2,...,�. (30)

We then take the maximum, over eigenstates, of each
of these quantities to get maxn I1,L and maxn Smin for each
realization, and finally what we plot is the median over re-
alizations, denoted by med(·). The logic behind both of these
measures is to detect, in typical realizations, rare many-body
resonances that involve only a few states that differ over the
entire length of the system [65]. The median is used to capture
the typical behavior, and to postpone the influence of finite
numerical precision to higher disorder.

The quantum mutual information between end sites un-
ambiguously picks up the small amount of systemwide
entanglement in rare, systemwide, catlike eigenstates that are
the result of systemwide, few-state resonances. In the top row
of Fig. 10, we see a clear crossing in the maximum mutual
information at strong disorder in both models. This means that
at strong disorder, the end-to-end mutual information vanishes
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for all eigenstates as the system size (distance between ends)
is increased. Before the crossing, at intermediate disorder, the
median of the maximal mutual information approaches its
maximal value ln 2, revealing the existence of at least one
systemwide resonance in most samples. So, this finite-size
crossing is an indicator of the location of Lswr. We also note
that there is another crossing of this mutual information at
much weaker disorder, and this must occur because in the
thermal phase, the entanglement is long range and obeys a
volume law, corresponding to a small mutual information
between end sites. This second crossing simply indicates that
our measure is tuned to be sensitive to rare isolated resonant
states in a spectrum of otherwise localized states, and not to
the full thermalization of the system.

The maximal entanglement bottleneck, shown in the bot-
tom row of Fig. 10, is not so unambiguous because it does not
necessarily filter out short-range entanglement. If there is an
eigenstate whose minimal cut corresponds to nearly one bit
of entanglement entropy, this does not necessarily mean that
there is systemwide entanglement in that state. However, it is
true that if all states have an entanglement entropy bottleneck
that is much smaller than one bit, then there are no states with
significant end-to-end entanglement. Thus this quantity is use-
ful to detect the absence of system-wide, few-state resonances
at strong disorder.

Crossings in both of the quantities in Fig. 10, for both
Floquet and Hamiltonian systems, estimate the landmark Lswr

beyond which not even one systemwide many-body resonance
is indicated in the large-L limit of a typical sample. This is
not to say that resonances do not exist beyond this point, but
it is to say that they do not stretch across the whole system.
As in all other measures, the crossings drift toward increasing
disorder strength with increasing L. At larger L than we can
access, we bound this landmark at α > 13 for the Floquet
model and W > 8.5 for the Hamiltonian, disorder strengths
that are substantially higher than the location of Lr (Fig. 2).

B. Systemwide resonances from matrix elements

Next we move on to study resonances using the proce-
dure outlined in Sec. V for analyzing pairs of eigenstates.
We restrict our analysis in this section to considering only
pairs of neighboring eigenstates for convenience (to avoid the
O(4L ) scaling of checking all pairs of eigenstates). We expect
that systemwide resonances restricted to neighboring pairs of
states turn on at approximately the same disorder strength as
systemwide resonances involving any pairs, and indeed our
data below supports this.

For each pair of neighboring eigenstates (n, n + 1) we
compute the demixed states, |a〉 and |b〉, and extract the asso-
ciated off-diagonal matrix element of the Floquet unitary |Uab|
(Hamiltonian |Hab|), the adjusted gap |Uaa − Ubb| (|Haa −
Hbb|), and G, which is the ratio of the two (see Sec. V for
details). To consider only potential systemwide resonances,
we further filter the pairs of states and keep only the ∼1/4
of pairs for which both 〈Z1〉 and 〈ZL〉 have opposite signs in
the two demixed states; this is what we mean by systemwide
when talking about a pair of eigenstates in this section. For
example, the resonance shown in the top panel of Fig. 8 is
systemwide. To detect the onset of systemwide resonances (in

neighboring pairs of eigenstates), we determine the largest G
from each realization, Gmax = maxn G, and plot the median
over realizations in the top row of Fig. 11. There we see that
beyond a certain level of disorder, the maximum G trends to
lower values with L, and thus we do not expect to find even
one such resonance in large systems at those disorders. This is
in agreement with the entanglement entropy-based measures
we studied above (note that those measures did not have the
restriction to neighboring pairs of eigenstates).

Now remember that for a given pair of states, G =
|Uab|/|Uaa − Ubb| (here we focus on the Floquet model). We
can define a criterion of two eigenstates being resonant if
G > 1, i.e., Uab > |Uaa − Ubb|. In MBL systems in the regime
of rare, isolated resonances in the spectrum, we can approx-
imate |Uaa − Ubb| as being distributed exponentially (Poisson
statistics) with a mean value of 2π/2L. Then if we assume that
the matrix element |Uab| is uncorrelated to the gap |Uaa − Ubb|,
the expected total number of resonances (restricted to sys-
temwide neighboring pairs of states) in a realization is the sum
over qualifying pairs of eigenstates of the probability that the
pair satisfies the resonance condition. In the regime where the
probability of resonance per pair is small enough, this number
of resonances per realization is

nswr ≈
∑
pairs

∫ |Uab|

0

2L

2π
exp

(
− 2L

2π
�

)
d�, (31)

≈ 4L

8π
〈|Uab|〉, (32)

where the mean 〈·〉 is taken over neighboring systemwide
pairs of states, of which there are approximately 2L/4. Thus
the quantity 4L〈|Uab|〉 should also herald the onset of O(1)
systemwide resonances involving neighboring pairs of eigen-
states, and the locations of the finite-size crossings, that we
show on the left of Fig. 12, serve as additional estimates
of Lswr (up to the assumptions of this section). Note that a
factor of 4L appears several times in this paper, following
distinct lines of reasoning, so this 4L is not the same as the 4L

that enters in the avalanche argument discussed in Sec. II A.
This reasoning and quantity does not translate well to the
Hamiltonian case because of the nonuniform density of states,
so we do not show data for this quantity for the Hamilto-
nian model, as we have done with the other measures. The
finite-size crossings in Fig. 11 and the left of Fig. 12 agree
well with those identified above in Fig. 10, so we conclude
that systemwide resonances involving neighboring pairs of
eigenstates onset at a similar point as systemwide resonances
between any pair, and we have further evidence for the land-
mark Lswr.

As an extension of these ideas, on the right of Fig. 12 we set
the target number of systemwide, resonant, neighboring pairs
of states to ∼2L, instead of ∼1, and thus plot 2L〈|Uab|〉 versus
α. This means that the finite-size crossing occurs when the
probability of a systemwide resonance in any given eigenstate
is finite (does not vanish with L), and hence a finite fraction of
eigenstates are typically involved in resonances. The location
of this crossing lines up nicely with estimates of Lr , the
boundary of the MBL regime.
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FIG. 12. Typical mean end-to-end matrix element |Uab|, scaled
by 4L (left) and 2L (right), for different system sizes L as a function
of α for the Floquet circuit. The crossings are estimates of Lswr

(left) and Lr (right). The median is taken over realizations and the
mean is taken over systemwide pairs of neighboring eigenstates. As
explained in the main text, the reason we scale by 4L on the left is
to make a quantity that is proportional to the number of resonant
systemwide pairs of neighboring eigenstates in a realization. On the
right, we scale the same data by 2L so the finite-size crossing occurs
when the number of resonances is ∼2L , i.e., an O(1) fraction of
states.

C. Level repulsion of the minimum gap

In this subsection, we focus on a different landmark, Lmg,
where the two closest levels in the spectrum start to undergo
significant level repulsion. We focus on the Floquet system
where the smallest gap for Poisson level statistics can be
obtained directly because the density of states is known and
independent of the eigenphase, but the same ideas and results
hold in the Hamiltonian case too, with slight modifications.

When there is no level repulsion between eigenvalues of
the Floquet unitary, the probability distribution of the size of
gaps δ in the spectrum is Poisson distributed,

p(δ) = 1

〈δ〉 exp

(
− δ

〈δ〉
)

, (33)

with mean 〈δ〉 = 2π/2L. Since there are D = 2L gaps in the
spectrum, the expected minimum gap is 〈δmin〉 = 2π/4L. A
deviation from this expectation indicates level repulsion of the
smallest gap, which is caused by a many-body resonance of
any range (probably not exactly end to end, but indeed involv-
ing extensively many degrees of freedom to get two levels so
close together). In the top left panel of Fig. 13, we show the
realization-averaged minimum gap, scaled and shifted so the
baseline value for randomly placed levels is 0. This shows that
there is a landmark Lmg beyond which the minimum gap in
the spectrum does not undergo level repulsion, and thus those
eigenstates do not share a resonance.

Assuming that for the minimum gap states it is the gap
that is atypical and not the matrix element of the resonance
in that 2D subspace, the matrix element should be typical.
Thus, the minimum gap should exhibit level repulsion when
the typical matrix element decreases with L slower than 4−L.
In the bottom left of Fig. 13, we show that indeed the location
at which the typical value of 4L|Uab|/2π (over neighboring
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FIG. 13. Level repulsion of the smallest gaps and scaling of the
typical matrix element. Floquet data is on the left and Hamiltonian
data is on the right, as in the above figures. The crossings are esti-
mates of Lmg, which we estimate to be at α > 7.9 and W > 5.7 as L
increases. Top: The average minimum gap (Floquet) and minimum
gap ratio (Hamiltonian). Data is scaled and shifted so the value for
a Poisson (uncorrelated) spectrum is 0 for both quantities. There is
not an important difference between average and typical values for
these quantities. Bottom: The log of the typical scaled matrix element
(restricted to neighboring pairs of states but not to systemwide pairs).
D is the number of states in a realization: 2L for Floquet and 1

5

( L
L/2

)
for the Hamiltonian model because we restrict to the

∑
i Zi = 0

sector and take the middle fifth of eigenstates. As explained in the
main text, we scale the matrix elements by D2 because the minimum
gap is ∼D−2. We have dropped data points at high α and W that are
affected by finite numerical precision.

pairs of states but not restricted to system wide pairs) has a
crossing is in line with Lmg.

On the right side of Fig. 13 we show similar measures for
the Hamiltonian system, however, instead of the minimum
gap, we use the minimum level spacing ratio to divide out
the effect of a nonuniform density of states. The minimum
level spacing ratio, rmin, scales with the inverse of the number
of states D when there is no significant level repulsion. We
see that, similar to the Floquet model, there is a crossing of
the minimum level spacing ratio that indicates the disorder
strength at which level repulsion sets in for one of the smallest
gaps in the spectrum (relative to the density of states at that
energy), and this landmark is reproduced by examining when
the typical matrix element between neighboring states scales
like 1/D2 (bottom right).

The location of Lmg is drifting to α > 7.9 and W > 5.7.
At this landmark (coming from strong disorder), the nearest
levels in the spectrum begin to repel each other significantly
because the typical matrix element for many-body resonances
becomes large enough. By this point, atypically large matrix
elements in the extremely broad distributions (see Fig. 9)
have already caused many systemwide resonances, but all the
resonances are still a vanishing fraction of the spectrum. On
the way from Lmg to Lr , more and more states—but still a
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minimal gap for different system sizes L and disorder strengths α for
the Floquet unitary circuit. The dashed lines show the expected CDF
P[minn(δn) < δ)] = 1 − exp(4Lδ/(2π )) for the case of completely
uncorrelated eigenvalues. The difference between the dashed and
solid curves signals the development of level repulsion in the small
gaps.

vanishing (with L) fraction—exhibit level repulsion and the
crossover to the thermal regime is where finally the fraction
of states involved in resonances no longer vanishes with L.

We can analyze the minimal gaps in more detail by con-
sidering the cumulative probability density function (CDF)
P[minn(δn) < δ)] shown in Fig. 14. For the case of un-
correlated eigenvalues (Poisson statistics), we expect the
distribution

P[minn(δn) < δ)] = 1 − exp

(
4Lδ

2π

)
, (34)

which we can compare to the numerical estimate of the CDF.
The distribution in Eq. (34) is represented by red dashed lines
in Fig. 14 and is the limiting curve for all L and α, since
residual level repulsion necessarily suppresses the probability
to find small minimal gaps and therefore shifts the distribu-
tions to the right. It is interesting to confirm the trends already
seen by the analysis of the mean of these distributions: At
large disorder α � 10, we see that for large system sizes the
uncorrelated distributions are reproduced and the minimum
gap hence does not exhibit level repulsion. On the other hand,
at smaller disorder, we observe the opposite trend: For larger
system sizes, the observed CDF departs more strongly from
the uncorrelated distribution due to level repulsion, which first
occurs for small gaps.

Our data is useful to numerically check the assumption of
limited level attraction in Imbrie’s proof of the existence of
MBL [66]. In the proof, the condition reads

P[minn(δn) < δ)] < δνCL. (35)
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FIG. 15. Summary of estimates of landmarks in the MBL regime
for the Floquet circuit. The L-dependent location of a landmark,
αc(L), is obtained via the condition Q(αc, L) = Q(αc, L − δL),
where Q is a relevant quantity whose finite-size crossing indicates
the landmark and δL is the increment by which the system size is
increased for a series of data. The landmarks shown are (1) Lmg,
where the minimal gap switches from Poissonian to non-Poissonian.
αc(L) is estimated from the data shown in the top left of Fig. 13 with
δL = 2. 2) Lr , the crossover to the thermal regime, where all states
exhibit significant level repulsion. αc(L) was estimated from data
shown on the left of Fig. 2 with δL = 2. 3) Lswr, the landmark that
marks the edge of the deep-MBL subregime where no systemwide
resonances are present. αc(L) comes from the crossings in the top
left of Fig. 10 with δL = 2. 4) Lavch, an estimate for the position of
the avalanche instability from the perturbative decay rate shown in
Fig. 5, using δL = 1.

It is trivially fulfilled in the case of uncorrelated levels by
the CDF in Eq. (34) with ν = 1 and C = 4. Our results in
Fig. 14 show compellingly that the numerical data is bounded
by the Poisson CDF from above, and therefore the assumption
of limited level attraction is comfortably fulfilled for all α.
We note that the target of the original proof was Hamiltonian
systems, however, we have considered a Floquet system here
since, as discussed earlier, the spectrum is simpler to work
with in some respects.

VII. SUMMARY AND DISCUSSION

In this paper, we identified and estimated several land-
marks in the MBL regimes of finite-size MBL systems (see
Fig. 15). The model systems we used are the conventional
random-field Heisenberg spin chain and a Floquet random
unitary circuit that we introduced, which we argued has some
simplifying advantages. To set reference points for these mod-
els, in Fig. 2 we showed the mean level spacing ratio, which is
commonly used to mark the boundary of the finite-size MBL
regime; that reference landmark we have called Lr .

In addition, we defined open versions of these otherwise
closed spin chain models by coupling an infinite bath to the
left end spin. The open models give us a direct handle on
the avalanche instability via their superoperator description.
Based on the theory of avalanches, the critical thermalization
rate of a MBL spin chain of length L coupled to an infinite
bath at one end is ∼4−L. Identifying the slowest decaying
eigenmode of the open systems as the rate of thermalization,
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we showed in Fig. 4 that indeed both open Floquet and Hamil-
tonian models have a point at which their thermalization rate
crosses through the critical 4−L scaling. We then improved
on this via a perturbative approach suggested by Sels [41] in
a follow-up to the first version of this paper, which allowed us
to push the calculation to larger system sizes (Fig. 5). In this
way, we were able to set our first landmark Lavch in the MBL
regimes, which is a lower-bound estimate of the boundary of
the MBL phase. Strikingly, this landmark was deep in the
MBL regimes, suggesting that the boundary of the MBL phase
is at much stronger randomness than indicated by studying the
average properties of eigenstates/energy levels, such as 〈r〉,
at accessible system sizes. It is also interesting to note that,
for the Hamiltonian model, our lower bound of the avalanche
threshold (W > 18) is beyond the upper bound on the critical
disorder strength proposed in Ref. [82], albeit for a slightly
different model.

Before moving on to study many-body resonances in the
closed spin chain models, in Sec. V we detailed a procedure
for studying the effective couplings between pairs of eigen-
states. The essential idea is, for any chosen pair of eigenstates,
to find the two most localized superpositions of those two
eigenstates, and then characterize the couplings in that 2D
subspace via the matrix elements of the Floquet operator (or
Hamiltonian) itself in the basis of these more localized states.
Being able to study the resulting matrix elements allowed us to
more thoroughly understand the landmarks that involve many-
body resonances, which we identified first using other basis-
independent measures. This idea of undoing resonances may
be useful in other settings where isolated resonances show up.

The two resonance-related landmarks we found, Lswr and
Lmg, split the MBL regimes into three subregimes. We de-
tailed two ideas for entanglement entropy-based quantities
that can pick up on exceedingly rare catlike eigenstates that
are involved in systemwide resonances (swr), and indeed in
Fig. 10 we showed that these worked to identify and estimate
Lswr. We then confirmed this landmark using our procedure
for undoing resonances and generating the associated matrix
elements. The results are contained in Figs. 11 and 12.

The final landmark we studied was Lmg, the point at which
the minimum gap (mg) changes from being Poissonian to not.
This is the result of the typical matrix element that generates
level repulsion between neighboring levels crossing through
the scaling ∼4−L, which is how the minimum gap of a Poisson
spectrum scales with L. This explanation was confirmed in
Fig. 13.

Finally, we examined the distribution of minimum gaps as
we varied α in our Floquet model. In Fig. 14, we show that the
distribution is bounded by the uncorrelated Poisson distribu-
tion. This is numerical confirmation, at the accessible system
sizes, of the modest assumption of limited level attraction in
the proof of MBL [66], albeit for Floquet systems, which were
not the original target of the proof.

All of our landmarks exhibit a significant drift with system
size toward larger values of disorder due to the funda-
mental asymmetry between thermalization and localization.
Figure 15 displays a summary of the landmarks and their
drift with system size. It is important to note that we cannot
determine whether all our landmarks will converge as L → ∞
or if any will end up in the MBL phase. One interesting

possibility is that one of, or both of, Lswr and Lmg end up
within the MBL phase, beyond Lavch, and separate it into
two or three pieces. For example, there may be a deep part
of the MBL phase where typically not even a single one of
the exponentially many eigenstates has any significant sys-
temwide entanglement (compared to one bit), and then a more
shallow part of the phase that does typically host these still
exceedingly rare long-range resonances. Or, this may not be
true, in which case it would seem that the avalanche instability
would be the cause of all system-wide resonances in the limit
of large samples. Our data favor the latter scenario but we
cannot rule out the former, which could occur if the character
of the finite-size effects changes qualitatively at larger L. In
the future it will be interesting to understand the connections
between resonances and avalanches more thoroughly.

Our paper has raised many outstanding questions for future
inquiry. For example, the study of rare many-body reso-
nances may be a new lens through which to understand the
differences between MBL in systems with random versus
nonrandom (deterministic, e.g., quasiperiodic) disorder [33].
Our method for analyzing resonances in pairs of eigenstates
has also opened up the future possibility of building on this
method to deal with many eigenstates at once. Furthermore,
we have not yet fully understood the connection between the
slowest modes of the models coupled to thermal baths and the
detailed properties of the corresponding isolated systems, and
this may be a challenging and rewarding direction for future
work.

Note added. Recently, a related and complementary work
about many-body resonances by Garratt et al. appeared [83].
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APPENDIX A: DISTRIBUTION OF SLOWEST DECAY
RATES OF THE XXX LINDBLAD SUPEROPERATOR

In Fig. 16, we provide additional data for the distributions
of the slowest rate of the Lindblad superoperator of the Hamil-
tonian model coupled to an infinite bath.

APPENDIX B: SMALL MATRIX ELEMENTS AND FINITE
NUMERICAL PRECISION

In Fig. 9, we show the distributions of the off-diagonal
matrix elements obtained via our procedure for undoing reso-
nances in the 2D subspace spanned by two chosen eigenstates.
At strong disorder and large system size, there is a left tail
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FIG. 16. Distribution, over realizations, of the slowest rate of
thermalization in Lindblad dynamics for the open XXX model. This
is part of the data shown in Fig. 4.

to very small numerical values and these can be difficult to
work with even for double precision (64-bit) floating point
arithmetic. Small |Hab| are the result of small Zαβ in Eq. (24).
So, the source of these issues is in the calculation of very small
off-diagonal matrix elements of Zi in the basis of eigenstates.

We have found that numerical errors can distort the left
tail of the distribution at numerical values of |Hab| near to, or
smaller than, the double precision floating point resolution of
2−53. However, many statistics are not sensitive to this tail to
small matrix elements and thus they are robust to some level
of these errors. For example, these distributions are broad
enough that the mean is dominated by the right tail to large
values. The median is also robust to errors in the left tail, as
long as those errors do not cause weight to be transferred from
the lower to the upper half of the distribution.

APPENDIX C: NUMERICAL PRECISION IN
THE OPEN SETUP

Numerical precision issues are also present in the open
setups (both Floquet and Hamiltonian) when the decay rate
distribution has significant support on values smaller than
10−16. Unlike the case of matrix elements coming from un-
doing many-body resonances, distributions of decay rate can
lay in the region were numerical precision issues cannot be
ignored. This can be seen clearly in Fig. 17, where the decay

FIG. 17. Left: Distribution of decay rate τ in the open Hamilto-
nian setup with L = 14 and W = 18 at weak coupling as described
in Sec. III G. Dashed (continues) lines in both panels show the decay
rate computed using quadruple (double) precision. Right: 80th per-
centile of − log10 τ as function of disorder W at fixed system sizes.
In both plots, 1000 disorder realizations are used for every set of
parameters. At each disorder realization, the decay rate is computed
twice, once using double precision and the other using quadruple
precision. Error bars are 68% bootstrap confidence interval.

rate computed using double and quadruple precision are put
side by side. After looking at the distribution of decay rates,
it is evident that the median of log10(1/τ ) is totally changed
by the insufficiency of double precision. However, higher
percentiles of the distribution are less affected by this issue
because the right tail will be at values larger than 10−16. That
is why we have chosen (inspired by Ref. [41]) to work with the
80th percentile. Moreover, different percentiles have similar
system size scaling because the variance of distribution is
independent of system size (see Figs. 16 and 6). Therefore,
the 80th percentile still carries enough information for talking
about typical behavior. Still, at large disorder and available
system sizes, the decay rates are too small for getting a
trustworthy result out of double precision computations. For
instance, in Fig. 17 it can be seen that for L = 14 the 80th
percentile of the decay rate is smaller than 10−16 in the range
W > 16. To overcome this issue, we have performed quadru-
ple precision diagonalization of H and U as well as their
respective superoperators (see Secs. III G and III F) anytime
the needed percentile of the distribution is smaller than 10−15.
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