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Two parameter scaling in the crossover from symmetry class BDI to AI
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The transport statistics of the 1D chain and metallic armchair graphene nanoribbons with hopping disorder
are studied, with a focus on understanding the crossover between the zero-energy critical point and the localized
regime at larger energy. In this crossover region, transport is found to be described by a two parameter scaling
with the ratio s of system size to mean free path, and the product r of energy and scattering time. This two
parameter scaling shows excellent data collapse across a wide a variety of system sizes, energies, and disorder
strengths. The numerically obtained transport distributions in this regime are found to be well described by a
Nakagami distribution, whose form is controlled up to an overall scaling by the ratio s/| ln r|2. For sufficiently
small values of this parameter, transport appears virtually identical to that of the zero-energy critical point, while
at large values, a Gaussian distribution corresponding to exponential localization is recovered. For intermediate
values, the distribution interpolates smoothly between these two limits.
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I. INTRODUCTION

In the presence of disorder, most 1D systems are Ander-
son insulators [1–4], with electronic wavefunctions that are
exponentially localized in space. This phenomenon is most
easily understood by the classic ideas of the scaling theory
of localization [5,6], which reveals that disorder is relevant in
1D (and marginally relevant in 2D) such that low-dimensional
systems generically localize in the presence of arbitrarily
weak disorder. Localization has many dramatic experimental
signatures—notably, the conductance decreases exponentially
with the system size, such that disordered 1D metals are
generically insulating.

However, there are exceptions to this rule. A famous ex-
ample of this, first studied by Dyson [7], is the 1-dimensional
chain with only hopping disorder. Near zero energy, this sys-
tem has several unusual spectral properties. First, as noted
by Dyson [7], the low-energy density of states diverges with
energy ε as 1/(|ε ln3 |ε|). The typical localization length also
diverges logarithmically with the energy in the limit of zero
energy [8–13], and precisely at zero energy the conductance
does not decay exponentially with system size, even for
long wires, indicating that exponential localization is never
reached. Simultaneously, the exponentially localized wave
functions give way to electronic eigenstates with a multifractal
character [14,15].

The unusual features of the random hopping model at zero
energy are reflected in its transport properties. These can be
studied using a Fokker-Plank (FP) equation, which describes
the evolution of the probability distribution of transport with
system size. The original equation of this type, derived by
Dorokhov [16] and Mello, Pereyra, and Kumar [17] for the

Wigner-Dyson symmetry classes, predicts a conductance that
falls off exponentially with the system size for long enough
systems, and hence a finite localization length. More gen-
erally, however, a different FP equation can be derived for
each of the 10 different Altland-Zirnbauer symmetry classes
[18–24]. The 1D chain with real hopping disorder falls into
symmetry class BDI, for which solutions to the FP equation at
zero energy are not exponentially localized for an odd number
of channels [21,22]. This is also the case for the other chiral
classes AIII and CII when there are an odd number of chan-
nels, as well as the disordered superconducting classes D and
DIII for any number of channels [23].

The diverging localization length suggests that Dyson’s
random hopping model is fine-tuned to an underlying
(disorder-induced) critical point at zero energy. Indeed, a uni-
form staggering of the hopping preserves all symmetries but
generically tunes the system away from criticality [21,25]; the
divergences of localization length and density of states are
thus features of the underlying critical point, rather than of
the symmetry class in general. (In multimode wires there is
in fact a two parameter family of critical points, see [26]).
Moreover, Gruzberg et al. [27] pointed out that the higher-
order terms neglected in a standard FP treatment tune systems
in all symmetry classes away from criticality, explaining the
apparent generality of this critical behavior observed in earlier
works such as Ref. [23].

Nevertheless, the random hopping critical point is relevant
to understanding transport in a wide array of 1D systems, in-
cluding multimode quasi-1D wires with random hopping, and
disordered superconductors [21,28–30]. Indeed, this critical
point is not only universal, in the sense of being independent
of details of the disorder potential or the number of channels,
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but in fact super universal, in the sense that the conductance
statistics are universal across critical points that appear in five
distinct symmetry classes [27].

Interestingly, although divergences in the localization
length and density of states near this critical point have been
extensively studied, the full transport statistics near the criti-
cal point are not fully understood. One underlying challenge
here is that the FP equation corresponding to symmetry class
BDI, describes transport of the 1D disordered chain only in
the limit that charges are injected at precisely zero energy,
where the chiral symmetry constrains transport. The resulting
transport distributions are thus rigid for a given symmetry
class, describing scaling only with the ratio s = L/l of length
to mean free path. Consequently, they cannot capture the
crossover from the critical transport statistics at zero energy
to the localized regime that occurs at higher energies.

One attempt to capture transport in this crossover regime
was made by Ryu et al. [31], who derived FP-like equations to
describe the finite energy crossover regime. These equa-
tions were obtained by relaxing certain assumptions made
in the standard FP derivations, and lead to a two parameter
scaling, where the second parameter r̃ = ε/V 2 is proportional
to the energy ε, and V is the disorder strength. However,
the resulting equations cannot be solved analytically without
making further approximations that are difficult to justify a
priori.

The present paper takes a different approach, using a nu-
merical study of transport in the crossover regime to directly
access the relevant transport statistics. The numerics are car-
ried out on two models tuned to the BDI zero-energy critical
point: the 1D chain with random hopping disorder, and metal-
lic armchair graphene nanoribbons at low-energies, where
there is only one propagating mode.

This approach reveals several qualitative aspects of trans-
port in the crossover regime, which have not been discussed
in the literature to date. First, the probability distribution of
transport quantities, such as the conductance, is a universal
function of two-dimensionless parameters that are determined
by the system size, energy, and disorder strength. These pa-
rameters are: the ratio s = L/l of length to mean free path,
and the product r = ετ of energy and relaxation time. Such a
two parameter scaling is also consistent with the generalized
FP equations of Ref. [31]. However, the scaling parameter that
yields the best data collapse at larger disorder strengths is r,
rather than r̃. (The two agree at weak disorder.)

Second, as a function of the two parameters (r, s), transport
is found to be in one of three regimes, as shown in Fig. 1. For
any finite r, as s → ∞ transport enters a localized regime with
the typical conductance decaying exponentially with system
size. Conversely, when s � | ln r|2, the transport distributions
are essentially identical to the distribution of the chiral class
at zero energy, which can be understood as a consequence
of the fact that the wire is not long enough to reveal its
finite localization length. These two limits are separated by
a crossover regime, where the shape of the probability distri-
bution changes smoothly with (r, s).

Third, throughout the crossover regime, the ratio s/| ln r|2,
which describes the ratio of the system size to average
localization length, is found to control the overall shape of

FIG. 1. Evolution of the probability distribution P(x) as a func-
tion of the two parameters s = L

l and r = ετ . In the blue region, for
sufficiently small s/| ln r|2, the distribution is indistinguishable from
that of the Chiral class. In the red region, when s/| ln r|2 is large,
one enters the localized regime at any finite r, where the typical
conductance decays exponentially with length. Here, the distribution
P(x) is approximately Gaussian, with a mean exceeding its standard
deviation. In the green region, the distribution crosses over smoothly
between these two limits. The color map shows the skewness μ̃3(x),
which effectively distinguishes between these regimes. For more
details, see Sec. IV.

the transport distribution, up to an overall rescaling. For
s/| ln r|2 � 0.28, the distribution is numerically indistinguish-
able from that of the critical point at zero energy, while for
s/| ln r|2 � 2, transport appears localized.

The rest of this paper is structured as follows. Section II
reviews the usual single parameter scaling paradigm, the FP
equations governing transport, and the properties of their
solutions. These can be thought of as the limiting cases of
the crossover problem under consideration here. The present
study focuses on two models: the 1D chain and arm-chair
graphene ribbon. These are presented in Sec. III, which also
describes symmetries of the models and the methods used to
compute the conductance numerically. The main results of this
paper are discussed in Sec. IV. The two parameter scaling of
transport statistics is established using data collapse, followed
by an analysis of the relevant probability distributions, and
comparisons to prior results from the literature. Section V
presents the conclusions with some remarks on the scope for
future work.

II. BACKGROUND

This section covers some of the background from previous
works that is required to understand the results of the present
paper. The conventional FP approach for studying the evolu-
tion of the probability distribution of transport with the system
size is reviewed. The solutions of the FP equations for the
relevant symmetry classes AI and BDI are discussed. Note
that the current paper studies the crossover of the transport
statistics between the BDI symmetry class at the zero-energy
critical point and the AI symmetry class expected at large
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energies. Finally, the inherent inadequacy of the conventional
FP approach, as well as the associated single parameter scal-
ing, in describing this crossover is presented.

The long-distance transport properties of a generic disor-
dered, noninteracting fermionic system depend qualitatively
on its symmetries. In the absence of lattice symmetry, there
are 10 distinct symmetry classes, characterized by the pres-
ence or absence of three generic symmetries: time reversal
(T ), particle-hole (C), and chiral symmetry (S) [18]. This
paper is focused on Hamiltonians in one of two symmetry
classes: AI (with T = +1) and BDI (with T = C = +1 and
S = 1). AI is also known as the orthogonal class, and is one of
the original Wigner-Dyson classes. BDI has chiral symmetry
(S = 1), which implies that there is a unitary operator that an-
ticommutes with the (first-quantized) Hamiltonian (see [32]).
In the presence of chiral symmetry, the spectrum is invariant
under reflection about zero energy. Therefore, zero energy is
a special point in the spectrum. The implications of this on
electronic transport are discussed below.

One of the common ways to study transport in quasi-1D
wires is to use the S matrix that relates the amplitudes of
incoming and outgoing modes at a given energy:(

ψo
L

ψo
R

)
= S

(
ψ i

L

ψ i
R

)
≡

(R T ′

R′ T

)(
ψ i

L

ψ i
R

)
. (1)

The labels o (i) and L (R) correspond to the outgoing (incom-
ing) modes on the left (right) end of the wire. The quantities
R (R′) and T (T ′) are the reflection and transmission coef-
ficients. For an N channel system, these are N × N matrices.
The conductance, in units of e2/h, is then given by

g = Tr(T T †) =
N∑

i=1

Ti, (2)

where {T1, T2, . . . , TN } are the eigenvalues of T T †. It is often
convenient to rewrite the transmission eigenvalues Ti as

Ti = 1

cosh[2](xi )
. (3)

The values xi are related to the eigenvalues of the transfer
matrix M that relates the amplitude of modes on the left and
right sides of the wire. The eigenvalues of MM† come in
pairs exp(±2xi ) [27,33]. These are often referred to as the
radial coordinates of the transfer matrix. For the purposes of
the present paper, it is sufficient to consider systems with a
single propagating channel (after eliminating degeneracies),
i.e., N = 1. In this case, there is only one eigenvalue, so the
index i is dropped henceforth.

By considering how the S matrix changes upon adding a
thin slice of disordered wire [34], a differential equation for
the evolution of the probability distribution of transmission
coefficients as a function of the wire’s length can be obtained
[16,17] (for a review of these methods, see [33,35]). The
resulting Fokker-Plank, or DMPK, equation for a one-channel
system is given by

∂P(x; s)

∂s
= 1

2γ

[
∂

∂x

(
∂P

∂x
− P

∂ln (J (x))
∂x

)]
. (4)

Here P(x; s) is the probability distribution of x, which is
related to the transmission eigenvalue via Eq. (3), and

s = L

l
(5)

is the ratio of length to mean free path.
Both current conservation and the symmetries T,C, and S

(when present) impose constraints on the S matrix (or transfer
matrix). For instance, time reversal symmetry enforces that
the S matrix at a given energy is symmetric:

S(ε) = (S(ε)). (6)

However, chiral symmetry relates the S matrix at energy ε to
that at −ε:

S(ε) = ( S(−ε))†. (7)

Therefore, chiral symmetry constrains the S matrix to be Her-
mitian only at precisely zero energy.

Because the S matrix in different symmetry classes satisfies
different constraints, the quantities γ , J (x), and the domain of
x are specific to a symmetry class and are given by [27,35]

AI : 0 � x < ∞; γ = 2; J (x) = sinh(2x)

BDI : −∞ < x < ∞; γ = 1; J (x) = 1.

This leads to different FP equations governing transport in AI
and BDI. We emphasize, however, that the FP equation cor-
responding to the BDI symmetry class is only applicable at
strictly zero energy, where chiral symmetry requires the S
matrix to be Hermitian. One can also understand this by think-
ing of calculating transport at nonzero energy as analogous to
introducing a finite chemical potential that breaks the chiral
symmetry of the BDI symmetry class.

Assuming that P(x; 0) = δ(x), the solution for class AI is
given by [36]

P(x; s) = 1√
π

(
2

s

) 3
2

sinh(2x)e− s
4

×
∫ ∞

x
dy

ye− y2

s√
cosh(2y) − cosh(2x)

. (8)

Similarly for class BDI, one obtains (for x ∈ R) [30,31]:

P(x; s) = 1√
2πs

e− x2

2s . (9)

Based on the FP equation and its solutions, one finds that the
entire probability distribution (therefore all its moments) for
a given symmetry class is completely specified by a single
parameter s. This is sometimes referred to as one parameter
scaling.

It is now helpful to analyze the properties of the solutions
to the FP equations in (8) and (9) in more detail. According
to the scaling theory of localization [5], a conventional 1D
system is exponentially localized for arbitrarily weak disorder
with

−〈ln(g)〉 = 2
L

ξtyp
, − ln(〈g〉) = 2

L

ξavg
(10)

for long system sizes, where ξtyp(ξavg) is the typical (average)
localization length. Indeed this is what one finds for class AI,
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where

−〈ln(g)〉 = s, (11)

for any system size. Therefore ξtyp = 2l in this case. It can
also be shown that ξavg = 8l [33]. The latter becomes apparent
at large system sizes s 
 1, where the distribution of Eq. (8)
becomes a Gaussian with both mean and variance of s

2 .
However, for the solution of class BDI, Eq. (9), exponential

localization is never reached. Even in the asymptotic limit of
s 
 1, using Eq. (9) one finds:

−〈ln(g)〉 ≈ 2

√
2s

π
. (12)

The typical localization length scales as ξtyp ∼ √
Ll in this

case, and becomes infinite in the limit of large system size.
Similarly ξavg ∼ L/ log s, and diverges with L. It must be
noted that this does not correspond to a perfectly conducting
system, but one with a broad transport distribution. In fact,
based on Eq. (9), one finds that ln(g) is not self-averaging
in the BDI symmetry class, even for arbitrarily long sys-
tem sizes. This is the disorder induced critical point in 1D
[15,23,25].

The existence of the critical point at zero energy is in-
timately connected to topology in noninteracting systems.
In symmetry class BDI, it is possible to have topologically
nontrivial gapped phases in 1D. These are classified by an
integer-valued topological invariant of the band structure [32],
the winding-number. A disorder-free 1D metal in class BDI
can be viewed as the critical point separating the topologically
trivial phase with zero winding from one of the nontrivial
phases with winding ±1. One can then imagine that adding
disorder creates regions in each of these phases. On the
domain walls between these disorder-induced topologically
distinct regions, there exist low-energy states. It is these low-
energy states, which lead to the divergent density of states and
localization length noted previously [7,25,29].

As shown above, the FP equation describes a one param-
eter scaling that changes abruptly from one symmetry class
to another. This poses a conundrum for scattering at nonzero
energy in class BDI, where chiral symmetry does not impose
any constraints on the S matrix, and the relevant FP equation is
technically in symmetry class AI. It follows that at sufficiently
low energies, Eq. (4) fails to describe transport distributions
in such systems, which must crossover smoothly from that of
class BDI at zero energy to that of class AI for sufficiently
large energies (compared to the inverse relaxation time, say).
In this regard, energy can be thought of as a parameter that
moves us away from criticality. (As noted previously, zero
energy is not always a disorder-induced critical point, as
symmetry preserving terms such as a staggered hopping can
be added to tune the system away from criticality [25,27];
such terms are not considered here.) A minimal description
of the transport statistics in this finite energy crossover from
class BDI to AI thus requires one additional parameter, which
clearly must be related to the energy; here we argue that the
appropriate parameter is r = ετ , where τ is the scattering
time. Note that a breakdown of one parameter scaling also
occurs in the standard Anderson localization problem near

FIG. 2. Examples of the systems studied here. The 1D chain is
shown in (a) and the arm-chain ribbon of width W = 5 in (b). Dif-
ferently colored sites correspond to different sublattices. The dashed
line in panel (a) [panel (b)] encloses a unit cell of the 1D chain [arm-
chair ribbon]. Throughout this paper, the lattice constant is taken to
be unity. The labeling of sites for the arm-chair ribbon is shown in
(b), where the number corresponds to the vertical position of the site
within the unit cell and the letter corresponds to the sublattice.

zero energy and the band edges [37–39]; this is distinct from
the phenomenon we discuss here.

Reference [31] suggested that the FP equation fails to de-
scribe the finite energy crossover regime between symmetry
class BDI and AI because the magnitude and phase of the
reflection coefficient do not decouple. Specifically, writing the
reflection coefficient as

R =
√

Reiφ, (13)

where
√

R = tanh(x) is the amplitude and φ is the phase. The
usual FP equation assumes that the probability distribution for
the phase Q(φ) is stationary with respect to s, independent of
x, and follows:

Q(φ) =
{

1
2π

, AI
1
2 [δ(0) + δ(π )], BDI.

(14)

Reference [31] derived FP equations, which incorporate the
flow of φ with s, and proposed approximate solutions to these
in order to describe the scaling regime. The drawback of this
approach is that the resulting differential equations cannot be
solved exactly; we return to this point in Sec. IV, where the
results of this paper are compared to those of Ref. [31].

III. MODEL AND METHODS

In this section, the models used to study the crossover
of transport from symmetry class BDI to AI are introduced.
These are the 1D chain and metallic arm-chair graphene rib-
bon. The symmetries of the disordered models used to classify
the symmetry class of these models is then discussed. Finally,
a brief description of the methods used to compute transport
numerically is given.

To study the crossover and establish its properties, two tight
binding systems are considered. The first is a 1D chain and the
second is a graphene nanoribbon with arm-chair boundaries.
These are shown in Fig. 2. The Hamiltonian of the 1D chain
in the absence of disorder is given by

H =
∑

i

t (c†
i,Bci,A + c†

i+1,Aci,B) + H.c., (15)

where ci,A (ci,B) are annihilation operators for electrons on
the unit cell labeled by the index i at the sublattice A (B).
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FIG. 3. The spectrum of a metallic arm-chair ribbon with W = 5
is shown, where k is the momentum along the ribbon in units of the
inverse lattice constant of the arm-chair ribbon. There is a linear band
crossing with only one left/right moving mode close to zero energy.

See Fig. 2 for the sublattice labeling convention used here.
Similarly, the Hamiltonian for the arm-chair ribbon of width
W is given by

H =
∑

i

W∑
j∈odd

t (c†
i+1, j,Aci, j,B) + H.c

+
∑

i

W∑
j∈even

t (c†
i, j,Aci, j,B) + H.c

+
∑

i

W −1∑
j=1

t (c†
i, j+1,Bci, j,A + c†

i, j+1,Aci, j,B) + H.c. (16)

In this case, the extra index j labels the vertical position of
the site within the unit cell of the arm-chair graphene ribbon.
The convention used for labeling the sites within a unit cell is
shown in Fig. 2. For both the 1D chain and the arm-chair rib-
bon, since there are no terms breaking the degeneracy between
the spins, only one spin species is considered for simplicity.

The 1D chain consists of a pair of left and right moving
modes, with a linear dispersion close to zero energy. The
spectrum of the arm-chair ribbon can be thought of as a
1D projection of the dispersion of 2D graphene at quantized
values of momentum along the transverse direction of the
arm-chair ribbon [40]. The dispersion generally has a gap that
is inversely proportional to the width W . However, for widths
W = 3n − 1, where n is an integer, the dispersion contains
the Dirac point of graphene and is metallic with a linear band
crossing at zero energy. The spectrum of a metallic arm-chair
ribbon with W = 5 is shown in Fig. 3.

Adding a random component to the hopping introduces
disorder without violating the chiral symmetry that is integral
to the problem, as will be shown. In the rest of this paper, a
disorder strength of V denotes that a random number chosen
from the uniform distribution spanning [−V,V ] is added to
every nonvanishing hopping matrix element in the Hamilto-
nian.

One can now examine the symmetries of the general dis-
ordered systems in more detail. These are the three generic
symmetries: time-reversal (T ), particle-hole (C), and chiral
(S). These symmetries are most easily understood by look-
ing at the so-called first-quantized Hamiltonian H. H can be
thought of as a matrix whose elements Hα,β are the coeffi-
cients of c†

αcβ in the full second-quantized Hamiltonian H of
Eq. (15) or (16), where α and β label any site in the system.
Time-reversal symmetry requires that

U †
TH∗UT = H, (17)

where UT is a unitary matrix. For our purposes, it suffices to
have any anti-unitary symmetry with these properties. Thus
we may consider a TRS operator that acts trivially on spin,
and include in our model only a single spin species. The cor-
responding time-reversal operator acts trivially on the fermion
creation and annihilation operators, i.e., UT = I. Therefore,
time-reversal symmetry is present provided that all matrix ele-
ments of H are real. In this case, we necessarily find T 2 = +1.

One of the most important symmetries present in these
systems is chiral symmetry. Chiral symmetry requires that

U †
S HUS = −H, (18)

where US is a unitary matrix. In this case, the chiral symmetry
is given by

(US )α,β =
⎧⎨
⎩

0, α �= β

1, α = β belongs to sublattice A
−1, α = β belongs to sublattice B.

(19)

It follows that chiral symmetry is present when the Hamil-
tonian only contains hopping terms between different sub-
lattices, which is always the case here. Finally, combining
time-reversal and chiral symmetry yields particle-hole sym-
metry C, that squares to +1. This puts the systems in
symmetry class BDI.

The package KWANT for python [41] is used to compute
the transport properties numerically. This package enables the
creation of finite size tight binding systems with disorder.
One can then attach semi-infinite leads of the corresponding
clean system and then compute the S matrix using methods
available in KWANT. From the S matrix, one can obtain the
transmission eigenvalue(s) and therefore x by using Eq. (3).
Note that this constrains x � 0, so the distribution class BDI
[Eq. (9)] needs to be folded in order to perform a comparison
with numerics. This enables the study of transport with a
variety of sizes, energies, and disorder strengths. Over 20 000
disorder realizations are computed for each value of these
parameters. For more information on the inner workings of
the package, such as how quantities are computed, readers
are referred to the aforementioned reference and the software
documentation.

IV. RESULTS

In this section, the main results of our work are presented.
First, the existence of a two parameter scaling of transport
distributions at finite energy near the zero-energy critical point
of class BDI is demonstrated in Sec. IV A. This is done
by showing that the numerically obtained disorder averaged
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transport quantities for the 1D chain [Eq. (15)] exhibit scal-
ing collapse. The resulting two parameter scaling interpolates
between the transport statistics of the chiral distribution for
class BDI [Eq. (9)] at zero energy to that of class AI [Eq. (8)]
at large energies. Next, the behavior of the two parameter
probability distribution P(x; s, r) is studied in Sec. IV B. It
is shown that there are three distinct regimes of transport, as
outlined in Fig. 1. It is also shown that the overall shape of
the distribution is controlled by the ratio s/|ln(r)|2, which is
related to the ratio of the average localization length and the
system size. Finally, in Sec. IV C, the apparent universality
of the two parameter scaling is discussed, along with a brief
comparison of the results of this paper to that of Ref. [31].

A. Establishing two-parameter scaling

To understand the crossover of transport from class BDI to
AI, we begin by studying the 1D chain. As seen in Sec. II,
the FP equations imply that the transport distribution P(x)
in a given symmetry class, such as BDI at ε = 0 or AI, is
completely determined by a single parameter s = L

l . Con-
versely, one can obtain s from from a single disorder averaged
quantity, usually −〈ln(g)〉. In contrast, the transport statistics
of our models in class BDI away from zero energy obey a
two parameter scaling, with the second parameter necessarily
depending on the energy. This is because one expects the
transport distributions to crossover from that of class BDI
[Eq. (9)] at zero energy to class AI [Eq. (8)] at large energies.
Below, numerical evidence is presented showing that trans-
port is a function of the two parameters s and r = ετ . More
concisely,

P(x) ≡ P(x; s, r). (20)

Note that there are three independent parameters: the length
L, energy ε, and disorder strength V ; but in practice, only two
dimensionless parameters control the transport distributions.

The first step in showing the two parameter scaling is to
obtain the mean free path l from the quantity 〈|x|〉, where 〈. . .〉
denotes disorder averaging, at zero energy, for several disorder
strengths. This is shown in Fig. 4, with the fits showing good
agreement with the prediction obtained using Eq. (9). From
this, one can also obtain τ = vF

l . Over the energy ranges
studied here (ε ∈ [10−6, 10−2]), it is safe to assume that l
and τ are nearly independent of energy. This can be justified
from a simple Fermi’s golden rule calculation for a single
weak impurity. In this approximation, the scattering rate is
given by

τ−1(ε) = 2π ρ0(ε) |〈ψL|Himp|ψR〉|2, (21)

where Himp is the Hamiltonian of an impurity of strength V
located on a single bond, ψL (ψR) is the wavefunction of the
left (right) moving mode at a given energy, and ρ0(ε) is the
density of states of the clean system. Evaluating the matrix
element gives

τ−1(ε) = 2V 2

LvF
, (22)

where vF is the group velocity. Thus the energy dependence
of τ and l essentially comes from the Fermi velocity, which is
well approximated by a constant for the energies used here.

FIG. 4. The plot shows 〈|x|〉 vs L for several disorder strengths at
zero energy in the 1D chain. The dashed lines are fits to the prediction

from Eq. (9), which gives 〈|x|〉 =
√

2s
π

. The fits show good agreement

and l is extracted from this.

One can now show numerically that P(x) is completely
specified by s and r. A good way to visualize two parameter
scaling across a range of parameters is by observing data-
collapse for a few key quantities when plotted as a function
of s, r. Figures 5 and 6 show such data collapse for the quanti-
ties 〈− ln(g)〉 and Var(ln(g)

〈− ln(g)〉 , demonstrating excellent agreement
with the postulated two parameter scaling. The limiting values
of 〈− ln(g)〉 at large and zero ετ (Fig. 5, black-dashed lines)
is given in Eqs. (11) and (12), respectively.

The behavior of Var(ln(g)
〈− ln(g)〉 also highlights the growing con-

tribution from rare regions at lower energies, which lead to
large conductance fluctuations. As mentioned in Sec. II, these
rare-regions are formed due to the formation of domains in
topologically distinct phases with bound states on domain
walls. For class AI it is expected that this quantity asymp-

FIG. 5. Two parameter data collapse of 〈− ln(g)〉 for the 1D
chain with several disorder strengths. The scaling parameter s is
given by the x axis, whereas the different colors span the second
scaling parameter r. The markers correspond to different disorder
strengths and the dotted lines simply join neighboring points to
clearly show collapse. The upper (lower) dashed lines are the pre-
dictions from the FP equation for class AI (BDI at zero energy) that
should be applicable for large (zero) r. The lengths of the systems
range from 10–1000 unit cells and the energies span 10−6–10−2.
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FIG. 6. Similar to Fig. 5, but for the quantity Var(ln(g)
〈− ln(g)〉 . Once again,

there is good agreement with the two parameter scaling hypothesis.
Here the upper (lower) dashed lines correspond to class BDI (AI).
Observe that the curves seem to saturate at increasingly large values
as the energy is lowered.

totically approaches 2 for large s based on Eq. (8). In contrast,
for class BDI, where rare-region effects dominate [14,25], for
s 
 1 Eq. (9) gives

[Var( ln(g))]
〈− ln(g)〉 ≈

(
1 − 2

π

)√
2πs, (23)

which never saturates, indicating that the system is not self-
averaging. As shown in Fig. 6, for any nonzero r this quantity
does saturate, but at a value that increases with − ln r. This,
combined with the observation that 〈− ln(g)〉 behaves linearly
with s for sufficiently large s and all observed values of r, indi-
cates that ln(g) is self-averaging for sufficiently large systems
at any finite energy.

Still, the increasing saturation value of Var(ln(g)
〈− ln(g)〉 at smaller

r indicates the relative broadening of the distribution as the
contribution of rare regions to transport becomes increasingly
important. Such behavior was predicted by Refs. [14,25], who
found a growing discrepancy between typical and average
quantities at lower energies. For instance, it was predicted that
the typical localization length ξtyp goes as |ln(ε)|, whereas the
average localization length ξavg goes as ln2(ε), when r � 1
[12,14]. Figure 7 indicates that numerically, the typical local-
ization length goes as

ξtyp = l|ln(r)| (24)

when r � 1, in line with the results of Ref. [12].

B. Characterizing the distribution P(x; s, r)

Having established the two parameter scaling of transport
statistics, one can investigate the form of P(x) for different
values of (s, r). Numerically, the distribution P(x) is extracted
from the distribution of the conductance g = 1/ cosh2(x). For
a given g, this in general yields two solutions, one at x > 0 and
one at x < 0. Here we always take the positive solution, such
that the numerically obtained distribution P(x) is defined only
for x > 0. Since in the chiral class the FP equation allows any
−∞ < x < ∞, our numerical distributions are thus folded
relative to the true distributions, with any probability formally
associated with x < 0 contributing to P(−x).

FIG. 7. The form of the divergence of the typical localization
length with energy is shown. The dashed line shows the expected
scaling near the zero-energy critical point ξtyp = l| ln r|. ξtyp is ob-
tained numerically by fitting to Eq. (10) for sufficiently large system
size L. r < 10−2 for all points in the figure. The data is noisier when
the localization length becomes comparable to the largest system size
(1000 unit cells).

Figure 1 summarizes the evolution of P(x) with (s, r).
Three different transport regimes can be identified, depending
on the relative magnitudes of r and s: (1) the localized regime,
which occurs at sufficiently large s for any nonzero r, (2)
the chiral regime, which occurs at sufficiently small s for all
values of r studied here, and (3) the crossover regime, which
connects the two. Each regime corresponds to a qualitatively
different form of the distribution P(x), as shown in Fig. 8. We
now discuss each of them in detail.

1. Localized regime

The localized regime, in the upper right of Fig. 1, describes
parameter values where 〈− ln(g)〉 grows linearly with s, and
Var(ln(g))
〈− ln(g)〉 is approximately independent of s. For s 
 1, where

this regime occurs at small r, this suggests that P(x) becomes
a Gaussian distribution of the form:

P(x) ≈ 1√
2πσ 2

exp

(
− (x − μ)2

2σ 2

)
. (25)

FIG. 8. The evolution of the probability distribution P(x) with s
at fixed ln(r) ≈ −9.2 is shown. V = 0.5 for all lines.
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FIG. 9. The probability distribution for x after subtracting the
mean and scaling by the standard deviation for s 
 | ln r|2. The black
dashed line is the standard normal distribution. V = 0.5 and s ≈ 190
are used for all lines.

Such a distribution agrees qualitatively with the predictions
for class AI [see Eq. (8)] at large s, but with a different mean
and variance. In this regime, the distribution has negligible
weight near x = 0, as implied by the form of the normalization
in Eq. (25). This requires that μ 
 σ for self-consistency.

Figure 9 compares the numerical distributions obtained
at s = 190 to the Gaussian form (25). The plot shows good
agreement, indicating that P(x) is well approximated by a
Gaussian, though the distribution is exactly Gaussian only in
the limit s → ∞. (This is true even for class AI.) The parame-
ters μ, σ can be extracted from the numerics as follows. Using
Eq. (25) one finds:

〈− ln(g)〉 ≈ 2μ. (26)

Combining this with the result of Eq. (24), one finds that for
s 
 1 and r � 1:

μ = s

|ln(r)| + O( ln(r)). (27)

The term of O( ln(r)) can be ignored when s is sufficiently
large. The variance can be extracted directly from the numeri-
cal results, as shown in Fig. 10. The corresponding best fit line

FIG. 10. The variance of x is shown as a function of s when s 

1. The dashed line shows s

3 as a reference.

FIG. 11. The probability distribution P(x) for a few different
values of r in the small s limit where the distribution resembles that
of class BDI. s ≈ 4 and V = 0.1 are used. The black-dashed line
shows Eq. (9) with this value of s.

yields

σ 2 ≈ s

3
. (28)

The scale at which the system enters the localized regime
can be understood based on the observation that our dis-
tribution will be Gaussian only when the condition μ 
 σ

is satisfied. From Eqs. (27) and (28), this implies that s 

ln2(r), for small r. Therefore the length scale to enter the
localized regime for small r is given by

L 
 ξ 2
typ

l
∼ ξavg. (29)

This length scale was also identified as relevant to the onset of
the crossover regime in multimode systems by Ref. [27].

2. Chiral regime

The far left of Fig. 1 shows the chiral regime, which occurs
for sufficiently small s and r � 1. Here the distribution P(x) is
essentially independent of r, and indistinguishable from that
of Eq. (9), which describes transport in class BDI at zero
energy. This is shown in Fig. 11. Appendix A discusses a
p-value test confirming the proximity of P(x) to the chiral
distribution in this region. Note that the numerics are restricted
to x � 0, so the distribution of Eq. (9) needs to be folded
in order to perform this comparison. As seen in Fig. 1, the
cut-off length scale below which the transmission statistics
are well described by Eq. (9) decreases as r increases. This is
consistent with the observation that the threshold lengthscale
for the system to be self-averaging also decreases with r. We
return to this point presently.

3. Crossover regime

In the crossover region between the chiral and localized
regimes, the numerical distribution P(x) is well approximated
by a distribution of the form:

P(x) = 2

γ �(δ/2)

(
x

γ

)δ−1

exp

[
−

(
x

γ

)2]
, x � 0, (30)
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FIG. 12. P(x) at several values of r, with s = 76 and V = 0.5,
showing good agreement with Eq. (30). The solid lines are from
numerics whereas the dashed lines are fits to Eq. (30).

where the parameters δ, γ are functions of s, r. This is a spe-
cial case of the generalized gamma distribution known as the
Nakagami distribution. Figure 12 shows the strong agreement
between the ansatz [Eq. (30)] and the numerical results at
several points in the crossover regime.

As δ is varied, the Nakagami distribution interpolates
smoothly between the folded version of distribution of class
BDI at zero energy [Eq. (9)], obtained for δ = 1, γ = √

2s,
and the Gaussian distribution described by Eq. (25), obtained
by taking δ → ∞ (see Appendix B for a derivation). In the
Gaussian limit, the parameters μ and σ are given by

μ = γ

√
δ

2
; σ = γ

2
. (31)

To understand the scales at which the system passes be-
tween the chiral and crossover regimes, it is useful to relate
the parameter δ to quantities that are relevant to transport. To
do this, note that for general γ , δ,

〈x〉 = γ
�

(
1+δ

2

)
�

(
δ
2

) , 〈x2〉 = 1

2
δγ 2, (32)

which gives

σ 2 = γ 2

4

(
2δ − 4

(
�

(
1+δ

2

)
�

(
δ
2

) )2)
≈ γ 2

4
. (33)

Thus the ratio

〈x〉2

〈x2〉 − 〈x〉2
= �

(
1+δ

2

)2

δ
2�

(
δ
2

)2 − �
(

1+δ
2

)2 ≈ 2δ (34)

is independent of γ , and is approximately equal to 2δ for
1 � δ � ∞, with a correction that decreases from −0.25 for
δ = 1 to −0.5 as δ → ∞. In other words, δ is approximately
determined by the square of the ratio of the distribution’s mean
and standard deviation; this correspondence becomes exact in
the Gaussian limit δ → ∞, i.e., L 
 (ξtyp)2/l . Taking

〈x〉 ≈ −1

2
〈log g〉 = L

ξtyp
(35)

and using the numerically obtained value of σ 2 ≈ s
3 gives

δ ≈ 3

2

Ll

(ξtyp)2
= 3

2

s

| ln2 r| . (36)

FIG. 13. Two parameter data collapse similar to Fig. 6, but for
metallic arm-chair ribbons of different widths with V = 0.5. The
dotted lines here are from the 1D chain at the corresponding value
of ετ . The ribbons have lengths of 100–1000 unit cells and energies
from 10−6–10−2.

where the last equality is valid for r � 1, where Eq. (24) can
be used. Thus the shape of the distribution is approximately
controlled by the ratio of the length L to the scale (ξtyp)2/l ∼
ξavg, with this relationship becoming exact for large δ. From
Eq. (34), this ratio measures the extent to which the system is
self-averaging.

Setting δ ≈ 1 in Eq. (36) suggests that the length scales
below which the Chiral regime occurs is expected to be

L � 2

3

ξ 2
typ

l
. (37)

It is interesting to compare these predictions to the numer-
ical phase diagram shown in Fig. 1. The color map in this
phase diagram corresponds to the skewness of x, denoted by
μ̃3(x) = 〈(x − μ)3/σ 3〉, where μ and σ 2 are the mean and
variance of the distribution P(x) respectively. When the chiral
distribution of Eq. (9) is folded to x > 0, μ̃3(x) is almost 1.
In addition, μ̃3(x) falls to zero for the Gaussian distribution
of Eq. (25). Based on this, approximate boundaries for the
regimes are obtained in Fig. 1. The blue and red dashed lines

separating the regimes in this figure are given by L = 0.28
ξ 2

typ

l

and L = 2
ξ 2

typ

l . This is in agreement with the expectations
mentioned above.

C. Universality of two-parameter scaling and
comparison to Ref. [31]

If the two parameter scaling of P(x) describes a crossover
away from criticality, one might expect it to be a universal
property of the critical point, rather than a feature of the
specific model. A modest test of such universality is whether
it holds for other 1D systems with a single linearly dispers-
ing mode close to zero energy, such as metallic arm-chair
graphene nanoribbons at sufficiently low energies. Figure 13
shows the data collapse of Var(ln(g))

〈− ln(g)〉 for arm-chair ribbons of
several widths, compared to the 1D chain described above.
Numerically, the agreement is excellent, indicating that the
scaling theory developed above applies equally to metallic
armchair ribbons in this low-energy regime.
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Finally, our scaling theory can be compared to the results
of Ryu et al. in [31], who derived FP-like equations governing
the evolution of the joint probability distribution of x and the
phase of the reflection coefficient φ. These equations also pre-
dict a two parameter scaling; however, the second parameter
used in [31] is proportional to

r̃ = ε

V 2
. (38)

For weak disorder τ ∝ 1/V 2, and this differs from our scaling
parameter r = ετ only by unimportant constant numerical
factors. However, for stronger disorder, when the Born ap-
proximation is no longer valid, the two scaling parameters
are not equivalent. Numerically, the data collapse with ετ is
seen to work marginally better (see Appendix C); however, the
differences between the two parameters r and r̃ are small for
all values of V considered here, such that the disagreement
between the two is small. A more stringent check of which
scaling is most accurate would be to consider systems with a
non-linear dispersion, such as the zig-zag graphene ribbons;
in such systems the energy dependence of the velocity leads
to large differences between r and r̃. We defer such analysis
to further work.

Reference [31] also proposes an approximate solution de-
scribing the distribution in the crossover regime. In the limit
s → ∞, this becomes a Gaussian:

P(x) = 1√
π (1 + α)s

exp

(
− (x − (1 − α)s/2)2

(1 + α)s

)
, (39)

where x ∈ R and α(r̃) is a parameter that interpolates be-
tween the two limiting cases. For α = 1 one recovers the
distribution describing transport statistics in class BDI at zero
energy [Eq. (9)], while for α = 0 one obtains the distribution
of class AI [Eq. (8)] when s → ∞.

This Gaussian form agrees qualitatively with Eq. (25).
Away from zero energy, both distributions have negligible
weight near x = 0 when s → ∞. However, the two predic-
tions differ quantitatively. Comparing Eq. (39) to Eq. (27),
which is valid for r � 1, one finds that

α = 1 − 2

|ln(r)| . (40)

This is also what was found in Ref. [31]. The variance of x
according to Eq. (39) is then given by

Var(x) =
(

1 − 1

|ln(r)|
)

s ≈ s, (41)

when r � 1. In contrast, numerically, Var(x) ≈ s/3
[Eq. (28)]. This discrepancy cannot be fixed by changing
some constants in Eq. (39) since this would make the
α = 0, 1 limits invalid. Instead, the disagreement suggests
that one of the assumptions used by Ref. [31] to solve their
differential equations is not justified in the case at hand.
This is not unexpected, since the authors of that paper note
that their approximate solution also disagrees with other
approaches in certain limits.

V. CONCLUSION

Transport statistics in the finite energy crossover from BDI
to AI cannot be described using the usual FP equation, which
describes a one parameter scaling within each symmetry
class. As such, alternative approaches are needed to study the
crossover in transport statistics from class BDI at zero energy
to the large-energy limit where transport is expected to be well
described by class AI. The present paper uses a numerical
approach to study the phenomenology of this crossover.

This approach yields three main insights. First, the energy-
dependence of the transport statistics away from zero energy
is captured by introducing one additional parameter, r = ετ ,
where τ is the scattering time. This was demonstrated by
means of the data collapse of several disorder averaged quan-
tities over a wide range of parameters, obtained from the
numerically computed conductance. Such a two parameter
scaling represents the minimal generalization of the FP equa-
tion needed to describe the crossover regime. Notably, our
scaling parameter differs slightly from that of previous papers
on the subject [31].

Second, transport can be phenomenologically divided into
three main regimes. For r < 1, when the wire is short com-
pared to ξ 2

typ/l ∼ ξav, the system is not self-averaging, and the
transport is well approximated by that of the chiral symmetry
class. As s → ∞ for any r > 0, the transport is governed
by a Gaussian distribution with mean much larger than its
standard deviation, and the resulting transport is in a localized
regime. The crossover regime interpolates between these two
behaviors.

Third, after folding onto x > 0, the transport statistics
throughout the crossover regime are well-approximated by a
Nakagami distribution. This distribution is described by two
free parameters: a parameter γ that sets the variance, and a
parameter δ, which controls the distribution’s shape, which
interpolates continuously between the chiral (δ = 1) and lo-
calized (δ → ∞) regimes. Physically, δ is proportional to the
ratio L/ξavg of the length to the average localization length,
and determines the degree to which the distribution is self-
averaging. The distribution’s variance can be obtained from
the numerical results, which yield Var(x) ≈ s/3. Interestingly,
this disagrees with existing predictions of the crossover.

This paper raises several interesting questions about the
nature of the crossover from BDI to AI transport regimes
in 1D. First, if the crossover regime merely reflects the na-
ture of the disorder induced 1D critical point of class BDI,
one would expect that it exhibits universal features that are
not specific to the single-channel case; as such it would be
interesting to extend this study to the case of multichannel
wires. A particularly interesting application of this would
be to consider the scaling of transport properties with width
in metallic arm-chair graphene nanoribbons (for which the
number of channels is always odd), which may shed insight
on the behavior in the 2D limit. Second, it seems likely that
the crossover near the critical point in other 1D symmetry
classes is described by the same scaling collapse with the two
parameters s and r used here. It is even possible that the family
of distributions identified here is super-universal, and captures
transport in all of these crossover regimes, along the lines of
Ref. [27].
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FIG. 14. The results of the Kolmogorov-Smirnov test of P(x)
with the null hypothesis that P(x) follows Eq. (9), shown as a
function of the scaling parameters r and s. V = 0.5 is used here.
In the blue region, the p-value is less than α = 0.05, therefore the
distribution is not identical to that of class BDI here. In the red region,
the p-value is greater than α, so P(x) is not inconsistent with that of
class BDI.
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APPENDIX A: STATISTICAL TESTS FOR CLASS BDI

A more rigorous test of the form of the distribution P(x)
can be performed using the methods of hypothesis testing.
For instance, it was found that P(x) is indistinguishable from
the distribution of class BDI [Eq. (9)] when L � ξ 2

typ/l . To
test this, one can take take the null hypothesis to be that P(x)
follows Eq. (9), with s obtained using a maximum likelihood
estimator. The alternative hypothesis is that P(x) does not
follow this distribution. One can then perform a statistical
test to check if the null hypothesis can be rejected. In this
case, the Kolmogorov-Smirnov test is used. This test uses the
maximum distance between the empirical cumulative distri-
bution function (CDF) and the expected CDF using Eq. (9)
as the test statistic. One then obtains a p-value, which is the
probability of obtaining a test statistic at least as extreme as
the one observed, assuming the null hypothesis is true. If the
p-value is less than a predetermined value α, one can reject
the null hypothesis. An observed p-value less than α means
that the probability of rejecting the null hypothesis if it is true,
known as the type-I error rate, is at most α. Here α is taken to
be 0.05, a value used commonly. Note that if a p-value greater
than α is obtained, one cannot confirm the null hypothesis.

All of this is performed using methods available in the
SciPy package in python [42]. The results of the test are shown
in Fig. 14. One finds that P(x) is indistinguishable from that of
class BDI up to a value of s that increases when r decreases.

APPENDIX B: GAUSSIAN LIMIT OF EQ. (30)

The distribution of Eq. (30) becomes a Gaussian distribu-
tion in the limit δ → ∞. The moments of the distribution are
then given by

μn = 〈xn〉 = γ n �
(

δ+n
2

)
�

(
δ
2

) . (B1)

The mean (first moment) in the limit δ → ∞ can be found
using

lim
δ→∞

�
(

δ+1
2

)
�

(
δ
2

) =
√

δ

2
. (B2)

The mean of the distribution is therefore μ = γ
√

δ/2. Next,
one can compute the limits of the higher cumulants. For the
second cumulant (variance) one finds

σ 2 = γ 2 lim
δ→∞

[
�

(
δ+2

2

)
�

(
δ
2

) −
(

�
(

δ+1
2

)
�

(
δ
2

) )2]
= γ 2

4
. (B3)

This establishes the results quoted in Eq. (31). The higher
cumulants vanish at least as fast as 1/

√
δ, indicating that in the

limit δ → ∞ this distribution converges to a Gaussian. To see
this, note that as δ → ∞ the distribution is well approximated
by

P(x) = 2

γ�(δ/2)
exp

[
−

(
x

γ

)2

− (δ − 1) log
x̄

γ
+ 2

x̄x̃

γ 2
−

(
x̃

γ

)2]
, (B4)

where x̄ =
√

δ−1
2 is the value where the distribution is maxi-

mal, x̃ = (x − x̄)a, and the terms that have been dropped in the
exponential are of order x̃3√

δ−1
. It follows that up to corrections

that vanish like 1√
δ
, the distribution is Gaussian.

APPENDIX C: DIFFERENCE BETWEEN THE SCALING
PARAMETERS r AND r̃

Two parameter scaling was also predicted in [31]. How-
ever, the second scaling parameter predicted by their treatment
is r̃ = ε/V 2, where V is the disorder strength. In the weak
disorder limit where the Born approximation is applicable
this is equivalent to the scaling parameter r = ετ used here;
however, the two differ for larger values of V . This is apparent
in Fig. 15, which compares the exact numerical value of the
mean free path to the Born approximation result 1/V 2; the
difference between the two increases as the disorder becomes
stronger. However, the deviations are small, even for the
largest disorder strengths considered here. This discrepancy
translates to a similar difference in the lifetime τ .

Figure 16 shows the data collapse using r̃ rather than r as
the second scaling variable. Since the two parameters differ by
at most 10%, the collapse still works fairly well; however, the
collapse is noticeably worse than in Fig. 5. This suggests that
the FP equations of Ref. [31], which predict scaling collapse
with r̃, rely on approximations that break down for large V .
Notably, they are obtained when l is much larger than the
lattice spacing. Since l ≈ 5 when V = 0.5, this assumption
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FIG. 15. The ratio of the scaled mean free path and the actual
mean free path as a function of the disorder strength V , showing that
1/V 2 scaling is no longer accurate when the disorder is strong. l̃ is
given by l0( 0.1

V )2, where l0 is the mean free path for V = 0.1.

FIG. 16. Same as Fig. 5, but using r̃ as the second parameter.

is not well justified at the strongest disorder strengths studied
here, where the two scalings differ.
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