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Emergence of a superglass phase in the random-hopping Bose-Hubbard model
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We study an experimentally feasible system of strongly correlated bosons with random hoppings described
by the infinite-range Bose-Hubbard model on a lattice with hopping integrals given by independent random
variables of Gaussian distribution with nonzero mean. We solve this quantum model in the thermodynamic limit,
employing the replica method and the Trotter-Suzuki formula. We find and describe a superglass phase that
emerges at the interface between glass and superfluid phases. Both glassy and long-range orderings are present
in the superglass and compete with each other, as revealed by the anticorrelation of their order parameters.
We present phase diagrams in various cross sections of the multidimensional space of system parameters. In
selected parameter subspaces, we compare the results to those of nondisordered, diagonally disordered, and
once celebrated spin-glass systems.

DOI: 10.1103/PhysRevB.105.174203

I. INTRODUCTION

The interplay between interactions and disorder in quan-
tum many-body systems is a field where a lot remains to
be explored [1]. Its complexity and relevance stem from the
fact that these two effects have opposing impacts on particle
localization [2,3], and thus their competition leads to interest-
ing physical phenomena. Moreover, the interest in these kind
of systems increases due to the rapidly developing quantum
simulation methods [4,5], such as, e.g., the creation of optical
lattices [6]. They allow for an experimental realization of
the theoretically studied systems [7,8], and this provides a
two-way correspondence in the study of model Hamiltonians.

Disordered systems can be classified based on the character
of the disorder. In bosonic lattice systems, the most commonly
studied type is diagonal disorder [9–17], i.e., the randomness
in the system is present in the chemical potential. It was found
that in such a case there is no direct transition between super-
fluid and Mott insulator phases, as a Bose glass phase emerges
between them upon introduction of disorder [18]. The case
discussed in this paper is the less explored one of random
interactions [15,19–23], called the off-diagonal disorder. Such
a system is frustrated and thus the glassy phase that emerges
in it differs from the Bose glass [24]. Moreover, describing the
Bose glass in terms of the Edwards-Anderson order parameter
[25] requires defining it via particle density fluctuations [26].
Here, we aim to perform an analysis of the phase diagram of
the off-diagonal case.

In magnetic systems, the off-diagonal kind of disor-
der is a vital ingredient of once very popular spin-glass
systems [25,27], for which the replica symmetry-breaking
phenomenon has been found first [28]. An essential feature
of disordered interaction is frustration. There are many nearly
degenerate local minima of energy in a frustrated system,
separated by energy barriers of significant height [29]. Thus,
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the system may remain in an excited state for a very long time,
depending on the history of its evolution [30]. Due to this,
we expect the off-diagonal disorder case to be significantly
different from the diagonal one. The possibility of quantum
tunneling enables transitions between local energy minima
without the need for thermal fluctuations, which effectively
softens this slow relaxation effect [31]. This property was
shown to make quantum spin glasses significantly different
from their classical counterparts [32]. In particular, a quantum
phase transition is present in such systems [33], which has also
been addressed theoretically [34–37].

The other component of rich physics of disordered many-
body systems is strong correlations that lead to various forms
of collective behavior, like superfluidity [38,39] or high-
Tc superconductivity [40]. Superfluidity can be intrinsically
found, e.g., in liquid helium [38,39], but in recent years,
Bose-Einstein condensation in ultracold dilute gases [41] has
emerged as a framework offering easier access to investigate
its properties [42]. Introducing periodic potentials to such sys-
tems expanded their usefulness to quantum simulation. The
availability of such frameworks opened an additional way to
study disordered systems [8,43].

Competition between glassiness and long-range order has
been known, for example, in spin glasses, where ferro-
magnetism was found to destroy the glass ordering [29].
However, solid 4He was found to exhibit a superglass phase
[44] (initially classified as a supersolid [45]), in which the
glass and superfluid orders coexist. Several theoretical works
[24,46–48] emerged to confirm the existence of this phase and
describe it adequately. It was shown [24] that the two orders
compete within the superglass phase. Nevertheless, they can
indeed be present alongside each other.

In this paper, we consider a system of strongly correlated
bosons with normal-distributed random hopping of nonzero
mean. The model is fully connected, however, experimental
realization with optical lattices is possible [22]. We study the
competition between the glassy and superfluid orders, which
leads to the emergence of the superglass (SG) phase, apart
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ANNA M. PIEKARSKA AND TADEUSZ K. KOPEĆ PHYSICAL REVIEW B 105, 174203 (2022)

from the usual ordered phases: glass (GL) and superfluid (SF),
as well as the disordered (DI) one. Examining the behavior
of the order parameters in the studied phases, we find the
anticorrelation in agreement with Ref. [24]. We obtain the
phase diagrams based on conditions following from the Lan-
dau theory and the stability criterion for the replica-symmetric
solution [49]. In particular, we find the SG phase as the part of
the superfluid region with broken replica symmetry. We eval-
uate these conditions by numerically solving self-consistent
equations that arise after a derivation that follows a similar
scheme as our previous work [22] and its spin-glass and
quantum-spin-glass predecessors [27,50]. First, we use the
replica method [27] and the Trotter-Suzuki formula [51] to
map the problem onto an effective classical model, to which
we then apply the saddle-point method in the thermodynamic
limit. The saddle-point solution gives us the desired self-
consistent equations. Importantly, in the method used by us,
the averaging over disorder is done exactly, as an analytical
integration over the entire distribution, as opposed to averag-
ing several realizations of disorder.

The text is organized as follows. First, in Sec. II, we present
a brief description of the conducted analytical derivation and
the subsequent numerical treatment of the obtained equations.
Next, in Sec. III, we establish the conditions from critical
lines and predict some of their behavior. Then, in Sec. IV,
we present and analyze the numerically calculated phase dia-
grams. Finally, in Sec. V, we comment on the obtained results,
relate the current work to existing knowledge, and suggest
possible directions of future research in this field. Outside the
main text, in Appendix A, we show a quantitative comparison
of the limiting case of our results with previous work, while
in Appendices B–E, we present more detailed derivation steps
mentioned in Secs. II and III.

II. MODEL AND METHODS

A. Model

The Bose-Hubbard Hamiltonian for the system of N inter-
acting bosons reads

H = −
∑
i< j

Ji j (a
†
i a j + a†

j ai )

+ U

2

∑
i

n̂i(n̂i − 1) − μ
∑

i

n̂i, (1)

where ai (a†
i ) are the annihilation (creation) operators for site

i and n̂i = a†
i ai are the particle number operators, while μ

and U denote the chemical potential and on-site interaction
strength, respectively. Ji j are independent random variables
describing the hopping integrals between sites i and j. They
are given by Gaussian distribution with the mean J0/N and
variance J2/N , following Ref. [27]. As the disorder in the
studied system is quenched, we need to average calculated
quantities over its distribution, i.e.,

[X ]J =
∏
i< j

⎡⎣∫ ∞

−∞
dJi j

exp
(− (Ji j−J0/N )2

2J2/N

)
J
√

2π/N

⎤⎦X, (2)

where by [· · ·]J , we denote the desired average over the
disorder, while X is the averaged quantity, dependent on
all Ji j .

To make the calculations more convenient, we transform
the Hamiltonian to the basis of quasimomentum and quasipo-
sition, i.e.,

P̂ = i√
2

(a† − a), Q̂ = 1√
2

(a† + a). (3)

The transformed Hamiltonian reads

H = −
∑
i< j

Ji j (P̂iP̂j + Q̂iQ̂ j ) +
∑

i

(
Ũ n̂2

i − μ̃n̂i
)
, (4)

where we have introduced μ̃ = μ + U
2 and Ũ = U

2 .

B. Order parameters

The natural order parameter in a strongly correlated
bosonic system is the SF order parameter [9]

Δ = 〈ai〉, (5)

where 〈·〉 = Tr · e−βH/ Tr e−βH denotes the thermodynamic
average. However, it does not capture the glass ordering, i.e.,
the quenched disorder, as the locally frozen phases of com-
plex wave functions average to zero over the whole material,
despite their uniquely determined values. This behavior can
in turn be identified based on the Edwards-Anderson order
parameter [25]:

QEA = 1

N

∑
i

[|〈ai〉2|]J . (6)

Thus, combining both Δ and QEA, we are able to identify
the disordered phase (also called the Mott insulator; charac-
terized with QEA = 0, Δ = 0), the glassy phase (QEA > 0,
Δ = 0), and the superfluid phase (QEA > 0, Δ > 0). A phase
with QEA = 0 and Δ > 0 is forbidden by symmetries in the
system, as we show further.

C. Effective classical model

To obtain the free energy F averaged over the Ji j distribu-
tions, we employ the replica trick [27],

F = − 1

β
[ln Z]J = − lim

n→0

1

βn
([Zn]J − 1), (7)

where β = 1/(kBT ) (we put kB = 1 throughout the paper),
Z = Tr exp(−βH ) is the partition function, and we introduce
the replicated Hamiltonian Hrepl,

Zn = Tr exp

(
−β

n∑
α=1

Hα

)
≡ Tr exp(−βHrepl ), (8)

in which each Hα is a copy of the original Hamiltonian.
Since various terms of the Hamiltonian do not commute,

we apply the Trotter-Suzuki formula,

exp(−βHrepl ) = lim
M→∞

[
exp

(
− β

M
HP

)
exp

(
− β

2M
Hn

)
× exp

(
− β

M
HQ

)
exp

(
− β

2M
Hn

)]M

, (9)
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where we have split the replicated Hamiltonian

Hrepl = HP + 1
2 Hn + HQ + 1

2 Hn, (10)

introducing the following terms:

HP = −
∑

α

∑
i< j

Ji j P̂iαP̂jα, (11a)

HQ = −
∑

α

∑
i< j

Ji j Q̂iαQ̂ jα, (11b)

Hn = Ũ
∑

iα

n̂2
iα − μ̃

∑
iα

n̂iα. (11c)

Next, between each pair of consecutive exponents, we insert a
summation over a complete set of eigenvectors of either P̂ or
Q̂ (i.e., P̂|p〉 = p|p〉, etc.), such that the matrix elements of the
HP and HQ terms can be evaluated. The resulting expression
reads

Zn = Trpp′qq′

M∏
k=1

exp

[
β

M

∑
α

∑
i< j

Ji j
(
p(k)

iα p(k)
jα + q(k)

iα q(k)
jα

)]

× 〈p(k)|p′(k)〉〈p′(k)|e− βHn
2M |q(k)〉

× 〈q(k)|q′(k)〉〈q′(k)|e− βHn
2M |p(k+1)〉, (12)

where the trace Trpp′qq′ means

Trpp′qq′ (·) =
∑
p(1)

11

. . .
∑
p(M )

Nn

∑
p′(1)

11

. . .
∑
p′(M )

Nn

∑
q(1)

11

. . .
∑
q(M )

Nn

∑
q′(1)

11

. . .
∑
q′(M )

Nn

(·),

(13)

and we define |p(k)〉 ≡ ⊗
i,α |p(k)

iα 〉, etc.
As the expression can be now factorized into parts de-

pending on one Ji j only, each of these parts may be averaged
separately. Therefore, we perform the averaging over Gaus-
sian distributions, resulting in the following expression:

[Zn]J = TrpqMpq

×
∏
i< j

exp

{
J2β2

2M2N

[∑
kα

(
p(k)

iα p(k)
jα + q(k)

iα q(k)
jα

)]2

+ βJ0

MN

∑
kα

(
p(k)

iα p(k)
jα + q(k)

iα q(k)
jα

)}
, (14)

where Mpq is a product of matrix elements:

Mpq =
∏

i

M(i)
pq =

∏
ikα

〈
p(k)

iα

∣∣e− βHn
2M
∣∣q(k)

iα

〉〈
q(k)

iα

∣∣e− βHn
2M
∣∣p(k+1)

iα

〉
.

(15)
At this point, the partition function has neither quantum nor
random components. The last trace of the quantum nature of
the problem lies in the Mpq factor, which, however, can be
seen as an ad hoc-defined function of {p(k)

iα } and {q(k)
iα }. There-

fore, we have mapped the original problem onto an effective
classical one at the cost of adding an additional time-like
dimension, introduced in the Trotter step.

D. Self-consistent equations

To take the thermodynamic limit, we need all the terms
in Zn to involve a single site only. All the site-mixing terms

can be expressed in the form (
∑

i Ti )2, to which we apply the
Hubbard-Stratonovich transformation, introducing a variable
that couples to the now single-site term

∑
i Ti. In the thermo-

dynamic limit, we use the saddle-point method to obtain the
effective free energy. Finally, we take the limit of n → 0 and
arrive at

F = 2

(
Jβ

M

)2 ∑
kk′

(
R2

kk′ + U2
kk′
)+ J0βΔ2

− 2

(
Jβ

M

)2

(q2 + u2)

−
∫∫∫ ∞

−∞
DxPDxQDxB ln Trpq exp(−βH), (16)

where we use the notation Dx ≡ dx exp(−x2) for Gaussian
integrals. The details of this derivation can be found in
Appendix B. The corresponding effective Hamiltonian is

−βH = Δ
J0β

M

∑
k

(pk + qk ) + lnMpq

+ 2Jβ

M

∑
k

(
xB

√
u

2
(pk + qk )

+
√

q − u

2
(xP pk + xQqk )

)
+ 2

(
Jβ

M

)2 ∑
kk′

[(Rkk′ − q)(pk pk′ + qkqk′ )

+ 2(Ukk′ − u)pkqk′ ]. (17)

Here, Rkk′ , Ukk′ , Δ, q, and u are the variables introduced in
the saddle-point method, and defined self-consistently as

Rkk′ =
∫∫∫ ∞

−∞
DxPDxQDxB〈pk pk′ 〉, (18a)

Ukk′ =
∫∫∫ ∞

−∞
DxPDxQDxB〈pkqk′ 〉, (18b)

Δ =
∫∫∫ ∞

−∞
DxPDxQDxB〈pk〉, (18c)

q =
∫∫∫ ∞

−∞
DxPDxQDxB〈pk〉2 (18d)

u =
∫∫∫ ∞

−∞
DxPDxQDxB〈pk〉〈qk〉. (18e)

The averages are thermal averages taken with the effective
Hamiltonian Eq. (17), i.e.,

〈A〉 = TrpqA exp(−βH)

Trpq exp(−βH)
, (19)

which makes Eqs. (17) and (18a)–(18e) self-consistent. The
new variables originate from decoupling of second-order (Δ)
and fourth-order (Rkk′ , Ukk′ , q, u) terms in the free energy.
Rkk′ and Ukk′ are dynamic self-correlations. They depend only
on the difference |k − k′| thanks to their translational invari-
ance in the Trotter space. Conversely, q and u are their static
counterparts. Moreover, let us emphasize that Δ ∝ [〈P̂i〉]J can
be associated with the SF order parameter [Eq. (5)], while
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q ∝ [〈P̂i〉2]J with the Edwards-Anderson one [Eq. (6)]. We do
not associate here a physical interpretation with the variables
Ukk′ and u. Nevertheless, they correlate with the onset of
superfluidity, as they break the U (1) symmetry.

E. Numerical calculations

We solve the self-consistent equations [Eqs. (18a)–(18e)]
numerically by iteratively recalculating the values of {Rkk′ },
{Ukk′ }, Δ, q and u, each time using the previous set of those
variables as the parameters in the Hamiltonian. To calculate
the averages, we need to trace over all possible configurations
of {p1, p2, . . . , pM ; q1, q2, . . . , qM}. As the sets of eigenvalues
of operators P̂ and Q̂ are infinite, we limit the calculations to
up to two particles per site, resulting in P̂ and Q̂ each having
three eigenvalues in the truncated basis. This simplification,
albeit quite radical, still leaves as many as 32M possible config-
urations in the trace. We cannot use the Monte Carlo method
here, as the discussed model has a severe sign problem [52].
This limits the range of numerically available values of M
to just a few. Here, the majority of the results are obtained
with M = 5. To compute the integrals over xP, xQ, and xB,
we employ the Gauss quadrature method of integration [53].
While the latter is highly efficient and allows determining the
integral up to acceptable precision with just a few points, it
increases the computational cost by 1–3 orders of magnitude
compared to this model but with J0 = 0 and q = 0 [22].

III. CRITICAL LINES

We are dealing here with two order parameters, q and Δ.
Let us recall that the phases of the system that are distinguish-
able based on these parameters are DI (q = 0, Δ = 0), GL
(q > 0, Δ = 0), and SF (q > 0, Δ > 0). With Eqs. (18c) and
(18d) in hand, one can see why a phase with q = 0 and Δ > 0
is impossible within the used model: Δ 
= 0 requires 〈pk〉 
= 0
for some choice of xP, xQ, and xB, which would, in turn, imply
q 
= 0 as well.

In this section, we establish the methods for determin-
ing the critical lines. The boundaries between the above-
mentioned three regions can be found from the Landau theory
of phase transitions. We formulate them in Sec. III A and
analyze in Sec. III B. In the following, we also show that
regions characterized by long-range superfluid order divide
into the regular SF phase and a SG phase. In the latter, on top
of the long-range order, we additionally deal with a glassy one
that manifests itself by breaking the replica symmetry. Based
on it, in Sec. III C we describe the condition used by us for
recognizing the SG phase from the SF one.

A. Landau theory conditions

The transition between DI and GL occurs in the absence
of Δ, so it can be found based on the usual Landau theory
with a single order parameter, but the other two transitions
need careful handling. Upon writing the two-order-parameter
free energy and explicitly evaluating the minima conditions
in all phases [54], we arrive at the following set of condi-
tions: (1) If (∂2F/∂Δ2)|Δ=0 < 0, then the phase is SF and
(2) otherwise, the sign of (∂2F/∂q2)|q=0 distinguishes be-
tween GL (negative) and DI (positive) phases. Note, that

(1) (∂2F/∂Δ2)|Δ=0 is evaluated without setting q = 0 and
(2) the sign of (∂2F/∂q2)|q=0 has no useful meaning when
(∂2F/∂Δ2)|Δ=0 < 0.

In the replica-symmetric model considered here,
(∂2F/∂q2)|q=0 has the opposite sign than it would
normally have [29], and thus we need to swap the sides
in the GL transition condition. The final condition is
that (∂2F/∂q2)|q=0 < 0 occurs in the DI phase, while
(∂2F/∂q2)|q=0 > 0 indicates the GL ordering.

We evaluate (∂2F/∂q2)|q=0 and (∂2F/∂Δ2)|Δ=0 for the
free energy from Eq. (16) and arrive at a condition for the
GL transition given by

1 = J2β2

2M4

∑
kk′ll ′

∫∫∫ ∞

−∞
DxPDxQDxB

× [〈pk pk′ 〉〈pl pl ′ 〉 − 4〈pk pk′ 〉〈pl〉〈pl ′ 〉
+ 3〈pk〉〈pk′ 〉〈pl〉〈pl ′ 〉
+ 2〈pkqk′ 〉〈pl ql ′ 〉 − 8〈pkqk′ 〉〈pl〉〈ql ′ 〉
+ 6〈pk〉〈qk′ 〉〈pl〉〈ql ′ 〉 + 〈qkqk′ 〉〈qlql ′ 〉
− 4〈qkqk′ 〉〈ql〉〈ql ′ 〉 + 3〈qk〉〈qk′ 〉〈ql〉〈ql ′ 〉], (20)

while the SF transition condition reads

1 = J0β

2M2

∑
kk′

∫∫∫ ∞

−∞
DxPDxQDxB

× [〈(pk + qk )(pk′ + qk′ )〉 − 〈pk + qk〉〈pk′ + qk′ 〉]. (21)

The derivation of the above two equations can be found in
Appendices D and E, respectively.

B. General predictions

When approaching either of the disordered-ordered transi-
tions from the DI phase, we can evaluate the critical conditions
setting both q = 0 and Δ = 0 simultaneously. In such a case,
the conditions simplify, and we arrive at

GL: 0 <
∂2F

∂q2

∣∣∣∣q=0
Δ=0

= −
(

Jβ

M

)2

M2 +
(

Jβ

M

)4
(∑

kk′
Rkk′

)2

,

SF: 0 <
∂2F

∂Δ2

∣∣∣∣q=0
Δ=0

= 2

(
J0β

M

)
M − 2

(
J0β

M

)2
(∑

kk′
Rkk′

)
,

(22)

which can be written in the form

GL: J2A2 > 1,

SF: J0A < 1, (23)

with the same A = β
∑

kk′ Rkk′/M2 in both cases. The essen-
tial condition for the DI-GL transition is J2A2 = 1, however,
we also need J0A < 1 as we should not be in the SF phase.
These two conditions combined indicate that the DI-GL tran-
sition can occur only when J > J0. Analogously, one can
find that the DI-SF transition can only occur when J < J0.
Thus, when leaving the DI phase, we can uniquely determine
which phase we enter based only on the relation of J to J0. In
particular, we can also conclude that in the vicinity of the DI
phase region, the SF-GL transition takes place at J = J0.
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Moreover, when Δ = 0, the Hamiltonian is independent of
J0 [see Eq. (17)]. As a consequence, the DI-GL transition is
independent of J0 as well, as neither of the phases on the two
sides has Δ > 0.

C. Superglass phase

We expect that the phase we described above as SF con-
sists, in fact, of two parts: one is the usual SF phase with
long-range order, while the other one is a SG phase and
exhibits both superfluid and glassy orderings simultaneously.
However, the implication (Δ > 0) ⇒ (q > 0) means that in
the SF phase, q is no longer a measure of glass order. Thus,
using the order parameters defined so far, we cannot distin-
guish between these two.

Two ways of recognizing the glass order on top of the
superfluid one were used by other authors. The first one is to
find the point of breaking the replica symmetry [24], while the
second one requires checking translational symmetry break-
ing [46]. We focus on the first of these methods.

The derivation of the stability condition for the replica-
symmetric solution, similar to the one done by de Almeida
and Thouless [55] but more complex, may be found in
Ref. [49]. There, compared to the spin glass case, we deal
with more independent variables (five deviations from the
symmetric solution instead of two) and additional Trotter di-
mensions, which results in matrix elements becoming matrix
blocks. We follow the standard treatment of checking positive-
semidefiniteness of the Hessian matrix of the free energy, in
which we additionally Fourier transform to get rid of one of
the Trotter dimensions [56], and arrive at a set of conditions
for the stability. Since it is not straightforward to determine
any of them as redundant, we numerically investigate which
of them is the strongest. This treatment allows us to arrive at
a condition that the solution is unstable if and only if there is
a negative eigenvalue of a certain matrix, which is a matrix
analog of the “P − 2Q + R” eigenvalue in spin glasses [55].

Here, we employ the described condition derived in
Ref. [49] as a way to detect the glassy order. It allows us to nu-
merically find the transition line based on averages of various
combinations of P̂ and Q̂ (up to four operators). We note that
such treatment does not indicate the SG phase explicitly, as
the described stability transition exists both in the Δ = 0 and
Δ 
= 0 areas. In the non-superfluid part of the phase diagram,
it coincides with the DI-GL transition condition from the
Landau theory. However, in the Δ 
= 0 region, it gives rise
to a new critical line, which is the sought transition to the SG
phase. We use the latter as the SF-SG critical line.

IV. RESULTS

In this section, we present numerical results obtained from
solving the self-consistent equations [Eqs. (18a)–(18e)] and
evaluating the critical-line conditions from Secs. III A and
III C. We begin in Sec. IV A with qualitative considerations of
the phase transitions found in the system. Then, in Sec. IV B,
we quantitatively describe constant-temperature phase dia-
grams and analyze the phases. Finally, in Sec. IV C, we
discuss the impact of temperature and extrapolate our results
to M → ∞, which allows us to predict quantum phase transi-
tions in the system.

FIG. 1. Phase diagram in variables μ/U–J0/U–J/U at T/U =
0.08. Color of the surfaces indicates the transition that takes place.
The purple one separates disordered (bottom) from glass (top); red:
superglass (left) from glass (right); yellow: superfluid (bottom) from
superglass (top); cyan: superfluid (left) from disordered (right).

A. General discussion

We begin with presenting in Fig. 1 a three-dimensional
phase diagram of the studied system in the μ/U−J0/U−J/U
space of parameters. It is obtained at T/U = 0.08 and M = 5.
On the diagram, we can find all four phases, separated by the
plotted surfaces. The purple surface illustrates the Landau-
theory GL transition condition from Sec. III A and separates
the DI phase (q = 0, Δ = 0; below the surface) from the GL
phase (q > 0, Δ = 0; above the surface). The red and cyan
surfaces are Landau-theory SF transition conditions, with the
red separating SG (q > 0, Δ > 0, broken replica symmetry;
on the left) from GL (on the right) while the cyan one sep-
arates SF (q > 0, Δ > 0; left) from DI (right). The yellow
surface stems from the stability condition from Sec. III C and
separates SF (bottom) from SG (top).

As predicted in Sec. III B, the surface between DI and GL
does not depend on J0. The SF-SG transition approximately
retains this shape as well. The SG/SF-GL transition next to
the DI lobe occurs at J = J0, again following our prediction.
Deeper inside the ordered phase, the same argument cannot
be used, so we have no strict proof, but the numerically found
SF-GL transition remains close to the J = J0 plane. However,
within the current model and computational resources, we
cannot determine whether J = J0 is the exact transition point.
In spin glasses, J = J0 was the point of the ferromagnetic-
glass transition [29]. Therefore, we do not find it unlikely that
the approximate dependence we observe is, in fact, exact.

We find that all four phases meet at a four-critical line.
There are no direct SF-GL and SG-DI transitions except at
the four-critical line.

Having established the qualitative picture of the discussed
phases, we turn to a more detailed analysis of the phase
diagram by inspecting its various cross sections.

B. Detailed phase diagrams

First, in Fig. 2, we plot a sequence of diagrams obtained
at increasing fixed values of J0/U . The first (J0/U = 0.07)
is analogous to the one for J0/U = 0 found in Ref. [22]
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FIG. 2. Phase diagrams in variables μ/U−J/U at T/U = 0.08
and at various values of J0/U (given in each of the panels).

since it contains only DI and GL phases, and the transition
between them does not depend on J0. As J0 is increased,
around J0/U ≈ 0.076, the SF phase appears in the J < J0

region at the expense of the DI phase. Its areas on both sides
of the DI lobe grow and join so around J0/U ≈ 0.128 the
DI phase no longer has a direct transition to the GL phase.
At the same time, a layer of the SG phase separating GL
and SF phases emerges as J0 is increased. Finally, around
J0/U ≈ 0.152, the DI phase vanishes completely. Note that
the analyzed results are calculated at finite M, so the exact
values of J0/U thresholds will be different in the M → ∞
limit, but the qualitative features will stay the same.

As mentioned earlier, the SF-SG transition line closely
resembles the DI-GL line found at lower values of J0/U .
There is a difference between these two, which is noticeable
in the vicinity of integer μ/U values, which indicates a weak
J0 dependence. It could also result from the inaccuracy of the
calculation method, possibly more pronounced within ordered
phases. However, both lines evolve similarly with M. They
are also virtually independent of integration stencil, which we
consider the most likely source of errors in ordered phases.
Nonetheless, this similarity is understandable as a result of
introducing SF order by nonzero mean interaction to areas

FIG. 3. (a) Phase diagram at J0/U = 0.122 repeated from Fig. 2.
(b)–(e) Values of order parameters along cuts of the phase diagram
from panel (a), as marked. The cuts are at (b) μ/U = 0.4, (c)
μ/U = 0.8, (d) J/U = 0.10, (e) J/U = 0.04. Note that in panels
(b) and (c), the y axis is shared with panel (a), while the value of
the order parameters is at the x axis. (f) Correlation between q and Δ

in the μ/U > 0.6 part of superfluid. Points with the same μ/U are
connected with thin lines and color-coded with black-purple-yellow
gradient, with values given by the color bar, while points with the
same J/U are connected with thick lines and color coded with green-
blue gradient, as labeled on the plot.

with the presence and absence of glassy order. In the SG
phase, these two orders compete [24]. We study this in detail
below.

Let us focus on the order parameters. In Fig. 3, we analyze
values of q, Δ, and u for the phase diagram at J0/U = 0.122.
Figure 3(a) is repeated from the previous figure and serves
as a key for the other panels. In Figs. 3(b) and 3(c), we plot
values of q, u, and Δ2 along vertical cuts at μ/U = 0.4 and
μ/U = 0.8, as marked in Fig. 3(a). Note that the y axis is
shared with Fig. 3(a), while the value of the order param-
eters is at the x axis, i.e., the plots are rotated clockwise.
In Fig. 3(b), we observe a transition between DI and GL
phases. As expected, both these phases have u = 0 and Δ = 0,
while q continuously goes from 0 on the DI side to a finite
value on the GL side. Figure 3(c) shows a transition from SF
through SG to GL. The order parameters q and Δ behave as
expected, namely, q stays nonzero across all phases, while Δ

(and subsequently u) has a finite value in the SF and SG phases
and vanishes when the phase changes to GL.

However, we did not have a prediction for the quantita-
tive relative behavior of these variables. Here, we find that
in the SF phase, u = q, and they both decrease as J/U in-
creases. Then, when entering the SG phase, they split: q starts
increasing and is no longer equal to u, which keeps further de-
creasing. Both values have a cusp at this point. Finally, when
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FIG. 4. Phase diagrams in variables μ/U−J0/U at T/U = 0.08
and at various values of J/U (given on each of the panels).

J reaches the GL transition point, u vanishes, while q has an-
other cusp but keeps increasing. One may interpret this result
by associating the nonzero value of q − u with the existence
of the GL order on top of the SF order. Such subtraction of a
“superfluid base” from the regular Edwards-Anderson order
parameter remotely resembles the translational-symmetry-
breaking SG condition from Ref. [46], mentioned previously
as the other method of determining the SG transition.

Going back to the analysis of order parameters, in
Figs. 3(d) and 3(e), we plot horizontal cuts of the phase dia-
gram at J/U = 0.04 and J/U = 0.10, as marked in Fig. 3(a).
Both panels show a transition between DI and SF. Figure 3(d)
then goes through the SG phase, on the boundary of which one
can see a cusp in q and u in this direction as well. In Fig. 3(f),
we plot the correlation between q and Δ in the μ/U > 0.6
part of the SF and SG phases. Each calculated point from the
(μ/U = 0.6−1.0) × (J/U = 0−0.122) rectangle is plotted at
corresponding coordinates (q,Δ). Points with the same value
of μ/U are connected with thin lines and color-coded with a
black-purple-yellow gradient. Points with equal values of J/U
are connected with thick lines color coded with a green-blue
gradient and labeled. Note that the J/U steps between these
last lines are not equal. We note that at a constant J/U but
varying μ/U , values of q and Δ are always correlated with
each other (positive slope). However, when μ/U is constant
but J/U varies, one can see both correlated behavior at lower
J/U and an anticorrelated one (negative slope) at higher J/U .
Notably, the two coincide with SF and SG areas, respectively.
This illustrates the competition of the two types of ordering
coexisting in the SG phase.

Cutting the phase diagram along constant J/U , we make
a link to the widely studied non-disordered bosonic systems
[57]. In Fig. 4, we present phase diagrams in the same vari-
ables as in the usual Bose-Hubbard model, namely, μ/U and
J0/U (which in the works concerning the non-disordered case
is denoted as just J/U ). The first panel, obtained for a nearly
zero disorder, can be, in fact, regarded as the no disorder

FIG. 5. Phase diagrams in variables T/J−U/J at μ/U = 0.4
and at various values of J0/J (given on each of the panels).

limit. In Appendix A, we show a corresponding direct com-
parison with Ref. [58] that shows quantitative agreement. The
subsequent panels present the phase diagrams at increasing
levels of disorder. With the latter, at around J/U ≈ 0.086, the
GL and SG phases appear at high μ/U . Further increasing J
makes the glassy phases extend, taking the place of the DI and
SF phases, respectively. Finally, around J/U ≈ 0.128, the DI
phase vanishes. Unlike the diagonal case [9,11,13,15], where
the Bose glass phase emerged at the interface between DI and
SF phases, here, the GL phase does not affect the DI-SF line,
as it appears next to these two phases.

C. Temperature dependence

Finally, we analyze the impact of temperature on the phase
diagram. For this, we choose a fixed value of μ/U = 0.4. To
relate to spin-glass works, we use J as an energy scale in this
section.

In the first panel of Fig. 5, we show the phase diagram
in variables T/J−U/J at J0/J = 0.8. Only the DI and GL
phases are present within the computationally accessible area
(inaccessible points are left blank). Under the assumption that
the SF-GL boundary is at J0 ≈ J , there will be no SF phase at
J0 � J and, therefore, all the J0/J � 1 phase diagrams will be
the same as the depicted J0/J = 0.8 one since the GL-DI tran-
sition does not depend on J0. In particular, this phase diagram
is also analogous to the one at J0 = 0, which we discussed
previously [22]. On the other hand, there is no GL phase in
the J0 > J regime shown in the remaining three panels, as the
long-range order has appeared at the anticipated J0 ≈ J phase
transition. The DI phase boundary is not constant anymore
either. One can see the SF phase growing as J0/J increases.

In the previous sections, we dealt with results obtained
at relatively high temperatures, where the finite value of M
does not significantly influence the results. However, as we
decrease the temperature, the method used by us is expected
to be too inaccurate once T/J � 1/M. To decrease the lower
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FIG. 6. Critical lines in variables T/J−U/J at μ/U = 0.4 and
J0/J = 1.2: SF-DI for M = 3−11 (yellow to purple, empty cir-
cles), their extrapolation to M = ∞ (black, empty circles), SG-SF
extrapolation (black, empty triangles), and GL-DI extrapolation at
J0/J = 0.8 (cyan, full squares). Lines are to guide the eye only.

bound of feasible temperatures, we extrapolate the finite-
M critical lines to M → ∞. Following the analysis from
Ref. [59], a thermal average of an observable X should scale as

〈XM〉 = a

b + M2
+ 〈X∞〉, (24)

where 〈X∞〉 is the converged result, while the term with
parameters a and b is the error resulting from finite M. In
Fig. 6, we plot a set of DI-SF critical lines (empty colored
circles) analogous to the J0/J = 1.2 panel of Fig. 5 calculated
for M = 3−11, along with the M → ∞ extrapolation of
these (empty black circles). We also plot the M → ∞
extrapolation of the SF-SG line (empty black triangles). For
the comparison, we include J0/J = 0.8 extrapolation of the
DI-GL critical line (full cyan squares), which is analogous to
the J0 = 0 extrapolation reported before [22]. We find that all
extrapolated lines approach a finite value of U/J as T → 0.
Thus, we deal with quantum phase transitions in all cases.

The four panels of Fig. 7 show the phase diagram at vari-
ous values of U/J . All four qualitatively resemble analogous
diagrams obtained in the spin-glass systems [27,60]. The main
differences are threefold: First, in place of the ferromagnetic
phase found in spin systems, we deal with two phases with
superfluid order: SF and SG. Second, in the upper panels, the
DI-SF line is not linear. Third, at low temperatures, the SG-GL
line bends toward J0 < J .

The DI-SF line nonlinearity can be attributed to a finite
value of M. Checking the extrapolation in Fig. 6, one can see
that, e.g., at the value of U/J = 12.5, there is a DI phase at
T → 0. However, it does not manifest itself in any finite M.
This means that the existence of the GL phase and DI-GL
transition in the top panels is an effect of finite M. Thus, the
DI-SF line near J0 = J is far from the real one, as its starting
point is at T = 0. The bending of the GL-SG line is also a
result of numerical insufficiency. The extrapolation to M →
∞ combined with employing a more demanding integration
stencil suggest that the line, in fact, bends slightly in the other
direction (J0 > J). This is in line with the replica-symmetric
spin-glass result [27]. There, breaking of the replica symmetry

FIG. 7. Phase diagrams in variables J0/J−T/J at μ/U = 0.4
and at various values of J/U (given in each of the panels).

resulted in the line at exactly J0 = J [29], which we envisage
to be the result also here.

The last panel not only recovers the spin-glass result qual-
itatively, but it is quantitatively quite close as well. In the
U/J → 0 limit, the lines present in the spin-glass phase di-
agram would be recovered exactly.

In the discussion of Fig. 2, we have noticed a similarity
between DI-GL and SF-SG lines. Here, based on diagrams
in Fig. 7, we may study it in more detail. If the two curves
coincided, the SF-SG line would be just a straight horizon-
tal continuation of the DI-GL line. However, the line bends,
meaning that the difference between the two curves increases
with increasing J0.

V. SUMMARY

We have studied a many-body system of disordered in-
teracting bosons by modeling it using the Bose-Hubbard
Hamiltonian with a random hopping term. The averaging has
been done exactly, i.e., not as an average of some realizations
of the disorder but as an analytical integration over the entire
disorder distribution. The major advance over previous works
is taking into account a possibility of a nonzero mean of the
hopping distribution. We have analytically derived critical line
conditions in such a setting, followed by numerically obtain-
ing phase diagrams spanned across various sets of parameters.

We have distinguished four phases: a high-temperature
disordered phase, a superfluid phase characterized by a long-
range order, a glassy phase characterized by the Edwards-
Anderson order parameter, and a superglass phase where both
these orders coexist. Upon analyzing the behavior of the order
parameters in the SG phase, we have found that the two orders
compete (anticorrelate) within this phase. We have shown and
analyzed phase diagrams of the system and, where possible,
compared them to those of spin-glasses, diagonally disordered
and non-disordered systems.
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FIG. 8. Phase diagram in variables μ/U−J0/U at T/U = 0.05
(top) and T/U = 0.10 (bottom). Critical lines in M = 3−7, calcu-
lated at J/U = 10−4, are marked with empty yellow-purple circles,
while their M → ∞ extrapolation is marked with empty black
squares. Dotted lines are to guide the eye only. Green solid line is
the zero-disorder critical line from Ref. [58].

As proposed in Ref. [22], an experimental implementa-
tion of the studied model is possible with a fully connected
disordered wood-pile arrangement of elongated optical traps

linked via Josephson junctions. Thus, there are prospects for
verifying our results and, in particular, observing the emergent
SG phase.
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APPENDIX A: ZERO DISORDER LIMIT

In Fig. 8, we present a phase diagram obtained in the same
manner as Fig. 4 for nearly no disorder (J/U = 10−4) and
at two different temperatures. It shows finite M data along
with their extrapolation to M → ∞. We compare this result to
an earlier work [58], where a non-disordered Bose-Hubbard
model at finite temperatures was studied in the Hubbard
operator formalism using the random phase approximation.
There, the authors found the critical line by looking for the
SF order parameter becoming nonzero, which coincided with
a divergence in a single-particle Green’s function. We find
quantitative agreement at both considered temperatures in
almost entire μ/U range. Our solution becomes less reliable
at higher temperature and high μ/U . We attribute this to our
cutoff of the basis to two particles per site, and expect full
agreement at higher cutoffs.

APPENDIX B: THERMODYNAMIC AND n → 0 LIMITS

1. Transformation to a single site problem

We start from the expression for Zn given in Eq. (14).
To transform it into a single-site problem, we apply the
Hubbard-Stratonovich transformation to terms containing
different site indices. For example, one kind of term
undergoes

exp

[
1

4N

(
Jβ

M

∑
i

p(k)
iα p(k′ )

iα′

)2]
=
√

N

π

∫ ∞

−∞
dλP

kαk′α′ exp

[
−N

(
λP

kαk′α′
)2 + λP

kαk′α′

(
Jβ

M

∑
i

p(k)
iα p(k′ )

iα′

)]
. (B1)

The full transformed expression reads

[Zn]J = Trpq Mpq

∏
kα

exp

[
− J0β

2MN

∑
i

((
p(k)

iα

)2 + (
q(k)

iα

)2)] ∏
kαk′α′

exp

[
− J2β2

4M2N

∑
i

((
p(k)

iα

)2 + (
q(k)

iα

)2)((
p(k′ )

iα′
)2 + (

q(k′ )
iα′
)2)]

×
(√

N

π

)2n2M2(√
N

2π

)n2M2(√
N

2π

)2nM ∏
kαk′α′

[∫ ∞

−∞
dλ

PQ
kαk′α′ exp

(
−N

2

(
λ

PQ
kαk′α′

)2 + λ
PQ
kαk′α′Jβ

M

∑
i

p(k)
iα q(k′ )

iα′

)

×
∫ ∞

−∞
dλP

kαk′α′ exp

(
−N

(
λP

kαk′α′
)2 + λP

kαk′α′
Jβ

M

∑
i

p(k)
iα p(k′ )

iα′

)

×
∫ ∞

−∞
dλ

Q
kαk′α′ exp

(
−N

(
λ

Q
kαk′α′

)2 + λ
Q
kαk′α′

Jβ

M

∑
i

q(k)
iα q(k′ )

iα′

)]

×
∏
kα

[∫ ∞

−∞
dνP

kα exp

(
−N

2

(
νP

kα

)2 + νP
kα

√
J0β

M

∑
i

p(k)
iα

)∫ ∞

−∞
dν

Q
kα

exp

(
−N

2

(
ν

Q
kα

)2 + ν
Q
kα

√
J0β

M

∑
i

q(k)
iα

)]
, (B2)
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which can be concisely rewritten as

N
∏
ξ

(∫ ∞

−∞
dξe−Nξ 2

)∏
i

[
TrpqM(i)

pq exp
(−βH (i)

eff

)]
, (B3)

where all constants were incorporated into N , and ξ runs over all newly introduced variables, i.e.,

ξ ∈ {{
λP

kαk′α′
}
,
{
λ

Q
kαk′α′

}
,
{
λ

PQ
kαk′α′

}
,
{
νP

kα

}
,
{
ν

Q
kα

}}
, (B4)

and

−βHeff = − 1

N

{∑
kα

Jβ

2M

[(
p(k)

α

)2 + (
q(k)

α

)2]}2

− 1

N

∑
kα

{
J0β

M

[(
p(k)

α

)2 + (
q(k)

α

)2]}+
√

J0β

M

∑
kα

(
νP

kα p(k)
α + ν

Q
kα

q(k)
α

)
+ Jβ

M

∑
kαk′α′

(
λP

kαk′α′ p(k)
α p(k′ )

α′ + λ
Q
kαk′α′q(k)

α q(k′ )
α′ + λ

PQ
kαk′α′ p(k)

α q(k′ )
α′
)+

∑
kα

lnMpq (B5)

is the effective single-site Hamiltonian. We can now perform the trace over the site indices, obtaining

[Zn]J = N
∏
ξ

(∫ ∞

−∞
dξ

)
exp (−NF ), (B6)

with the effective free energy:

F =
∑

ξ

ξ 2 − ln Trpq exp(−βHeff ). (B7)

Note that Trpq(·) changed the exact mathematical form here, but it kept the meaning of being a sum over all possible
configurations.

2. Saddle point solution

In the thermodynamic limit, we use the saddle-point method∫ ∞

−∞
dλ e−NF (λ) ≈ e−NF (λ0 ), where

∂F
∂λ

∣∣∣∣
λ=λ0

= 0, (B8)

which gives us the set of self-consistent equations

λP
kαk′α′ = Jβ

2M

〈
p(k)

α p(k′ )
α′
〉
, (B9a)

λ
Q
kαk′α′ = Jβ

2M

〈
q(k)

α q(k′ )
α′
〉
, (B9b)

λ
PQ
kαk′α′ = Jβ

M

〈
p(k)

α q(k′ )
α′
〉
, (B9c)

νP
kα =

√
J0β

M

〈
p(k)

α

〉
, (B9d)

ν
Q
kα

=
√

J0β

M

〈
q(k)

α

〉
, (B9e)

in which the averages are taken with the effective Hamiltonian. In the latter, the first two terms (i.e., those ∝N−1) vanished in
the thermodynamic limit.

Due to symmetries present in the system, we have〈
p(k)

α p(k′ )
α′
〉 = 〈

q(k)
α q(k′ )

α′
〉

and
〈
p(k)

α

〉 = 〈
q(k)

α

〉
, (B10)

which allows us to reduce the number of order parameters,

λkαk′α′ ≡ λP
kαk′α′ = λ

Q
kαk′α′ , νkα ≡ νP

kα = ν
Q
kα

. (B11)

The expression for the effective Hamiltonian now reads

−βHeff = Jβ

M

∑
kαk′α′

[
λkαk′α′

(
p(k)

α p(k′ )
α′ + q(k)

α q(k′ )
α′
)+ λ

PQ
kαk′α′ p(k)

α q(k′ )
α′
]+

√
J0β

M

∑
kα

νkα

(
p(k)

α + q(k)
α

)+ Mpq. (B12)
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3. Decomposition into static and dynamic variables

The variables λ are of two types, according to the decomposition:

λkαk′α′ = Jβ

2M
[Rkk′δαα′ + (1 − δαα′ )Qαα′ ]. (B13)

Terms with α = α′, denoted by Rkk′ , represent dynamic self-interactions that depend only on the difference |k − k′| due to the
time-translational invariance, while those with α 
= α′ (Qαα′ ) are purely static and related to the EA order parameter:

QEA = lim
n→0

2

n(n − 1)

∑
α>α′

Qαα′ . (B14)

We further simplify them to Qαα′ = q by assuming replica symmetry. A similar decomposition can be applied to the cross-
correlation term, i.e.,

λ
PQ
kαk′α′ = Jβ

M
[Ukk′δαα′ + (1 − δαα′ )u]. (B15)

In the same manner, the dependence of νkα on its indices is dropped, i.e.,

νkα =
√

J0β

M
Δ. (B16)

The equations now take the form

F = n

2

(
Jβ

M

)2 ∑
kk′

(
R2

kk′ + U2
kk′
)+ n(n − 1)

2
(Jβ )2(q2 + u2) + nJ0βΔ2 − ln Trpq exp(−βHeff ), (B17)

with

−βHeff = 1

2

(
Jβ

M

)2 ∑
kk′α

[
(Rkk′ − q)

(
p(k)

α p(k′ )
α + q(k)

α q(k′ )
α

)+ 2(Ukk′ − u)p(k)
α q(k′ )

α

]+ q

2

(
Jβ

M

)2
[(∑

kα

p(k)
α

)2

+
(∑

kα

q(k)
α

)2]

+ u

(
Jβ

M

)2
(∑

kα

p(k)
α

)(∑
kα

q(k)
α

)
+ Δ

J0β

M

∑
kα

(
p(k)

α + q(k)
α

)+ lnMpq. (B18)

4. Taking the n → 0 limit

To get rid of the replica-mixing terms, we apply the Hubbard-Stratonovich transformation again, and get

F = n

2

(
Jβ

M

)2 ∑
kk′

(
R2

kk′ + U2
kk′
)+ n(n − 1)

2
(Jβ )2(q2 + u2) + nJ0βΔ2

− ln Trpq

∫∫∫ ∞

−∞
dxPdxQdxB exp (−βH) exp

(−x2
P − x2

Q − x2
B

)
, (B19)

where

−βH = 1

2

(
Jβ

M

)2 ∑
kk′α

[
(Rkk′ − q)

(
p(k)

α p(k′ )
α + q(k)

α q(k′ )
α

)+ 2(Ukk′ − u)p(k)
α q(k′ )

α

]
+ 2

Jβ

M

[√
u

2
xB

(∑
kα

p(k)
α +

∑
kα

q(k)
α

)
+
√

q − u

2

(
xP

∑
kα

p(k)
α + xQ

∑
kα

q(k)
α

)]
+ Δ

J0β

M

∑
kα

(
p(k)

α + q(k)
α

)+ lnMpq.

(B20)

Taking the limit of n → 0 results in

F = 1

2

(
Jβ

M

)2 ∑
kk′

(
R2

kk′ + U2
kk′
)− 1

2
(Jβ )2(q2 + u2) + J0βΔ2 −

∫∫∫ ∞

−∞
DxPDxQDxB ln Trpq exp (−βH), (B21)

where we use the notation Dx ≡ dx exp(−x2). The associated effective Hamiltonian reads

−βH = 1

2

(
Jβ

M

)2 ∑
kk′

[(Rkk′ − q)(pk pk′ + qkqk′ ) + 2(Ukk′ − u)pkqk′ ]

+ 2
Jβ

M

[√
u

2
xB

(∑
k

pk +
∑

k

qk

)
+
√

q − u

2

(
xP

∑
k

pk + xQ

∑
k

qk

)]
+ Δ

J0β

M

∑
k

(pk + qk ) + lnMpq, (B22)
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while the final form of the self-consistent equations is

Rkk′ =
∫∫∫ ∞

−∞
DxPDxQDxB〈pk pk′ 〉, (B23a)

Ukk′ =
∫∫∫ ∞

−∞
DxPDxQDxB〈pkqk′ 〉, (B23b)

Δ =
∫∫∫ ∞

−∞
DxPDxQDxB〈pk〉, (B23c)

q =
∫∫∫ ∞

−∞
DxPDxQDxB〈pk〉2, (B23d)

u =
∫∫∫ ∞

−∞
DxPDxQDxB〈pk〉〈qk〉. (B23e)

APPENDIX C: SELF CONSISTENT EQUATION FOR q

For the following sections, we introduce the shorthands

P̃ ≡
∑

k

pk, Q̃ ≡
∑

k

qk, j ≡ Jβ

M
(C1)

as well as ∫∫∫ ∞

−∞
DxPDxQDxBA ≡

∫
DxA. (C2)

The penultimate equation [Eq. (B23d)] of the previous section comes from the following derivation:

0 = ∂F

∂q
= − j2M2q −

∫
Dx

⎡⎣− j2

2
〈P̃P̃ + Q̃Q̃〉 + j

2
√

q−u
2

〈xPP̃ + xQQ̃〉
⎤⎦

= − j2M2q + j2

2

∫
Dx〈P̃P̃ + Q̃Q̃〉 − j

2
√

q−u
2

∫
Dx(xP〈P̃〉 + xQ〈Q̃〉)

(∗) = − j2M2q + j2

2

∫
Dx〈P̃P̃ + Q̃Q̃〉 − j

2
√

q−u
2

∫
Dx j

√
q − u

2
(〈P̃P̃〉 − 〈P̃〉〈P̃〉 + 〈Q̃Q̃〉 − 〈Q̃〉〈Q̃〉)

= − j2M2q + j2

2

∫
Dx〈P̃P̃ + Q̃Q̃〉 − j2

2

∫
Dx(〈P̃P̃〉 − 〈P̃〉〈P̃〉 + 〈Q̃Q̃〉 − 〈Q̃〉〈Q̃〉)

= − j2M2q + j2

2

∫
Dx(〈P̃〉〈P̃〉 + 〈Q̃〉〈Q̃〉) = − j2M2q + j2

2

∑
kk′

∫
Dx(〈pk〉〈pk′ 〉 + 〈qk〉〈qk′ 〉), (C3)

where the transition marked with (∗) was done via integrating by parts. Equation (B23e) is obtained in an analogous manner
from ∂F

∂u = 0.

APPENDIX D: GLASS CRITICAL LINE CONDITION

We obtain the critical line conditions from the Landau theory condition that

∂2F

∂q2

∣∣∣∣
q=0

= 0 (D1)
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at the critical temperature. To expand the free energy Eq. (16) to the second order in q, we use the expression for the first
derivative found in Eq. (C3) and differentiate it for the second time:

∂2F

∂q2
= − j2M2 + j2

2

∫
Dx
(

2〈P̃〉∂〈P̃〉
∂q

+ 2〈Q̃〉∂〈Q̃〉
∂q

)

= − j2M2+ j2
∫

Dx

{
〈P̃〉

〈
P̃

[
j

2
√

q−u
2

(xPP̃ + xQQ̃) − j2

2
(P̃P̃ + Q̃Q̃)

]〉

− 〈P̃〉〈P̃〉
〈

j

2
√

q−u
2

(xPP̃ + xQQ̃) − j2

2
(P̃P̃ + Q̃Q̃)

〉

+〈Q̃〉
〈

P̃

[
j

2
√

q−u
2

(xPP̃ + xQQ̃) − j2

2
(P̃P̃ + Q̃Q̃)

]〉
− 〈Q̃〉〈P̃〉

〈
j

2
√

q−u
2

(xPP̃ + xQQ̃) − j2

2
(P̃P̃ + Q̃Q̃)

〉⎫⎬⎭
= − j2M2 − j4

2

∫
Dx〈P̃〉[〈P̃(P̃P̃ + Q̃Q̃)〉 − 〈P̃〉〈P̃P̃ + Q̃Q̃〉] − j4

2

∫
Dx〈Q̃〉[〈Q̃(P̃P̃ + Q̃Q̃)〉 − 〈Q̃〉〈P̃P̃ + Q̃Q̃〉]

+ j3

2
√

q−u
2

∫
Dx xP(〈P̃〉〈P̃P̃〉 − 〈P̃〉〈P̃〉〈P̃〉 + 〈Q̃〉〈Q̃P̃〉 − 〈Q̃〉〈Q̃〉〈P̃〉)

+ j3

2
√

q−u
2

∫
Dx xQ(〈P̃〉〈P̃Q̃〉 − 〈P̃〉〈P̃〉〈Q̃〉 + 〈Q̃〉〈Q̃Q̃〉 − 〈Q̃〉〈Q̃〉〈Q̃〉). (D2)

We focus on the last term of the above expression and integrate it by parts:

j3

2
√

q−u
2

∫
Dx xQ(〈P̃〉〈P̃Q̃〉 − 〈P̃〉〈P̃〉〈Q̃〉 + 〈Q̃〉〈Q̃Q̃〉 − 〈Q̃〉〈Q̃〉〈Q̃〉)

= j3

4
√

q−u
2

∫
Dx

∂

∂xQ
(〈P̃〉〈P̃Q̃〉 − 〈P̃〉〈P̃〉〈Q̃〉 + 〈Q̃〉〈Q̃Q̃〉 − 〈Q̃〉〈Q̃〉〈Q̃〉)

= j4

2

∫
Dx[(〈P̃Q̃〉〈P̃Q̃〉 + 〈P̃〉〈P̃Q̃Q̃〉 − 2〈P̃〉〈P̃Q̃〉〈Q̃〉) − (〈P̃Q̃〉〈P̃〉〈Q̃〉 + 〈P̃〉〈P̃Q̃〉〈Q̃〉 + 〈P̃〉〈P̃〉〈Q̃Q̃〉

− 3〈P̃〉〈P̃〉〈Q̃〉〈Q̃〉) + (〈Q̃Q̃〉〈Q̃Q̃〉 + 〈Q̃〉〈Q̃Q̃Q̃〉 − 2〈Q̃〉〈Q̃Q̃〉〈Q̃〉)

− (〈Q̃Q̃〉〈Q̃〉〈Q̃〉 + 〈Q̃〉〈Q̃Q̃〉〈Q̃〉 + 〈Q̃〉〈Q̃〉〈Q̃Q̃〉 − 3〈Q̃〉〈Q̃〉〈Q̃〉〈Q̃〉)]

= j4

2

∫
Dx[(〈P̃Q̃〉〈P̃Q̃〉 + 〈P̃〉〈P̃Q̃Q̃〉 − 4〈P̃〉〈P̃Q̃〉〈Q̃〉 − 〈P̃〉〈P̃〉〈Q̃Q̃〉 + 3〈P̃〉〈P̃〉〈Q̃〉〈Q̃〉)

+ (〈Q̃Q̃〉〈Q̃Q̃〉 + 〈Q̃〉〈Q̃Q̃Q̃〉 − 5〈Q̃〉〈Q̃Q̃〉〈Q̃〉 + 3〈Q̃〉〈Q̃〉〈Q̃〉〈Q̃〉)]. (D3)

Plugging it back to Eq.(D2) yields

∂2F

∂q2
= − j2M2 − j4

2

∫
Dx〈P̃〉[〈P̃(P̃P̃ + Q̃Q̃)〉 − 〈P̃〉〈P̃P̃ + Q̃Q̃〉] − j4

2

∫
Dx〈Q̃〉[〈Q̃(P̃P̃ + Q̃Q̃)〉 − 〈Q̃〉〈P̃P̃ + Q̃Q̃〉]

+ j4

2

∫
Dx[(〈Q̃P̃〉〈Q̃P̃〉 + 〈Q̃〉〈Q̃P̃P̃〉 − 4〈Q̃〉〈Q̃P̃〉〈P̃〉 − 〈Q̃〉〈Q̃〉〈P̃P̃〉 + 3〈Q̃〉〈Q̃〉〈P̃〉〈P̃〉)

+ (〈P̃P̃〉〈P̃P̃〉 + 〈P̃〉〈P̃P̃P̃〉 − 5〈P̃〉〈P̃P̃〉〈P̃〉 + 3〈P̃〉〈P̃〉〈P̃〉〈P̃〉)]

+ j4

2

∫
Dx[(〈P̃Q̃〉〈P̃Q̃〉 + 〈P̃〉〈P̃Q̃Q̃〉 − 4〈P̃〉〈P̃Q̃〉〈Q̃〉 − 〈P̃〉〈P̃〉〈Q̃Q̃〉 + 3〈P̃〉〈P̃〉〈Q̃〉〈Q̃〉)

+ (〈Q̃Q̃〉〈Q̃Q̃〉 + 〈Q̃〉〈Q̃Q̃Q̃〉 − 5〈Q̃〉〈Q̃Q̃〉〈Q̃〉 + 3〈Q̃〉〈Q̃〉〈Q̃〉〈Q̃〉)]

= −j2M2 + j4

2

∫
Dx(〈P̃P̃〉2 − 4〈P̃〉2〈P̃P̃〉 + 3〈P̃〉4 + 2〈P̃Q̃〉2 − 8〈P̃〉〈Q̃〉〈P̃P̃〉

+ 6〈P̃〉2〈Q̃〉2+ 〈Q̃Q̃〉2 − 4〈Q̃〉2〈Q̃Q̃〉 + 3〈Q̃〉4). (D4)
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We obtain the critical line from the requirement

∂2F

∂q2

∣∣∣∣
q=0

= 0. (D5)

The resulting equation reads

1 = j2

2M2

∫
Dx(〈P̃P̃〉2 − 4〈P̃〉2〈P̃P̃〉 + 3〈P̃〉4 + 2〈P̃Q̃〉2 − 8〈P̃〉〈Q̃〉〈P̃P̃〉 + 6〈P̃〉2〈Q̃〉2 + 〈Q̃Q̃〉2 − 4〈Q̃〉2〈Q̃Q̃〉 + 3〈Q̃〉4).

(D6)

Here, we also note that in the case of J0 = 0 the condition reduces to∑
k

Rkk′ = 1

2
, (D7)

which is the same expression as the one found for a simpler model [22].

APPENDIX E: SUPERFLUID CRITICAL LINE CONDITION

Similarly, we find the critical line for the SF transition by taking the second derivative with respect to Δ,

∂F

∂Δ
= 2J0βΔ −

∫
Dx
〈

J0β

M

∑
k

(pk + qk )

〉
= 2J0βΔ − J0β

M

∫
Dx〈P̃ + Q̃〉 (E1)

and

0 = ∂2F

∂Δ2
= 2J0β −

(
J0β

M

)2 ∫
Dx[〈P̃(P̃ + Q̃)〉 − 〈P̃〉〈P̃ + Q̃〉 + 〈Q̃(P̃ + Q̃)〉 − 〈Q̃〉〈P̃ + Q̃〉], (E2)

which yields the critical-line condition

1 = J0β

2M2

∫
Dx[〈(P̃ + Q̃)(P̃ + Q̃)〉 − 〈P̃ + Q̃〉2]. (E3)
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(2019).
[53] R. E. Greenwood and J. J. Miller, Bull. Am. Math. Soc. 54, 765

(1948).
[54] D. Deutges and G. Heber, Phys. Status Solidi B 101, 683

(1980).
[55] J. R. L. de Almeida and D. J. Thouless, J. Phys. A: Math. Gen.

11, 983 (1978).
[56] G. Büttner and K. D. Usadel, Phys. Rev. B 41, 428 (1990).
[57] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A.

Sen(De), and U. Sen, Adv. Phys. 56, 243 (2007).
[58] I. V. Stasyuk and T. S. Mysakovych, Condens. Matter Phys. 12,

539 (2009).
[59] M. Suzuki, Phys. Lett. A 113, 299 (1985).
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