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In this work, we study the spectral properties of the adjacency matrix of critical Erdös-Rényi (ER) graphs,
i.e., when the average degree is of order ln N . In a series of recent inspiring papers, Alt, Ducatez, and Knowles
have rigorously shown that these systems exhibit a “semilocalized” phase in the tails of the spectrum where
the eigenvectors are exponentially localized on a subextensive set of nodes with anomalously large degree. We
propose two approximate analytical strategies to analyze this regime based respectively on the simple “rules of
thumb” for localization and ergodicity and on an approximate treatment of the self-consistent cavity equation for
the resolvent. Both approaches suggest the existence of two different regimes: a fully Anderson localized phase at
the spectral edges, in which the eigenvectors are localized around a unique center, and an intermediate partially
delocalized but nonergodic phase, where the eigenvectors spread over many resonant localization centers. In
this phase, the exponential decay of the effective tunneling amplitudes between the localization centers is
counterbalanced by the large number of nodes towards which tunneling can occur, and the system exhibits
minibands in the local spectrum over which the Wigner-Dyson statistics establishes. We complement these
results by a detailed numerical study of the finite-size scaling behavior of several observables that supports the
theoretical predictions and allows us to determine the critical properties of the two transitions. Critical ER graphs
provide a pictorial representation of the Hilbert space of a generic many-body Hamiltonian with short-range
interactions. In particular, we argue that their phase diagram can be mapped onto the out-of-equilibrium phase
diagram of the quantum random energy model.
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I. INTRODUCTION

Since Anderson’s celebrated discovery of localization
more than sixty years ago [1], a huge amount of work has
been devoted to the study of transport and spectral properties
of quantum particles in random environments [2–4]. These
investigations have deeply influenced the development of
many areas of condensed matter physics, such as transport in
disordered quantum systems, random matrices, and quantum
chaos, just to name a few, and are still in the focus of current
research, continuing to reveal new facets and subtleties.

In this context, the study of Anderson localization (AL)
on sparse random graphs has attracted a strong and renewed
interest in the last few years: On the one hand these treelike
structures, which correspond to the infinite dimensional limit
of the tight-binding model, allow in principle for an exact
solution, making it possible to establish the transition point
and the corresponding critical behavior [5–17]. On the other
hand, the spectral properties of (weighted) adjacency matrices
of sparse graphs encode the structural and topological features
of many physical systems.

AL on sparse random graphs has been first studied by
Abou Chacra, Anderson and Thouless [5], and then by many
others [8–17]. Most of these works focused on the localization
transition induced by the random potential. In a series of
recent inspiring works [18–21], Alt, Ducatez, and Knowles

studied instead the case in which localization is induced by the
topology of the graph, and in particular by the strong fluctua-
tions of the local connectivity. In particular, Alt et al studied
the spectral properties of the adjacency matrix of Erdös-Rényi
(ER) graphs in the critical regime (i.e., when the average
degree is of order of the logarithm of the number of vertices)
in absence of disorder in the local potential. In [18] the authors
showed that the spectrum of these systems splits into (at
least) two phases separated by a sharp transition transition: a
fully GOE-like delocalized phase in the bulk of the spectrum,
where the eigenvectors are completely delocalized [19], and a
“semilocalized” phase near the edges of the spectrum, where
the wave functions are exponentially localized on a subex-
tensive number of vertices of anomalously large degree. In
a subsequent paper [20], the same authors went a step further
and proved the existence of a fully localized phase near the
spectral edges.

These findings are particularly interesting at least for two
reasons. First, ER graphs in the critical regime provide a
natural representation of the topological features of the Hilbert
space of generic interacting Hamiltonians with finite-range
interactions [22]. Specifically, basis states of a many-body
system chosen as eigenstates of the noninteracting part of the
Hamiltonian (which can be straightforwardly diagonalized)
correspond to vertices (or site orbitals) of the sparse graph,
while interaction-induced couplings between them gives rise
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to the links between the nodes. Take for concreteness a
quantum spin-1/2 chain of n spins with nearest neighbor
interactions. By choosing as a basis of the Hilbert space
the simultaneous eigenstates of the operators σ̂ z

i , the Hilbert
space results in a n-dimensional hypercube of N = 2n sites
(in absence of any symmetry on the global magnetization).
Each configuration of n spins corresponds to a corner of
the hypercube by considering {σ z

i = ±1} as the top/bottom
face of the cube’s nth dimension. The interacting part of the
Hamiltonian, e.g., of the form of a transverse field �

∑
i σ̂

x
i ,

acts as single spin flips on the configurations {σ z
i }, and plays

the role the hopping rates connecting “neighboring” sites in
the configuration space. The quantum many-body dynamics
can thereby be seen as single-particle diffusion on a very high-
dimensional graph with a average degree equal to n = log2 N .
Based on this analogy, for instance, it has been argued that AL
on sparse random graphs offers a paradigmatic and intuitive
representation of the so-called many body localization (MBL)
transition [23]. In fact, during the last 15 years it was indeed
established that quantum systems of interacting particles sub-
ject to sufficiently strong disorder will fail to come to thermal
equilibrium when they are not coupled to an external bath
even though prepared with extensive amounts of energy above
their ground states [24–29]. To the extent that one of the
most successful theories of physics, namely thermodynamics,
is founded on the assumption of ergodicity, it is evident that
whether or not many-body quantum systems constitute a heat
bath for themselves, and hence are able to thermalize, is a
very fundamental question. The analogy of this problem with
single-particle AL was put forward in the seminal work of
Ref. [22], where the decay of a hot quasiparticle in a quantum
dot (at zero temperature) was mapped onto an appropriate
noninteracting tight-binding model on a disordered treelike
graph, and then further analyzed by later works in a more
general context [22–24,30–33]. In this respect, a deep under-
standing of the spectral properties of critical ER graphs could
give useful insight to make sense of more complex problems.
In particular, below we will put forward a direct analogy
between the phase diagram of critical ER graphs and the out-
of-equilibrium phase diagram of the quantum random energy
model (QREM), which is the simplest toy model featuring a
many-body localized phase [34–38].

The second reason is that the appearance of states which
are neither fully localized nor fully ergodic and occupy a
subextensive part of the whole accessible volume has emerged
as a fundamental property of many physical problems,
including Anderson [39–41] and many-body localization
[31,34–37,42–51], random matrix theory [52–68], Joseph-
son junction chains [69], quantum information [38,70], and
even quantum gravity [71]. Simple solvable dense random
matrix models with independent and identically distributed
(iid) entries, such as the paradigmatic Gaussian Rosenzweig-
Porter (RP) model [52] and its generalizations [53–58] feature
the appearance of fractal wave functions in an intermedi-
ate region of the phase diagram sandwiched between the
fully ergodic and the fully localized phases. In these mod-
els, which have been intensively investigated over the past
few years [72–79], every site of the reference space, repre-
sented by a matrix index, is connected to every other site
with the transition amplitude distributed according to some

probability law. In the latest years, other class of random
matrix models featuring multifractal phases have emerged.
These are one-dimensional systems with quasiperiodic po-
tential in presence of a periodic drive [59–62] as well as in
the static setting with p-wave superconducting order [63],
and one-dimensional power-law random banded matrix mod-
els with strongly correlated translation-invariant long-range
hopping [62,64–68]. In this context, ER graphs in the critical
regime could provide yet another mechanism responsible for
the appearance of partially delocalized but nonergodic states
which complement the physical pictures provided by the fam-
ilies of models described above.

In this paper, we investigate the spectral properties of the
adjacency matrix of critical ER graphs using both numerical
methods and analytical arguments. The two main questions
that we address are the following.

(i) What are the critical properties of the transition be-
tween the fully delocalized GOE-like phase in the bulk of the
spectrum and the semilocalized phase near the spectral edges
highlighted in Refs. [18,20]? How does the critical behavior
compare to the one corresponding to standard AL on sparse
matrices induced by the randomness of the local potential?

(ii) What are the spectral properties of such semilocalized
phase? Is there a region of the phase diagram where eigen-
vectors localized around far away rare localization centers
hybridize due to the exponentially small effective matrix el-
ements between them?

In order to address these questions, we apply simple rules
of thumb for localization and ergodicity and put forward
an approximate treatment of the self-consistent cavity equa-
tions for the resolvent. These approaches provide a rough
estimation of the phase diagram of the model. Our analysis
suggests that the tails of the spectrum split in two phases
separated by a mobility edge which separates fully localized
eigenstates at the spectral edges (whose existence has been
already rigorously proven in Ref. [20]), from an intermediate
partially delocalized but nonergodic phase in which the wave
functions hybridize (at least partially) around many resonating
localization centers. In this region, the exponentially decaying
tunneling amplitudes between localization centres are coun-
terbalanced by an the large number of possible localization
centers towards which tunneling can occur. We complement
this analysis by extensive numerical calculations showing that
the finite-size scaling behavior of several observables related
to the statistics of the gaps and of the wave-function ampli-
tudes is fully compatible with the theoretical results and allow
one to determine the critical properties of the transitions.

The paper is organized as follows. In the next section, we
define the adjacency matrix of ER graphs and provide a brief
historical perspective on their study; In Sec. III, we review the
recent exact results of Alt, Ducatez, and Knowles [18,20,21]
on the semilocalized phase that emerges in the critical regime.
In Sec. IV, we discuss the phase diagram of the model us-
ing two complementary analytical approaches. In Sec. V, we
present several numerical results on the finite-size behavior of
several observables related to the statistics of the energy gaps
and of the wave-function amplitudes and discuss the critical
properties of the transitions between the different phases.
In Sec. VI, we characterize the statistics of the fluctuations
of the largest eigenvalue of the spectrum. In Sec. VII, we
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propose a mapping between critical ER graphs and the out-of-
equilibrium phase diagram of the QREM. Finally, in Sec. VIII,
we present some concluding remarks and perspectives for
future investigations. In the Appendix, we present some sup-
plementary information that complement the results discussed
in the main text.

II. THE MODEL

The adjacency matrix of ER graphs is a real, symmetric
N × N matrix H whose elements Hi j are (up to the symmetry
Hi j = H ji) iid random variables, with a Bernoulli probability
distribution

p(Hi j ) =
(

1 − c

N

)
δ(Hi j ) + c

N
δ

(
Hi j − 1√

c

)
(1)

for i �= j and Hii = 0. (The off-diagonal elements are rescaled
by

√
c in order to have eigenvalues of order 1 for N � 1.) In

the thermodynamic limit and for c � N , the degree of a given
node, ki = √

c
∑

j Hi j , is a random variable which follow a
Poisson distribution P(k) = e−cck/k! of average 〈k〉 = c and
variance 〈k2〉 − 〈k〉 = c.

The adjacency matrices of sparse random graphs encode
the structural and topological features of many complex sys-
tems [80,81]. For instance, for random walks on graphs, the
eigenvalue spectrum is directly connected to the relaxation
time spectrum [82]. From the condensed matter perspective,
the spectra of such matrices have been used for the characteri-
zation of many physical systems such as the study of gelation
transition in polymers [83] and of the instantaneous normal
modes in supercooled liquids [84].

ER graphs undergo a dramatic change in behavior at the
critical scale c ∼ ln N , which is the scale at and below which
the vertex degrees do not concentrate. For c � ln N , all de-
grees are approximately equal and the graph is homogeneous.
In this regime, ER graphs share the spectral properties of the
GOE ensemble and the density of states (DoS) is given by
the semicircle law (see also Ref. [85]). On the other hand,
for c � ln N , the degrees do not concentrate and the graph
becomes highly inhomogeneous: it contains nodes of excep-
tionally large degree, leaves (i.e., nodes of degree 1), and
isolated vertices (i.e., nodes of degree 0). ER graphs also have
a percolation transition at c = 1. In fact for c strictly less than
1 with high probability (in the N → ∞ limit) all connected
components of the graph have size O(ln N ), and there is no
giant component. For c > 1, instead, there is with high prob-
ability a single giant component, with all other components
having size O(ln N ) [86,87].

Historically, the study of the spectrum of sparse symmetric
ER adjacency matrices was pioneered by Bray and Rodgers
in Ref. [88] (and in a similar context in Ref. [89] and later
on in Ref. [90]) using the Edwards-Jones recipe. In their
formulation, the evaluation of the average DoS ρ(λ) relies on
the replica method, which yield a very complicated integral
equation. The same integral equation has been derived inde-
pendently with a supersymmetric approach in Ref. [91] and
later obtained in a rigorous manner in Ref. [92]. A variety of
approximation schemes [93], such as the single defect approx-
imation (SDA) [94] and the effective medium approximation
(EMA) [95], were proposed to deal with the difficulty of solv-

ing the exact integral equation for the DoS. Almost in parallel,
the cavity method [96] (see below) started to be employed for
the determination of the spectral density of ER graphs [85,97].
A nice and comprehensive recent review of these studies can
be found in Ref. [98].

In this paper, we focus on ER graphs in the critical regime,
which, as discussed above, are particularly relevant as they
represent a toy model for the Hilbert space of interacting
Hamiltonian with finite-range interactions. Hence throughout
the rest of the paper we will set c = b ln N . Most of the
numerical results presented below are obtained for b = 0.5.

III. THE SEMILOCALIZED PHASE

In their recent insightful work [18], Alt, Ducatez, and
Knowles showed that the spectrum of ER graphs in the crit-
ical regime splits into (at least) two phases separated by a
sharp transition at λ = λGOE = 2: a GOE-like phase in the
middle of the spectrum, λ ∈ [−2, 2], where the eigenvectors
are completely delocalized [19], and a “semilocalized” phase
near the edges of the spectrum, λ ∈ (−λmax,−2) ∪ (2, λmax),
where the eigenvectors are essentially localized on a small
number of vertices of anomalously large degree. In the semilo-
calized phase, the mass of an eigenvector is concentrated in
a small number of disjoint balls centered around resonant
vertices, in each of which it is a radial exponentially decay-
ing function. [Throughout the following, we always exclude
the largest eigenvalue of H associated to the flat eigenvector
1/

√
N (1, . . . , 1), which is an outlier separated from the rest

of the spectrum, see, e.g., Ref. [16] for more details].
Both phases are amenable to rigorous analysis. The semilo-

calized phase only exists when b < b� = 1/(2 ln 2 − 1), while
above b� one retrieves the spectral properties of the homoge-
neous regime. For b < b�, the average DoS in the interval λ ∈
(−λmax,−2) ∪ (2, λmax) is given asymptotically by ρ∞(λ) ∝
Nτ (λ)−1, where τ (λ) is an exponent whose explicit expression
has been obtained rigorously in Ref. [18]. In particular, τ (λ)
jumps discontinuously at the transition between the delo-
calized and the semilocalized phase from τ (λ) = 1 for λ ∈
[−2, 2] to τ = 1 − b/b� for λ → 2+ and λ → −2−.

The eigenvalues in the semilocalized phase were already
analysed in Ref. [21] (see also Refs. [99–101]), where it was
proved that they arise precisely from vertices of abnormally
large degree [102]. More precisely, it was proved that each
vertex with degree k > 2c gives rise to two eigenvalues of H
near ±	(k/c), where

	(x) = x√
x − 1

. (2)

One can rigorously show that the number of those resonant
vertices at energy |λ| > 2 is subextensive and asymptotically
equal to the number of eigenvalues, i.e., Nρ (∞)(λ) = Nτ (λ).
In other words, there is an approximate bijection between
vertices of degree greater than 2c and eigenvalues larger than
2. Hence, in the limit of very large graphs, one than has that:

ρ∞(	(k/c))

[
	

(
k

c

)
− 	

(
k − 1

c

)]
≈ e−c ck

2k!
.
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After expanding for large k and changing variables k → λ,
one finds that

ρ∞(λ) ≈ e−c c1+cκ̃ (λ)

2(cκ̃ (λ))!
κ̃ ′(λ), (3)

where

κ̃ (λ) = λ

2
(λ +

√
λ2 − 4),

κ̃ ′(λ) = dκ̃

dλ
= (λ + √

λ2 − 4)2

2
√

λ2 − 4
.

The function κ̃ (λ) above is the inverse of the function 	(x)
given in Eq. (2), and gives the degree cκ̃ (λ) corresponding
to an eigenvalue λ in the tails of the spectrum. The exponent
τ (λ) is then simply defined as

τ (λ) − 1 = lim
N→∞

ln ρ∞(λ)

ln N

= −b[κ̃ (λ) ln κ̃ (λ) − κ̃ (λ) + 1]. (4)

The maximum eigenvalue λmax(b) in the thermodynamic limit
(which correspond to the largest degree of H, see Ref. [20]
and Sec. VI) is thus given by the value of λ at which τ (λ)
vanishes,

κ̃ (λmax)[ln κ̃ (λmax) − 1] = 1

b
− 1, (5)

and b� is given by the condition λmax(b�) = 2.
In Ref. [18], Alt, Ducatez, and Knowles also investigated

the structure of the eigenvectors and proved that in the semilo-
calized phase the wave functions associated to the eigenvalue
at energy λ are highly concentrated around resonant vertices
i such that 	(ki/c) is close to λ, while the mass far away
from the resonance vertices is an asymptotically vanishing
proportion of the total mass. More precisely Alt et al. ob-
tained an exact bound on the anomalous dimension D∞ of
the eigenvectors in the semilocalized regime. We recall that
the anomalous dimensions are defined from the asymptotic
behavior of the �2q-norm of the eigenvectors as

||ψ ||22q =
(∑

i

|ψ (i)|2q

)1
q

∝ NDq( 1
q −1)

and fully characterize the geometric structure of the wave
functions, allowing one to discriminate between ergodic,
localized, and multifractal states. In the fully delocalized
regime, ψ (i) ∼ N−1/2 uniformly on all the sites, and Dq = 1
for all q’s. In the localized phase instead, the eigenstates are
essentially concentrated in a small number O(1) of vertices,
and Dq = 0; In an intermediate multifractal phase, e.g, if the
mass of ψ is uniformly distributed over some subset ND of
the sites, the Dq’s take values between 0 and 1. Focusing on
the q → ∞ limit in the semilocalized regime in Ref. [18] it
has been proven that the fractal dimension D∞ is bounded by
τ (λ) in the interval D∞(λ) ∈ [0, τ (λ)]. This also implies that
D∞ exhibit a discontinuity in the thermodynamic limit as a
function of the energies at |λ| = λGOE = 2.

In a more recent paper [20], Alt, Ducatez, and Knowles
went a step further and proved that the statistics of the eigen-
values near the spectral edges is described by the Poisson

FIG. 1. Schematic illustration of the possible structure of the
eigenvectors in the tails of the spectrum of critical ER graphs. Ver-
tices of abnormally large degree k = cκ̃ (λ) > 2c play the role of
localization centers. The wave functions decay exponentially around
each vertex (shaded regions) and are connected by exponentially
small effective tunneling amplitudes. Two situations are possible:
these wave functions might hybridize (at least partially) around many
resonant localization centers (right) or might stay fully localized
around a single localization center (left). In the former case eigen-
states close in energy occupy the same set of nodes and one has
minibands in the local spectrum composed of ND � Nρ consecutive
energy levels within which the Wigner-Dyson statistics is locally
established due to level repulsion. In the latter situation instead,
eigenfunctions nearby in energy do not overlap and the level statistics
is of Poisson type.

statistics and the associated eigenvectors are exponentially lo-
calized around a unique center (i.e., D∞ = 0). In other words
they proved the existence of a fully localized phase in the edge
of the spectrum of H. However, this still leaves the possibility
of the existence of an intermediate partially delocalized but
nonergodic region sandwiched between the fully delocalized
one and the fully localized one.

As a consequence of the analysis of Ref. [20], Alt, Ducatez,
and Knowles also identify the asymptotic distribution of the
largest (non trivial) eigenvalue of H [20], which is given by a
law that does not match with any previously known universal
distribution (see Sec. VI).

At this point, several key questions remain still open. Prob-
ably the two most important ones are the following.

(i) What is the nature of the semilocalized phase? Two
scenarios are in principle possible. All eigenstates in the tails
of the spectrum could be fully localized around a unique
vertex (i.e., D∞ = 0), or there could be a region of the phase
diagram where eigenvectors are partially delocalized around
many resonant vertices with the same degree (i.e., 0 < D∞ <

τ ) due to the hybridization of the exponentially decaying part
of the wave functions around each vertex, as schematically
depicted in Fig. 1. In the first case, the level statistics should
be of Poisson type, while in the second case it is reasonable to
expect that level repulsion should arise among nearby energy
levels which should form minibands in the local spectrum,
giving rise to Wigner-Dyson statistics at least on the scale of
the mean level spacing;

(ii) What are the critical properties of the transition(s)
for the spectral statistics? What are the similarities and the
differences compared to the standard localization transition
observed in the Anderson tight-binding model on sparse
graphs [5,8–17]?

174201-4



FULLY LOCALIZED AND PARTIALLY DELOCALIZED … PHYSICAL REVIEW B 105, 174201 (2022)

In the following sections, we attempt to provide a tentative
answer to these questions.

IV. THE PHASE DIAGRAM

As explained above, at an energy λ in the tails of the
spectrum (|λ| > 2), we have Nρ(λ) vertices of abnormally
large degree k = cκ̃ (λ) > 2c that play the role of localiza-
tion centers. The wave functions decay exponentially around
each vertex. In this section, we attempt to determine whether
it exists a region of the phase diagram where these wave
functions hybridize (at least partially) due to the exponen-
tially small tunneling amplitudes [103] between them (see
Fig. 1 for a schematic illustration). In this case, wave func-
tions close in energy occupy the same sets of nodes. Since
the effective matrix elements between different localization
centers and their energies are essentially uncorrelated, it is
natural to expect that, in analogy with RP-type models with
iid entries [52–54,56,73,74], the system forms minibands in
the local spectrum composed of ND � Nρ consecutive energy
levels within which the Wigner-Dyson statistics is locally
established. Alternatively, all eigenstates in the tails of the
spectrum can remain exponentially localized around a unique
vertex. In this case, nearby eigenfunctions do not overlap and
the level statistics is of Poisson type. Below we present two
analytical arguments to address this question.

A. Rules of thumb criteria for localization and ergodicity

The first approach is based on the so-called “rules of
thumb” criteria for localization and ergodicity which have
been formulated in the context of dense random matrices with
uncorrelated entries [53,54,56,74], and have been success-
fully adapted and applied in the latest years in the context
of the MBL transition, where the subjacent adjacency ma-
trix in the corresponding Hilbert space is sparse [34,37,48].
These “rules of thumb” essentially derive directly from first
order perturbation theory for the eigenvectors and second
order perturbation theory for the eigenvalues starting from
the localized eigenstates. The basic idea is to posit the ex-
istence of exponentially localized wave functions around the
localization centers of abnormally large degree, and to check
whether these wave functions are perturbatively stable when
the exponentially small matrix elements between them are
turned on. Formally our approach consists in mapping the
problem onto an effective RP model within each energy shell,
and then in applying the rules of thumb to this effective model.
To be more concrete, let us consider a given narrow energy
shell around |λ| > 2 and let us consider the Nρ(λ) ∝ Nτ (λ)

exponentially localized wave functions centered around the
localization nodes of degree cκ̃ (λ) with energies close to λ.
These states constitute an effective RP random matrix model
where Nρ(λ) independent levels with average energy sep-
aration of order 
 = 1/(Nρ) are coupled by exponentially
small off-diagonal transition rates due to the effective matrix
elements between distant localization centers (see in partic-
ular Ref. [37] for a very similar mapping in the context of
the QREM). Notice that the mapping onto an effective RP
model here seems justified by the fact that the fluctuations
of the energies of the localization centers of a given degree

depend mostly on the fluctuations of the degrees of their
neighbors [18,21] and are essentially uncorrelated from the
effective tunneling amplitudes between them, which instead
depend mostly on their distances (see below).

The first criterion, known as the Mott’s criterion for lo-
calization, states that AL around a single localization center
occurs when the level spacing 
 = 1/(Nρ) is much larger
than the tunneling amplitude between localization centres.
The second criterion [37,48,53,54,56,64,74], known as the
Mott’s criterion for ergodicity, is a sufficient condition for
ergodicity. The idea is to estimate the average escape rate �

of a particle sitting on a localization center using the Fermi
Golden rule and compare it to the spread of energy levels.
When the average spreading width � is much larger than
the spread of energy levels, then the different localization
centers are fully hybridized since starting from a given site
the wave-packet spreads to any other localization center at the
same energy in times of order one.

In order to apply these two criteria, we thus need to es-
timate the effective transition rates between two localization
centers, which depend on their energy λ and on their distance
r. This can be done at the level of the so-called forward-
scattering approximation, which consists in retaining only the
leading order of the perturbative expansion starting from the
insulating phase [1,104]. This amounts in considering only
the contribution to the nonlocal propagator at energy λ be-
tween two nodes of the graph at distance r coming from the
shortest path connecting them, and ignoring loopy paths that
contribute at higher order in perturbation theory. As discussed
above, the nodes of abnormally large connectivity k = cκ̃ (λ)
produce localized wave functions of energy λ = 	(k/c). Let
us then consider two localization centers of abnormally large
degree k = cκ̃ (λ) giving rise to two exponentially localized
eigenvectors around them of energy close to λ. Let us suppose
that these two nodes are at distance r on the graph, meaning
that the shortest path connecting them is of length r (on a ER
graph in the large N limit the shortest path connecting two
nodes is with high probability unique). The question that one
would like to answer is whether or not these two eigenvectors
can be hybridized by the exponentially small matrix elements
between them or not. In order to answer this question, we
compute the nonlocal propagator at energy λ between these
nodes at the leading order in the perturbative expansion in the
hopping 1/

√
c as [1,104]

Gr (λ) =
∑

pathsP

∏
i∈P

1/
√

c

λ
≈

(
1√
cλ

)r

. (6)

Since the Nρ(λ) ∝ Nτ (λ) localization centers occupy random
positions on the graph, the average distance between them is
(asymptotically) given by the typical distance between two
randomly chosen nodes, rtyp = ln N/ ln c. (This can be also
checked numerically, as shown in Fig. 13 of Appendix).

We then obtain that according to the Mott criterion, full lo-
calization around a unique vertex occurs when |Grtyp(λ)(λ)| <

(Nρ(λ))−1, i.e.,

N [τ (λ)− 1
2 − ln λ

ln c ] < 1.

In the thermodynamic limit (and in the critical regime,
c = b ln N), this condition is only fulfilled provided that
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τ (λ) < 1/2. (Note that the finite size corrections to the Mott’s
criterion decay very slowly, as 1/ ln ln N .) Using the asymp-
totic expression for the exponent τ given in Eq. (3), one then
finally obtains an implicit equation for the mobility edge λloc

which separates fully localized eigenstates, from an interme-
diate partially delocalized phase in which the wave functions
hybridize (at least partially) around many resonating localiza-
tion centers:

κ̃ (λloc)[ln κ̃ (λloc) − 1] = 1

2b
− 1. (7)

Hence, for |λ| ∈ (2, λloc), the exponentially decaying tunnel-
ing amplitudes between localization centres are counterbal-
anced by an the large number of possible localization centers
towards which tunneling can occur and the eigenvectors are
delocalized across many resonant localization centres. One
should keep in mind however that Eq. (7) only provides a
rough estimation of the mobility edge, since the analysis
neglects the effect of the loops on the ER graphs as well as
higher order terms in the perturbative expansion.

Since τ (λ) is a decreasing function of λ which tends
to 1 − b/b� for |λ| → 2+, the existence of the intermedi-
ate nonergodic phase is only possible if b < bloc = b�/2 =
1/(ln 16 − 2). In Appendix, we will come back to this anal-
ysis suggesting a way to estimate an upper bound for the
position of the mobility edge.

At this point, one can also wander whether in this interme-
diate partially delocalized phase the wave functions occupy
all the Nτ (λ) localization centers at the corresponding energy
or spread only over a subset ND1 of them. In fact, the number
of nodes on which the wave-function amplitudes are signifi-
cantly larger than 0 is called the “support set” and its scaling
with the system size is governed by the fractal exponent
D1 [105] [see Eqs. (17) and (18) below for a precise defini-
tion]. In the following, for simplicity and in analogy with the
Gaussian RP ensemble, which provides the simplest example
of an intermediate partially delocalized but nonergodic phase,
we will make the (questionable) assumption that all the fractal
dimensions are equal, i.e., Dq = D for all q [52]. This amounts
in supposing that the minibands in the local spectrum are lo-
cally compact (i.e., they are fractal but not multifractal). This
is partially motivated by the plots of Fig. 5 below, which show
that, although D1, D2, and D∞ do not coincide quantitatively,
they exhibit a very similar behavior.

In order to proceed further, we estimate the average escape
rate of a particle sitting on a localization center and compare it
to the spectral bandwidth at the same energy. Using the Fermi
golden rule, the escape rate is approximately given by

�(λ) ≈ 2πNρ(λ)|Grtyp(λ)(λ)|2 ∝ N [τ (λ)−1− 2 ln λ
ln c ]. (8)

This quantity corresponds to the average spreading of the
energy levels due to the exponentially small hopping am-
plitudes between different localization centers. Assuming, as
explained above, that minibands are locally compact as in
the Gaussian RP model, this energy scale, usually called the
Thouless energy ETh, coincides with the number of hybridized
states within a miniband, ND, times the mean level spacing,

(Nρ)−1. One than has [52,74]

1

Nρ(λ)
ND(λ) ∝ �(λ).

Plugging the expression for �(λ) given in Eq. (8) into the
equation above, and using the fact that the average DoS be-
haves asymptotically as Nτ (λ)−1 [18], one finds that in the
thermodynamic limit the fractal dimensions are given by D =
2τ − 1 (note that D = 0 at the localization threshold where
τ (λloc) = 1/2):

D(λ) =
{

2τ (λ) − 1 for 2 < |λ| < λloc,

0 for |λ| > λloc.
(9)

This function is plotted in Fig. 5 below for b = 0.5, and also
pictorially illustrated in the left panel of Fig. 2. In Fig. 6 of
Sec. V, we will provide a quantitative numerical test of the
validity of this result.

The resulting phase diagram of the adjacency matrix of
ER graphs in the critical regime obtained applying these sim-
ple arguments for localization and ergodicity is summarized
in Fig. 2, showing the transition lines between the different
phases. As discussed in Sec. VII, this phase diagram is, mu-
tatis mutandis, qualitatively very similar to the one of the
QREM recently obtained in Refs. [34–38].

B. Estimation of the localization transition
from the cavity approach

A complementary approximate analytical strategy to tackle
the localization transition and identify the position of the
mobility edge as a function of the parameters of the model
is based on the approximate treatment of the self-consistent
cavity equations for the Green’s functions.

In fact, the Green’s function of the adjacency matrix of ER
graphs satisfy an exact self-consistent equation in the thermo-
dynamic limit [5,97]. The recursive equations are obtained by
introducing the (cavity) Green’s functions of auxiliary graphs,
Gi→ j (z) = [Hi→ j − zI]−1

ii , i.e., the ith diagonal element of
the resolvent matrix of the modified Hamiltonian Hi→ j where
one of the neighbors of i, say node j, has been removed. On
an infinite tree, all neighbors { j1, . . . , jki} of a given vertex i
with degree ki are in different connected components of H.
By removing one of its neighbors ja, one then obtains (by
direct Gaussian integration or using the block matrix inversion
formula) the following iteration relations for the diagonal
elements of the cavity Green’s functions on a given node i
in absence of one if its neighbors as a function of the diagonal
elements of the cavity Green’s functions on the neighboring
nodes in absence of i:

G−1
i→ ja

(z) = −z − 1

c

∑
jb∈∂i/ ja

G jb→i(z), (10)

where ja with a = 1, . . . , ki denote the excluded neighbor of
i, z = λ + iη, η is an infinitesimal imaginary regulator which
smoothens out the polelike singularities in the right hand
sides, and ∂i/l denotes the set of all ki neighbors of i except
l . Note that for each site with ki neighbors one can define
ki cavity Green’s functions and ki recursion relations of this
kind, and hence on a finite ER graph of N nodes and average
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FIG. 2. (Left) Rough estimation of the phase diagram of the adjacency matrix of ER graphs in the critical regime, c = b ln N , in the
(|λ|, b) plane obtained applying the Mott’s criteria for localization and ergodicity. For |λ| < 2 in the bulk of the spectrum, the eigenvectors
are fully delocalized and the DoS is given by the semicircle law. For b < b� the spectrum is confined below the line λmax, given in Eq. (5).
For |λ| ∈ (λloc, λmax), the eigenvectors are fully localized around a unique localization center and the level statistics is of Poisson type [20].
For |λ| ∈ (2, λloc ), the wave functions partially delocalize around many resonant localization centers, due to the hybridization of energy levels.
In this regime, the system exhibits minibands in the local spectrum and the Wigner-Dyson statistics is established locally up to the Thouless
energy scale ETh ≡ � ∝ ND(λ)−τ (λ) much larger than the mean level spacing 
 ∝ N−τ (λ), where D(λ) is given by Eq. (9). The thick dashed
line represents the estimation of the mobility edge obtained from the Mott’s criterion, Eq. (7). The thinner dashed dotted line corresponds to
the estimation of λloc obtained from the approximate treatment of the self-consistent cavity equations discussed in Sec. IV B. The dotted line
shows the position of an upper bound for the mobility edge obtained in Appendix. (Right) Illustration of the behavior of the exponents τ and
D as a function of the energy λ for fixed b in the interval b ∈ (0, bloc ). In the fully delocalized GOE-like phase in the bulk of the spectrum, τ

and D are identically equal to 1. In the tails of the spectrum, the exponent τ , which controls the asymptotic scaling behavior of the average
DoS, is a decreasing function of λ exhibiting a finite jump from 1 to 1 − b/b� at |λ| = 2 and vanishing at ±λmax [see Eq. (4)]. According to the
Mott criterion, AL around a unique localization center occurs when τ < 1/2 (localization nodes are too rarefied to be hybridized), implying
that D = 0 for |λ| > λloc. Conversely, if τ > 1/2 the eigenstates are partially delocalized around many resonant localization centers and the
exponent D can be estimated from the Fermi Golden Rule, Eq. (9). At the transition in |λ| = 2, D is predicted to jump from 1 to 1 − 2b/b�.

connectivity 〈k〉 = c, Eq. (10) represents in fact a system of
∼cN coupled equations.

After that the solution of Eqs. (10) has been found, one can
finally obtain the diagonal elements of the resolvent matrix
of the original problem on a given vertex i as a function of
the cavity Green’s functions for all the neighboring nodes in
absence of i:

G−1
ii (z) = −z − 1

c

∑
jb∈∂i

G jb→i(z). (11)

Although ER graphs are not loop-less infinite trees, in the
large N limit, the neighborhood of i is, with high probability, a
tree since the typical length of the loops grows as ln N/ ln c ∝
ln N/ ln ln N . One can then expect that if N is large enough
Eqs. (10) and (11) provide a very good approximation of the
true Green’s functions (for c > 1 and finite it has been proven
rigorously in Ref. [106] that the cavity equations becomes
asymptotically exact in the thermodynamic limit).

The statistics of the diagonal elements of the resolvent
encodes the spectral properties of H. In particular, the local
density of states (LDoS) is given by

ρi(λ) =
N∑

α=1

|ψα (i)|2δ(λ − λα ) = lim
η→0+

1

π
ImGii(λ).

From the LDoS, one can compute the average DoS, which
is simply given by ρ(λ) = (1/N )

∑
i ρi(λ) = 1/(Nπ )Tr ImG.

We will be also interested in the typical DoS, defined as ρtyp =
e〈ln ImG〉/〈ImG〉.

Note that in principle the statistics of the LDoS allows one
to distinguish between a localized and a delocalized phase.
In fact, in a localized regime, the probability distribution of
the LDoS is singular in the η → 0+ limit and characterized
by power-law tails, while in a delocalized regime the LDoS
is unstable with respect to the imaginary regulator η and
its probability distribution converges to stable nonsingular
η-independent distribution functions (provided that η is suf-
ficiently small).

In the tails of the spectrum of the adjacency matrix of crit-
ical ER graphs, where c � 1 and the main contribution to the
local DoS comes from the vertices of abnormally large degree
k > 2c, it is very tempting to write an approximate equa-
tion for the Green’s function in the spirit of the SDA [94,95],
in which one uses the central limit theorem to evaluate the
sums over the neighbors appearing in the right hand side
of Eqs. (10) and (11). In fact, at least in the delocalized
regime where the elements of the resolvent are described by a
stable nonsingular distribution function in the η → 0+ limit,
(1/c)

∑
j∈∂i G j→i(z) tends to a Gaussian random variable of

mean proportional to ki/c (which is of order 1) and variance
proportional to

√
ki/c (which is of order 1/

√
ln N). Hence,
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FIG. 3. (Left) Illustration of the procedure used to find the solution of Eq. (15). For each value of k between 2c and kmax the right-hand
side of the equation has a pole at g̃R = −cλ/k. Each one of these singularities produces a solution of the self-consistent equation (circles).
We choose the solution associated to the value of the singularity in −cλ/k�, where k� is the closest integer to cκ̃ (λ), which corresponds to the
connectivity of the localization centers at energy λ in the thermodynamic limit. (Right) Logarithm of the smallest value of the system size for
which Eq. (16) ceases to be satisfied, Nloc(λ) [107], as a function of the energy λ in the tails of the spectrum of critical ER graphs with b = 0.5.
The continuous curve is a fit of the data of the form ln Nloc(λ) ∝ (λ − λloc )−ζ , with λloc ≈ 2.045 and ζ ≈ 0.258. The estimation of the mobility
edge obtained by this fit is represented by the dashed vertical line. The dotted vertical line shows the estimation of λloc obtained from the Mott
criterion, λloc ≈ 2.074 (see also Fig. 2). Assuming that there is no intermediate phase and that λloc = 2, one obtains a fit of the data represented
by the green dotted curve, which corresponds to ln Nloc(λ) ∝ (λ − 2)−ζ ′

with ζ ′ ≈ 1.08.

neglecting completely the fluctuation of the local degrees, in
the large N limit one can write an approximate equation for
the average value of the Green’s function restricted on the
nodes of degree k, 〈G〉k = 1/(NP(k))

∑
i:ki=k Gii:

〈G(z)〉k ≈ 1

−z − k
c g̃(z)

, (12)

where g̃(z) is defined as the average Green’s function, g̃(z) =∑
k P(k)〈G〉k . Summing over all degrees k with the cor-

responding probability P(k), Eq. (12) finally leads to the
following self-consistent equation for g̃(z):

g̃(z) ≈ −
∑

k

P(k)

z + k
c g̃(z)

. (13)

Once the solution of the equation above is found, using
Eq. (12), one can obtain an approximate expression for the
whole probability distribution of the elements of the Green’s
function as

Q(G) ≈
∑

k

P(k) δ

(
G + 1

z + k
c g̃(z)

)
. (14)

In the thermodynamic limit and for |λ| ∈ (2, λmax) one ex-
pects that the sum over k is dominated by the nodes of
connectivity k = cκ̃ (λ). In Figs. 8–11, we discuss the quality
of this approximation with respect to the exact solution of the
cavity equations for several observables and for several values
of λ and N (and for b = 0.5).

At this point, in order to determine the position of the mo-
bility edge, one can seek for solutions of Eq. (12) in absence
of the imaginary part of g̃, and then study the stability of these
solutions with respect to the addition of a small imaginary
part. The approximate self-consistent equation for the real part

of g̃ is

g̃R = −
∑

k

P(k)

λ + k
c g̃R

, (15)

where the sum over k is in fact cut-off at kmax which is the
largest degree on a graph of N nodes. The right-hand side
of the equation above has poles at all values of g̃R such that
g̃R = −cλ/k. For λ and N fixed, each pole is associated to
a particular value of the degree between k = 2c and kmax.
As illustrated in the left panel of Fig. 3, each one of these
singularities produces a crossing between the right-hand and
the left-hand sides of the equation and gives rise to a so-
lution of (15). We assume that in the thermodynamic limit
the relevant solution is the one associated to the value of the
singularity in −cλ/k�, where k� is the closest integer to cκ̃ (λ),
which corresponds to the connectivity of the localization cen-
ters at energy λ. This assumption is partially justified by the
plots of Fig. 9 below, showing that the average DoS restricted
to the nodes of connectivity k indeed peaks around k� as N is
increased.

Adding now a small imaginary part to the average Green’s
function and linearizing with respect to it, one obtains the self-
consistent equation describing the exponential decay or the
exponential growth of the imaginary part starting from the real
solution. The stability condition of the localized phase is thus
simply given by

1

c

∑
k

kP(k)(
λ + k

c g̃R
)2 < 1. (16)

We have solved numerically Eqs. (15) and (16) for several
values of b, varying the energy λ and the system size N [and
choosing the solution of Eq. (15) which is the closest to the
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pole in −cλ/k�]. This can be done for N � 250, since for N
too large the exponentially small probability in the numerator
and the poles in the denominator cannot be handled with
a sufficient degree of numerical precision to yield reliable
results. For every value of λ at fixed b, we determine the
value of Nloc(λ), which corresponds to the smallest value of
N such that Eq. (16) is satisfied [107]. The results of this
procedure are illustrated in Fig. 3 for b = 0.5. One observes
that Nloc(λ) increases very rapidly when λ is decreased and
seems to diverge for λ ≈ 2.045. This analysis suggests that
in the thermodynamic limit and for b = 0.5 the mobility edge
is located around λloc ≈ 2.045, which is in fact not too far
from the estimation of λloc obtained from the Mott’s criterion
[Eq. (7) of Sec. IV A] for the same value of b, λloc ≈ 2.074.
A similar behavior is found for other values of b. The es-
timation of λloc obtained from this analysis is plotted as a
dashed dotted line in the (|λ|, b) plane on the phase diagram
of Fig. 2. Although the prediction for the mobility edge ob-
tained from the approximate treatment of the self-consistent
cavity equations does not coincide quantitatively with the one
obtained from the Mott’s criterion, the two lines have a similar
qualitative shape.

For completeness, it is worth to mention that one can also
try to fit the values of Nloc assuming that there is no interme-
diate phase and that the mobility edge is at λloc = 2. However
the quality of the fit (green dashed line) seems to be less good
and limited to a narrower range compared with the fit obtained
for λloc = 2.045.

We conclude this section by noting that, similarly to the
Mott criterion, within this approach delocalization occurs
due to a trade-off between the exponential decrease of P(k)
and the accumulation of singularities in the denominator of
Eq. (16) which become closer and closer to each other and
make the sums over k blow.

V. NUMERICS

In this section, we present a numerical verification of
the theoretical predictions for the phase diagram discussed
above. We set b = 0.5 throughout. According to the phase
diagram of Fig. 2, at b = 0.5 one should cross two phase
transitions as the energy is increased. (1) A transition at
λGOE = 2 from the fully delocalized GOE-like phase to the
partially delocalized but nonergodic phase, where the statistics
of the wave-function amplitudes should exhibit a dramatic
change (in particular the fractal dimension should display a
discontinuous jump at the transition). (2) A AL transition
at λloc where the gap statistics likely undergoes a transition
from Wigner-Dyson statistics to Poisson statistics. In fact, as
shown in Ref. [20], in the fully localized part of the spectrum
above λloc, the exponentially decaying eigenvectors around
unique localization centers do not interact and the statistics
of level spacing is Poisson. Conversely, as explained above,
below λloc eigenstates close in energy are partially deolcalized
around many resonant localization centers and, in analogy
with RP-type models with iid entries, the system is expected
to exhibit minibands in the local spectrum, within which the
Wigner-Dyson statistics is established up to an energy scale
much larger than the mean level spacing [52–54,56,73,74,76].

We employ two complementary numerical strategies to
investigate these two transitions. The first approach consists
in performing exact diagonalizations of the adjacency matrix
of critical ER graphs of size N = 2n with n ranging from 9 to
18. Since we are interested in the properties of the tails of the
spectrum, we only focus on a subextensive set of eigenvalues
and eigenvectors in the spectral edges, 2 < |λ| < λmax. The
number of these eigenstates scales approximately as ∼N1−b/b�

and the Lanczos algorithm works efficiently up to moderately
large sizes. Averages are performed over (at least) 243−2n

different independent realizations of the graph and over eigen-
states in the same energy window.

The second strategy consists instead in solving directly
the self-consistent cavity equations (10) and (11) on random
instances of critical ER graphs of large but finite sizes N = 2n,
from n = 12 to n = 28. In practice, we first generate the
graph according to the Bernoulli distribution (1). Then we
find the fixed point of Eqs. (10), which represent a system
of ∼cN coupled equation for the cavity Green’s functions.
Finally, using Eqs. (11) we obtain the diagonal elements of
the resolvent matrix on each vertex. We repeat this procedure
232−n times to average over different realizations of the graph.
The advantage of this method over EDs is that the solution of
the cavity equations can be obtained with arbitrary precision
by iteration in a time that scales as cN ∝ N ln N , which is
much faster than the computational time needed to diagonal-
ize the Hamiltonian, which scales roughly as N3−b/b� , thereby
allowing one to access system sizes about 103 times larger.

A. Level statistics

Here we start by focusing on the AL transition. To this aim
we perform a finite-size scaling analysis of the behavior of
two observables related to the level statistics of neighboring
eigenvalues. The first is the average ratio of adjacent gaps:

rn = min

{
λn+2 − λn+1

λn+1 − λn
,

λn+1 − λn

λn+2 − λn+1

}
,

whose probability distribution displays a universal form de-
pending on the level statistics, with 〈r〉 equal to 0.53 in the
GOE ensemble and to 0.39 for Poisson statistics [108].

The second observable which captures the transition from
Wigner-Dyson to Poisson statistics is given by the mutual
overlap between two subsequent eigenvectors, defined as

qn =
N∑

i=1

|ψn(i)||ψn+1(i)|,

In the Wigner-Dyson phase, 〈q〉 converges to 2/π (as expected
for random vector on a N-dimensional sphere), while in the lo-
calized phase, two successive eigenvector are typically peaked
around different sites and do not overlap and 〈q〉 → 0 for
N → ∞. At first sight, this quantity seems to be related to the
statistics of wave functions’ coefficients rather than to energy
gaps. Nonetheless, in all the random matrix models that have
been considered in the literature so far, one empirically finds
that 〈q〉 is directly associated to the statistics of gaps between
neighboring energy levels [56,109–111].

In the left panels of Fig. 4, we plot 〈r〉 (top) and 〈q〉
(bottom) as a function of λ for b = 0.5, showing that both
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FIG. 4. 〈r〉 (top) and 〈q〉 (bottom) as a function of |λ| ∈ (2, λmax) in the tails of the spectrum of the adjacency matrix of critical ER graphs
for b = 0.5 (λmax ≈ 2.231). Different system sizes N = 2n (with n from 11 to 18) correspond to different symbols and colors as indicated in
the legend. The right panels show that a good data collapse is obtained for both 〈r〉 and 〈q〉 in terms of the scaling variable (λ − λloc )(ln N )1/νloc ,
with λloc ≈ 2.074 [Eq. (7)] and νloc ≈ 1. The horizontal dashed grey lines correspond the GOE and Poisson universal values.

observables take their Wigner-Dyson universal values for λ �
λloc, while they depart from the Wigner-Dyson values for
λ > λloc, in a way that is more pronounced when the system
size is increased. The right panels demonstrate that a good
collapse of the data (especially for 〈q〉 which turns out to be
much less noisy than 〈r〉) corresponding to different sizes is
obtained in terms of the scaling variable (λ − λloc)(ln N )1/νloc ,
with νloc ≈ 1. (Such value of the exponent is the same found
for the Gaussian RP model at the AL transition [76].) Here
for concreteness we have used the estimation of λloc given
by the Mott criterion, Eq. (7), i.e., λloc ≈ 2.074 for b = 0.5.
A reasonably good collapse can be also obtained setting the
mobility edge to the value given by the linear stability anal-
ysis of the approximate cavity equations, λloc ≈ 2.045 (see
Sec. IV B) and using νloc ≈ 0.75. It is also possible to collapse
the data for different values of N on the same curve assuming
that transition from Wigner-Dyson to Poisson statistics takes
place at λloc = 2 and setting νloc ≈ 0.5. This situation would
be realized either if the intermediate partially delocalized but
nonergodic phase was only a finite-size crossover and eventu-
ally all eigenvalues in the tails of the spectrum become fully
localized in the thermodynamic limit, or if the structure of the

fractal states is different from the one of RP-type models, as
it happens for instance in correlated random matrix models
having a fractal phase that does not feature minibands in
the local spectrum within which the Wigner-Dyson statistics
establishes [66–68]. However the quality of the collapse in
this case is slightly less good than the one achieved in the right
panels of Fig. 4. To sum up, the finite-size scaling analysis of
the level statistics is fully compatible with a transition from
Wigner-Dyson to Poisson statistics at λloc > 2, corroborating
the results of the previous section. Yet, our numerical data are
limited to too small sizes to rule out definitely other possible
scenarios and to be fully conclusive on the nature of the
transition.

Finally, the plots Fig. 4 call attention on an important
difference with the standard AL transition on sparse graphs
induced by the random local potential. In fact, in this case,
it is well established that the critical point is in the local-
ized phase and it is thus described by the Poisson statistics
[6,7,11,13–15,112], while in the present case, the critical point
lies clearly in the Wigner-Dyson phase. This latter behavior
is also observed in random matrix models of the RP type
featuring an intermediate nonergodic extended phase sand-
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FIG. 5. Flowing N-dependent fractal dimensions D1 (left), D2 (middle), and D∞ (right) as a function of |λ| ∈ (2, λmax) in the tails of
the spectrum of the adjacency matrix of critical ER graphs for b = 0.5 (λmax ≈ 2.231). N = 2n with n = 9, . . . , 18 (different values of n
correspond to different symbols and colors as indicated in the legend). Dq are computed via Eq. (18) from the scaling of the qth moment of the
wave-function amplitudes measured from EDs. The error bars on Dq are smaller than the size of the symbols. The solid line corresponds to the
analytic estimation based on the Fermi Golden Rule, Eq. (9). The vertical dashed line represents the position of λloc ≈ 2.074. The dashed curve
shows the value of the exponent τ (λ) associated to the scaling of the DoS, which gives an upper bound for the anomalous dimensions [18].

wiched between the fully ergodic one and the fully localized
one [56,76]. This observation thus provides another hint of
the existence of a genuine partially delocalized but nonergodic
phase in the tails of critical ER graphs.

B. Statistics of the wave-function amplitudes

We now focus on the transition for the statistics of the
wave-function amplitudes taking place at |λ| = λGOE = 2. To
this aim, we study the scaling behavior of the (typical) mo-
ments

ϒq(N, λ) =
〈

ln

(
N∑

i=1

|ψ (i)|2q

)〉
λ

,

ϒ1(N, λ) = −
〈

N∑
i=1

|ψ (i)|2 ln |ψ (i)|2
〉
λ

, (17)

where the averages 〈· · · 〉λ are done over the eigenfunctions
of energy λ and over different realizations of the graph. The
flowing fractal dimensions are then obtained as logarithmic
derivatives of the moments ϒq with respect to ln N (hereafter
the logarithmic derivatives are computed as discrete deriva-
tives involving the five available values of the system size
closest to N [113]):

Dq(N, λ) = 1

1 − q

∂ϒq(N, λ)

∂ ln N
,

D1(N, λ) = ∂ϒ1(N, λ)

∂ ln N
. (18)

In Fig. 5, we plot our numerical results for the flowing frac-
tal exponent Dq(N, λ) computed numerically according to
Eq. (18), and contrast it with the theoretical prediction of
the Mott’s argument based on the generalization of the Fermi
Golden rule, Eq. (9). The figure shows that for |λ| > λloc

the exponents D1, D2, and D∞ start to decrease rapidly as
the system size is increased (and even take negative values).
Conversely, for |λ| < λloc, Dq are still quite close to 1 (and are
still larger than τ ). Attempting a finite-size scaling analysis
of these data is problematic due to the fact that Dq should
converge to a λ-dependent function.

This kind of behavior is somewhat similar to the one ob-
served in the insulating side of the MBL transition [43,48]
(and also in the intermediate phase of the Lévy RP en-
semble [56]), in which the asymptotic values of Dq depend
continuously on the parameters of the model such as the
disorder strength. We therefore perform a finite-size scaling
analysis inspired by the one proposed in Refs. [43,56,114]
to deal with this situation, which consists in positing that
in the partially delocalized but nonergodic region, |λ| ∈
(λGOE, λloc), the moments of the wave-function amplitudes
〈ϒq〉 [defined in Eq. (17)] behave as

ϒ1(N, λ) − ϒ1(N, λ = 2) = −D1,c
ln N

ξ (λ)
,

ϒq(N, λ) − ϒq(N, λ = 2) = (1 − q)Dq,c
ln N

ξ (λ)
, (19)

with Dq,c being the fractal dimensions at the transition point.
The length scale ξ (i.e., the logarithm of a correlation volume
Nc(λ)) depends on the distance to the critical point λGOE = 2.
The scaling ansatz above implies that in the limit ln N � ξ the
leading terms follows ϒ1 � D1,c(1 − 1/ξ (λ)) ln N and ϒq �
−(q − 1)Dq,c(1 − 1/ξ (λ)) ln N , while in the opposite limit,
ln N � ξ , one retrieves the critical scaling. As mentioned
above, here for simplicity, in analogy with the RP model [52],
we assume that the minibands in the local spectrum in the
partially delocalized but nonergodic phase are fractal but non
multifractal, i.e., Dq = D for all q. In order for Eq. (9) to be
satisfied one then needs to have

ξ (λ) = Dc

Dc − D(λ)
, (20)

where Dc = 1 − 2b/b� and D(λ) is given in Eq. (9). As shown
in Fig. 6 for b = 0.5, a reasonably good data collapse is
obtained in the partially delocalized phase when the qth mo-
ments of the wave functions amplitudes for different values
of the energy are plotted as a function of the scaling vari-
able ln N/ξ (λ), where ξ (λ) is chosen as in Eq. (20). Note
that the quality of the data collapse is especially good since
there is in fact no adjustable parameter in this procedure.
Since κ̃ (2 + ε) ≈ 2(1 + √

ε), in the vicinity of the transi-
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FIG. 6. Scaling curves for the qth moments of the wave-function amplitudes for q = 1 (left), q = 2 (middle), and q = ∞ (right) varying
λ in the tails of the spectrum of the adjacency matrix of critical ER graphs for b = 0.5. Different colors and symbols correspond to different
values of the energy. ϒq(N, λ) − ϒq(N, λ = 2) are plotted as a function of the scaling variable ln N/ξ (λ), see Eq. (19) with ξ given by Eq. (20).
The gray dashed lines correspond to the theoretical asymptotic behavior of the scaling functions that are predicted to exhibit a slope equal to
Dc = 1 − 2b/b�. The error bars on ϒq are smaller than the size of the symbols.

tion to the fully delocalized GOE like phase one has that
τ (2 + ε) − τ (2) ≈ 2b ln 2

√
ε. Hence the scaling analysis of

Fig. 6 indicates that

ξ (λ) = b� − 2b

2b(b� + 1)
√|λ| − 2

,

i.e., νGOE = 0.5.
An independent estimation of the exponent νGOE which

describes how the correlation length scale ξ (λ) diverges when
the critical point is approached can be obtained from the non-
monotonic behavior of the flowing fractal dimensions Dq at
fixed energy and as a function of the system size. In Fig. 7, we
plot the numerical estimations of D1, D2, and D∞ as a function
of n = ln2 N for several values of λ within the interval 2 <

|λ| < λmax. The plots show that the Dq’s first grow at small N
and then decrease at large N after passing through a maximum
at a characteristic scale Nc. The position of the maximum
moves to larger values of N when λ gets closer to 2. The
values of Nc(λ) estimated from the nonmonotonic behavior of
the Dq’s are shown in Fig. 8, indicating that the characteristic
scale ln(Nc) governing the finite-size behavior of the fractal
exponents is well fitted by a power-law divergence of the form
ln(Nc) ∝ (|λ| − 2)−νGOE with νGOE ≈ 0.5, and appears to be
proportional to the correlation length ξ (λ) extracted from the
finite-size scaling analysis of Fig. 6.

It is also worth mentioning that we also tried to perform a
finite-size scaling of the Dq and ϒq assuming that there is a
direct transition to localization at λloc = 2 (and thus no inter-
mediate phase), and that Dq tend to 0 in the thermodynamic
limit for |λ| > 2. However we did not manage to find a good
collapse of the data for any choice of the parameters. Hence, to
sum up, the finite-size scaling analysis of the moments of the
wave-function amplitudes presented above provides another
element in support of the existence of the intermediate phase,
and indicates that the transition from the fully delocalized
phase in the bulk of the spectrum to the partially delocalized
but nonergodic phase in the region |λ| ∈ (2, λloc) is gov-
erned by a characteristic scale that diverges exponentially at
λGOE = 2.

C. Convergence of the average density of states

In this section, we investigate the convergence of the aver-
age DoS in the tails of the spectrum of the adjacency matrix of
critical ER graphs to the exact asymptotic behavior obtained
in Ref. [18] and given in Eq. (3). Although the average DoS
is completely insensitive to AL, this analysis will allow us to
obtain another complementary estimation of the characteristic
scale that governs finite-size corrections. The numerical re-
sults are obtained using both exact diagonalizations (for sizes

FIG. 7. Flowing fractal dimensions D1 (left), D2 (middle), and D∞ (right) as a function of n = log2 N for different values of |λ| ∈ (2, λmax)
in the tails of the spectrum of critical ER graphs of N vertices and average degree c = b ln N with b = 0.5. Different symbols and colors
correspond to different values of the energy as indicated in the legend. The fractal exponents exhibit a clear nonmonotonic dependence on n.
The error bars on Dq are smaller than the size of the symbols.
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FIG. 8. (Left) Average DoS of critical ER graphs (with b = 0.5) in the semilocalized phase |λ| ∈ (2, λmax) computed using EDs (symbols)
and the numerical solution of Eqs. (10) and (11) (thick continuous lines). λmax ≈ 2.231 for b = 0.5. Different system sizes N = 2n (with n
from 12 to 26) correspond to different symbols and colors as indicated in the legend. The dashed lines correspond to the asymptotic value of the
DoS ρ∞ given in Ref. [18] and in Eq. (3). The dashed-dotted lines corresponds to the approximate average DoS obtained from the solution of
Eq. (13), which is in reasonably good agreement with the average DoS obtained from EDs and from the solution of the exact cavity equations.
(Middle) Relative distance at finite N of the DoS from its asymptotic scaling behavior 
ρ = (ρ − ρ∞)/ρ∞ for several values of the energy
in the interval |λ| ∈ (2, λmax) as a function of n = log2 N . Filled symbols correspond to ED results and solid lines to the results obtained from
the solution of the cavity equations. Different symbols and colors correspond to different values of the energy as indicated in the legend. The
curves exhibit a nonmonotonic behavior with a maximum at a characteristic volume Nc(λ). (Right) ln ln(Nc ) as a function of the logarithm of
the distance from the transition point, ln(|λ| − 2). The empty squares correspond to the values of Nc extracted from the maximum of 
ρ, and
are very well fitted by ln ln Nc = a − νGOE ln(λ − 2) with a ≈ 0.891 and νGOE ≈ 0.64 (dashed straight line). The filled circles, up triangles, and
down triangles correspond to the values of Nc estimated from the nonmonotonic behavior of the flowing fractal dimensions D1, D2, and D∞,
respectively (see Fig. 7). The dashed-dotted line represents the estimation of ξ ∝ (|λ| − 2)−1/2 given in Eq. (20) (with νGOE = 0.5) obtained
from the scaling analysis of the moments of the wave functions amplitudes proposed in Fig. 6 of Sec. V B.

N = 2n with 9 � n � 18) and the numerical solution of the
self-consistent cavity equations for the Green’s function (for
sizes N = 2n with 12 � n � 28). In both cases, we have set
b = 0.5.

In the left panel of Fig. 8, we plot the average DoS in the
interval 2 < |λ| < λmax for several system sizes obtained from
EDs (symbols) and the cavity method (solid lines) for b = 0.5.
We also plot the exact asymptotic estimation of Eq. (3) ob-
tained by counting the number of vertices of abnormally large
degree corresponding to a given energy (dashed lines) [18],
as well as the estimation of the average DoS obtained from
the approximate treatment of the cavity equations, Eq. (13)
(dashed-dotted lines).

The first important observation is that the results obtained
using the cavity method are in excellent agreement with the
ED ones, although the DoS is still very far from the asymptotic
expression (3) for the accessible system sizes. We also note
that the approximate DoS obtained from Eq. (13) provides
in fact a reasonably good approximation. In order to charac-
terize the finite-size corrections it is instructive to compute
the relative distance between the measured DoS at finite N
from the asymptotic value ρ∞. In the right panel of Fig. 8,
we plot 
ρ = (ρ − ρ∞)/ρ∞ as a function of n = ln2 N for
several values of the energy in the interval 2 < |λ| < λmax.
The plot clearly shows that 
ρ has a nonmonotonic behavior
as a function of N characterized by a well-defined maxi-
mum that becomes higher and moves to larger values of N
as the energy is decreased. This implies that the finite-size
corrections become stronger and stronger as the transition
from the semilocalized phase and the fully delocalized one
is approached, and are governed by a characteristic vol-
ume that grows when λ gets close to the transition point at
|λ| = λGOE = 2. By determining the position of the maximum
of 
ρ for different values of λ, one thus obtains a direct

estimation of the correlation volume Nc(λ), which is shown
in the right panel of Fig. 8. It turns out that Nc is well fitted by
a an exponential divergence at the transition point of the form
ln Nc(λ) ∝ (λ − 2)−νGOE , with νGOE ≈ 0.64. The plot also in-
dicates that such estimation of Nc is roughly proportional
to the one obtained from the nonmonotonic behavior of the
flowing fractal dimensions and from the finite-size scaling
analysis of Fig. 6.

It is also instructive to study the evolution with the system
size of the average DoS restricted to the nodes with degree
k (with k > 2c), 〈ImG〉k . This quantity, which can be easily
computed numerically from the solution of the self-consistent
cavity equations for the resolvent, is plotted in Fig. 9 for
two values of the energy in the interval |λ| ∈ (2, λmax) as a
function of 	(k/c) (i.e., the value of the energy which in
the thermodynamic limit is associated with vertices of degree
k) for several system sizes n = log2 N with 16 � n � 28.
These plots show that the correlation volume Nc also reflects
in the finite-size behavior of 〈ImG〉k . In fact, according to
the rigorous results of Refs. [18,21], in the thermodynamic
limit 〈ImG〉k should approach a narrowly peaked function
around λ (vertical dashed lines), due to the bijection between
resonant vertices of degree greater than 2c and eigenvalues
larger than 2. For the accessible system sizes, we observe that
〈ImG〉k exhibits a maximum located around values of 	(k/c)
smaller than λ. The position of the maximum moves first
slightly leftwards for N < Nc(λ), and then slightly rightwards
for N > Nc(λ), while the function becomes more peaked as
the system size is increased. In the left panel, we also show
the results obtained for λ = 2.09 using the approximation of
Eqs. (12) and (13) (dashed curves), which in fact describe
qualitatively well the evolution of 〈ImG〉k with the system
size. The same approximation cannot be used for λ = 2.135
since the system enters in the localized regime [N > Nloc(λ)]
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FIG. 9. Average DoS restricted to vertices of degree k, 〈ImG〉k , as a function of 	(k/c), in the tails of the spectrum of critical ER graphs
(with b = 0.5). Different system sizes N = 2n (with n from 16 to 28) correspond to different symbols and colors as indicated in the legend.
The vertical dashed lines corresponds to the value of the corresponding energy, i.e., λ = 2.09 (left) and 2.135 (right). The dashed curves in the
left panel show 〈ImG〉k obtained using the approximation of Eqs. (12) and (13).

in which the approximation breaks down, as explained in
Sec. IV B.

All in all, the results presented above indicate the presence
of a correlation volume, Nc(λ), which diverges exponen-
tially fast when |λ| → 2 with an exponent close to νGOE ≈
0.5. Note that a similar divergence is also observed on the
delocalized side of the Anderson model on the Bethe lat-
tice [8–13,15,111,112,114]. In this case, the volumic scaling
is associated to the fact that the critical point is in the localized
phase and the fractal dimensions exhibit a discontinuous jump
at the critical point from Dq = 0 for W � Wc to Dq = 1 for
W → W −

c . For critical ER graphs, the situation is somehow
reversed, in the sense that here the critical point at λ = 2 is in
the delocalized phase, with a finite jump of the fractal dimen-
sions from Dq = 1 for |λ| � 2 to Dq < 1 for |λ| → 2+, and
the scaling in terms of an exponentially large correlation vol-
ume is found on the semilocalized side of the transition [56].

D. Statistics of the local density of states
through the mobility edge

The transition from the partially delocalized phase to the
fully localized one can be also inspected by analyzing numer-
ically the spectral statistics of the LDoS and of its correlations.
Throughout this section, we will consider critical ER graphs
with average degree c = b ln N with b = 0.5.

In Fig. 10, we plot the probability distribution Q(ln(ImG))
obtained solving the self-consistent cavity equations (10)
and (11) for several system sizes N = 2n and for two values
of the energy respectively in the putative partially delocalized
but nonergodic phase (λ = 2.04, left panel) and in the fully
localized phase (λ = 2.135, middle panel). The imaginary
regulator η is set here to a very small value (η = 10−16),
much smaller than the mean level spacing. For λ = 2.135,
the probability distribution of the LDoS seems to approach
slowly but gradually the standard localized behavior as N is
increased. In particular, one clearly observes the emergence

of a power-law regime which becomes broader and broader
as N is increased and is characterized by an exponent which
evolves with N . The power-law establishes between the typ-
ical value of the LDoS (which drifts to smaller values when
N is increased) and a sharp cutoff (that drifts to larger values
as N is increased). In order to characterize the exponent of the
power-law, in the right panel of Fig. 10, we plot the local slope
of the distribution function, computed numerically as

μ(ln(ImG)) = ∂Q(ln(ImG))

∂ (ln(ImG))
.

In the standard localized regime, the tails of the distribution of
the LDoS are described by Q(ImG) ∝ √

η/(ImG)3/2 (for ImG
smaller than a cut-off proportional to η−1), i.e., μ = −1/2.
The figure indeed shows that as N is increased the region
where μ is approximately constant becomes broader and
the values of μ slowly increases towards μ = −1/2 (dashed
lines).

This behavior must be contrasted with the one of the par-
tially delocalized phase, shown in the left panel of Fig. 10.
For λ = 2.04, one indeed observes (at least for the accessible
system sizes) that the typical value and the cut-off of the
distributions of the LDoS stay of order 1 as N is increased
and, albeit an apparent power-law regime seems to set in for
large enough N , the exponent μ is much smaller than −1/2
and decreases with N . We also show the approximate result
for Q(ln(ImG)) obtained from Eqs. (12)–(14), that in fact
accounts reasonably well for the exact distributions in this
regime.

It is also instructive to inspect the scaling behavior of
the typical value of the LDoS as a function of the system
size when the imaginary regulator is varied. In fact, as dis-
cussed in Refs. [52,56,73,74] in the context of random matrix
models, in the putative partially delocalized but nonergodic
phase eigenstates occupy a subextensive fraction of the total
volume and spread over ND nearby energy levels hybridized
by the off-diagonal perturbation. Assuming for simplicity that
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FIG. 10. Probability distribution functions of ln ImG for critical ER graphs (with b = 0.5) for λ = 2.04 (left) and λ = 2.135 (right) and for
several system sizes N = 2n with n = 16, . . . , 28 as indicated in the legend. The dashed straight line in the middle panel represents the slope
μ = −1/2 of the standard localized phase. In the right panel, we plot the local slope of the probability distribution μ(ln(ImG)), as explained
in the text.

the minibands are locally compact (as in the Gaussian RP
model [52,73,74]) the with of the minibands, i.e., the Thouless
energy ETh ≡ �, is given by the product of the number of
sites over which the eigenvectors are delocalized times the
typical distance between consecutive levels: ETh ∝ ND
 =
ND/(Nρ). At this energy scale the spectral statistics displays a
crossover from a behavior characteristic of standard localized
phases to a behavior similar to the one of standard delocalized
phase. AL occurs when the minibands’ width formally be-
comes smaller than the mean level spacing, ETh ∼ 
. At this
point, typically the localization centers are almost unaffected
by the off-diagonal hybridization rates. [Conversely, full er-
godicity is restored when the Thouless energy becomes of the
order of the total spectral bandwidth, ETh ∼ O(1).] Hence, the
scaling behavior of the local resolvent statistics encodes useful
information on the structure of the local spectum and gives
direct access to the support set of the minibands.

In Fig. 11, we plot the logarithm of the typical value of the
LDoS, defined as

ρtyp = e〈ln ImG〉/〈ImG〉.
We have computed ρtyp numerically by solving the self-
consistent cavity equations (10) and (11) for several values
of the regulator η, for several system sizes N = 2n (with n
from 16 to 28), and for two values of the energy respectively
in the putative partially delocalized but nonergodic phase
(λ = 2.07, top-left panel) and in the fully localized phase
(λ = 2.135, top-right panel). The imaginary regulator is mea-
sured in units of the mean level spacing 
 = 1/(Nρ(N, λ)) =
π/(N〈ImG(η → 0+)〉). The curves corresponding to different
size display a crossover at a well defined energy scale from a
plateau at small η and a power-law of the form ρtyp ∝ (η/
)β

at large η. As explained above the origin of such crossover
is due to the fact that wave functions close in energy are hy-
bridized by the off-diagonal perturbation and form minibands.
When η is smaller than the width of the minibands ρtyp has a
delocalized-like behavior and is independent of the regulator.
Conversely, when η is larger than the energy spreading of the
minibands one finds a behavior similar to that of the localized
phase, where ρtyp grows with η.

At large energy (λ = 2.135, top-right panel), the ratio
ETh/
 and the height of the plateau behave nonmonotonically
as they first increase for N < Nc, and than start to decrease

for N > Nc. The characteristic size Nc ≈ 223 turns out to be
precisely the one highlighted in Sec. V C. At larger N , one
clearly sees that the ratio ETh/
 moves to smaller and smaller
values and eventually for N � 226 crosses the vertical dashed
line, i.e., the Thouless energy becomes smaller than the mean
level spacing. Concomitantly, the height of the plateau at
small η decreases rapidly with the system size. This behavior
is fully consistent with that of a fully localized regime.

At smaller energy, instead (λ = 2.07 in the putative par-
tially delocalized but nonergodic phase, top-left panel), the
ratio ETh/
 moves to larger and larger values as N is in-
creased. This behavior is compatible with the presence of
minibands in the local spectrum, at least for the accessible
system size. In the left panel, we also show the approximate
result for ρtyp obtained using the approximate treatment of the
cavity equations, Eqs. (12) and (13). Although this approxi-
mation clearly overestimates the typical DoS in the small η

regime, it captures very accurately the crossover energy scale.
Another insightful probe of the level statistics and of the

statistics of wave-function amplitudes is provided by the spec-
tral correlation function K2(ω) between eigenstates at differ-
ent energy, which allows one to distinguish between ergodic,
localized, and partially delocalized states [52,54,56,115–118]:

K2(ω) = lim
η→0+

〈
N

∑
i ImGii(ω/2) ImGii(−ω/2)∑

i ImGii(ω/2)
∑

i ImGii(−ω/2)

〉
. (21)

The properties of K2(ω) and its relationship with other spec-
tral probes have been discussed extensively in the literature
(see, e.g., Ref. [118] for a review). For GOE matrices,
K2(ω) = 1 identically, independently of ω on the entire spec-
tral bandwidth. In a standard metallic phase (e.g., in the
extended phase of the Anderson tight-binding model in d �
3), K2(ω) has a plateau at small energies, for ω < ETh, fol-
lowed by a fast-decay which is described by a power-law,
with a system-dependent exponent [116]. The height of the
plateau is larger than one, which implies an enhancement of
correlations compared to the case of independently fluctu-
ating Gaussian wave functions. The Thouless energy which
separates the plateau from the power-law decay stays finite
in the thermodynamic limit and extends to larger energies
as one goes deeply into the metallic phase, and corre-
sponds to the energy band over which GOE-like correlations
establish [115]. In a partially delocalized but nonergodic
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FIG. 11. (Top) Logarithm of the typical DoS, 〈ln ImG〉 − ln〈ImG〉, as a function of the imaginary regulator η divided by the mean level
spacing 
 = π/(N〈ImG(η → 0+)〉), for to critical ER graphs (with b = 0.5) of size N = 2n (with n from 16 to 28 as indicated in the legend),
for λ = 2.07 (top-left) and λ = 2.135 (top-right). The results obtained from the self-consistent solution of the cavity equations (10) and (11)
are shown as continuous lines. The dashed lines represent the typical DoS obtained from the approximate treatment of the cavity equations,
Eqs. (12) and (13). The dashed straight lines correspond to a fit of the form ρtyp ∝ (η/
)β (β ≈ 0.124 for λ = 2.07 and β ≈ 0.438 for
λ = 2.135 for the largest available system size N = 228). Bottom panels: Logarithm of the overlap correlation function, Eq. (21), vs ln(ω/
)
for critical ER graphs (with b = 0.5) of size N = 2n, with n = 16, . . . , 26 (different colors correspond to different value of n). In the bottom-left
panel, λ = 2.07 and in the bottom-right panel, λ = 2.135. Continuous curves show the results obtained from the solution of the self-consistent
cavity equations (10) and (11), while the dashed lines are obtained from the approximate treatment of Eqs. (12) and (13). The dashed straight
line in the right panel shows a power law fit of the form K2(ω) ∝ ω−θ (the exponent θ grows with N and θ ≈ 1.66 for the largest available
system size N = 226).

phase, the plateau is present only in a narrow energy interval,
as ETh shrinks to zero in the thermodynamic limit still staying
much larger than the mean level spacing. Beyond ETh eigen-
functions poorly overlap with each other and the statistics is
no longer Wigner-Dyson and K2(ω) decay to zero [52,54,56].

Our numerical results are presented in the bottom panels of
Fig. 11. The overlap correlation function is computed from the
numerical solution of the self-consistent cavity equations for
several values of the energy separation ω, for several system
sizes (N = 2n with 16 � n � 26), and for the same values of
λ as above (and setting η to a very small value, η = 10−16,
much smaller than the mean level spacing).

At small enough energy (λ = 2.07 in the putative par-
tially delocalized but nonergodic phase, bottom-left panel),
K2(ω) is constant for 
 < ω < ETh, reflecting the fact that

the minibands are locally compact, as in the Gaussian RP
model [52,56]. In agreement with the behavior of the typical
DoS discussed above, we find that the ratio ETh/
 moves to
larger and larger values as N is increased. At larger energy
separation, ω � ETh, eigenfunctions poorly overlap with each
other, the statistics is no longer Wigner-Dyson and K2(ω)
decay fast to very small values. Again, we find that the approx-
imate treatment of the cavity equations, Eqs. (12) and (13),
provide a very accurate estimation of the Thouless energy.

In the fully localized phase (λ = 2.135, bottom-right
panel), the ratio ETh/
 displays a nonmonotonic dependence
on N , as discussed above. For N � Nc ≈ 223, the Thouless
energy eventually becomes smaller than the mean level spac-
ing and a fully localized behavior is recovered. The plateau at
small energy is followed by a fast decrease K2(ω) ∝ 1/ωθ .
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VI. STATISTICS OF THE FLUCTUATION OF THE
LARGEST EIGENVALUE

In this section, we analyze the statistics of the fluctuations
of the largest (non trivial) eigenvalue of the laplacian of criti-
cal ER graphs whose asymptotic distribution, as mentioned in
the introduction and as discussed in Ref. [20] in great details,
is given by a law that does not match with any previously
known distribution and does not satisfy the conclusion of
the FisherTippettGnedenko theorem. [Note that we do not
consider here the largest Perron-Frobenius eigenvalue of H
associated to the flat eigenvector 1/

√
N (1, . . . , 1), which is

an outlier separated from the rest of the spectrum, see, e.g.,
Ref. [16]].

As shown in Ref. [20], λmax corresponds to the largest
degree of H and its fluctuations can be computed in terms
of the fluctuations of the largest value of N i.i.d. Poisson
variables of average c = b ln N . The probability that kmax = k
can be esily expressed in terms of the cumulative distribution
of the degree probability R(k) = ∑k

k′=0 P(k′):

�(kmax) = [R(kmax)]N − [R(kmax − 1)]N . (22)

By changing variable from kmax to λmax via the bijection
λmax = 	(kmax/c) one immediately obtains the probability
distribution function of the largest eigenvalue:

�(λmax) = c �(cκ̃ (λmax)) κ̃ ′(λmax). (23)

We have computed �(λmax) for critical ER graphs (with
b = 0.5) both analytically, using Eqs. (22) and (23) for large
N � 240, and numerically, using the Lanczos algorithm for
the two largest eigenvalues of the adjacency matrix for 216 �
N � 226. The results are shown in Fig. 12. We empirically
find that the data corresponding to different N nicely collapse
on the same curve if λmax − 〈λmax〉 is multiplied by (ln N )α ,
with α = 3/4. The right tails of the distribution are well
represented by an exponential decay, while the left tails are
much sharper, although there is no level repulsion with the
eigenvectors on the left of λmax.

VII. RELATIONSHIP WITH THE OUT-OF-EQUILIBRIUM
PHASE DIAGRAM OF THE QUANTUM RANDOM

ENERGY MODEL

The QREM, is the quantum version of Derrida’s random
energy model [119] and provides the simplest toy model of
mean-field spin glasses. For n spin-1/2s, it is defined by the
following Hamiltonian:

Hqrem = E
({

σ̂ z
i

}) − �

n∑
i=1

σ̂ x
i , (24)

where � is the transverse field, and E ({σ̂ z
i }) is a random

operator diagonal in the {σ̂ z
i } basis, which takes 2n different

values for the 2n configurations of the n spins in the z-basis,
identically and independently distributed according to

P(E ) = e−E2/n

√
πn

.

With this choice of the scaling, the random many-body en-
ergies are with high probability contained in the interval

FIG. 12. Probability distribution of the largest eigenvalue (be-
sides the one associated to the flat eigenvector) of the adjacency
matrix of critical ER graphs with b = 0.5. Different symbols and
colors correspond to different system sizes N = 2n as indicated in
the legend. The data corresponding to different N collapse on the
same curve when λmax − 〈λmax〉 is multiplied by (ln N )α . The best
collapse is achieved for α = 3/4. The continuous curve correspond
to the analytical expression obtained from Eqs. (22) and (23) for large
N = 240. The right tails of the distribution of the largest eigenvalue
are well fitted by an exponential decay (dashed straight line on the
positive side), while the left tails are much sharper, and are possibly
Gaussian (dashed curve on the negative side).

[−n
√

ln 2,+n
√

ln 2] in the thermodynamic limit. Hereafter
we denote by ε = E/n the intensive energy per spin corre-
sponding to the extensive energy E .

As discussed above, the QREM can be viewed as the
simplest many-body model that displays AL in its Hilbert’s
space: If one chooses as a basis the tensor product of the
simultaneous eigenstates of the operators σ̂ z

i , the Hilbert space
of the many-body Hamiltonian is a n-dimensional hypercube
of N = 2n sites and degree n. One can map a configuration
of n spins to a corner of the n-dimensional hypercube by
considering σ z

i = ±1 as the top/bottom face of the cube’s
ith dimension. The random part of the Hamiltonian is by
definition diagonal on this basis, and gives uncorrelated ran-
dom energies on each site orbital of the hypercube: At � = 0
the many-body eigenstates of Eq. (24) are simply product
states of the form |σ z

1 〉 ⊗ |σ z
2 〉 ⊗ · · · ⊗ |σ z

n 〉, and the system is
fully localized. The interacting part of the Hamiltonian acts
as single spin flips on the configurations {σ z

i }, and plays the
role of the hopping rates connecting “neighboring” sites in
the configuration space. The many-body quantum dynamics
is then recast as a single-particle noninteracting tight-binding
Anderson model for spinless electrons in a disordered poten-
tial living on the 2n corners of an hypercube in n dimensions
(and degree n), with the spin configurations being “lattice
sites,” and the transverse field playing the role of the hopping
amplitude between neighboring sites.

The out-of-equilibrium phase diagram of the QREM
has been analyzed in great details in several recent pa-
pers [34–38,120,121]. At low enough transverse field, the
DoS is controlled by the random on-site energies, ρqrem(ε) �
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P(ε) = √
n/π e−nε2

, and strongly concentrate around zero en-
ergy density in the thermodynamic limit, as naturally expected
for many-body systems. Using the same notation as before,
one has that for |ε| > 0 the DoS scales as ρqrem(ε) ∝ Nτ (ε)−1,
with τ (ε) = 1 − ε2/ ln 2. Hence, the vast majority of the
states are found in the bulk of the spectrum that concentrates
around ε = 0, while a small subextensive fraction of them are
in the tails, in the interval 0 < |ε| <

√
ln 2.

As it is apparent from the analysis of Refs. [34–38], in the
localized phase the local structure of an eigenvector of the
QREM model is similar to that of the critical ER graph de-
scribed above: exponentially decaying around well-separated
localization centres associated with resonances of energy ε of
the eigenvector. In the QREM, the localization centers arise
from exponentially rare vertices with exceptionally large local
values of the potential, while in the critical ER graphs the
localization centers correspond to exponentially rare vertices
of abnormally large connectivity. The only difference between
the two models is the specific geometrical structure of the un-
derlying graph, since the hypercube contains much more short
loops compared to the ER graph. There are in fact r! paths
of length r connecting two nodes of the hypercube which
correspond to spin configuration that differ by r spin flips, but
this can be essentially recast as an effective renormalization
of the hopping amplitude.

The out-of-equilibrium phase diagram of the QREM is in
fact qualitatively identical to the one proposed in Fig. 2 for
critical ER graphs [34–38]. In the bulk of the spectrum, |ε| ≈
0, one finds a fully delocalized GOE-like phase; At very large
energy, close to the spectral edges, |ε| ∈ (εloc,

√
ln 2), one

finds a fully Anderson localized phase in which eigenvectors
are exponentially localized around a single resonance. Finally,
at intermediate energies, ε ∈ (0, εloc) one has an intermediate
partially delocalized but nonergodic phase in which distant lo-
calization centers on the hypercube partially hybridize due to
the exponentially small tunneling rates between them, thereby
producing multifractal eigenfunctions which occupy a diverg-
ing volume, yet an exponentially vanishing fraction of the
total Hilbert space, with 0 < Dq < τ (q).

VIII. CONCLUSIONS AND PERSPECTIVES

In this paper, we have analyzed both analytically and nu-
merically the spectral properties of the tails of the spectrum
of the adjacency matrix of critical ER graphs, i.e., when the
average degree is of the order of the logarithm of the number
of vertices.

In a series of recent inspiring papers, Alt, Ducatez, and
Knowles have rigorously shown that these systems exhibit
a “semilocalized” phase in the tails of the spectrum where
the eigenvectors are exponentially localized on a subextensive
fraction of nodes with anomalously large degree [18,20,21].
We have proposed two approximate analytical treatments to
analyze this regime. The first is based on simple rules of
thumb for localization and ergodicity, often referred to as the
Mott’s criteria. The second approach relies on an approximate
treatment of the self-consistent cavity equation for the resol-
vent. Both approaches suggest that the semilocalized phase
splits in fact in two different phases separated by a mobility
edge. At large energy, close to the spectral edges, as already

rigorously proven in Ref. [20], one finds a fully Anderson
localized phase in which the eigenvectors are localized around
a unique localization center and the statistics of the eigan-
values is described by the Poisson statistics. At intermediate
energy, sandwiched between the fully delocalized GOE-like
phase in the bulk, and the Anderson localized phase at the
edges, we find a partially delocalized but nonergodic phase,
in which the eigenstates spread over many resonant localiza-
tion centers close in energy due to the hybridization of the
exponentially decaying part of the wave functions. In this
regime, the exponentially small tunneling amplitudes between
far away localization centers is counterbalanced by the num-
ber of localization centers towards which tunneling can occur,
and the system exhibits minibands in the local spectrum. The
level statistics is therefore of Wigner-Dyson type up to an
energy scale which is much smaller than 1 but stays much
larger than the mean level spacing.

We have presented a numerical study of the finite size
scaling behavior of several observables related to the spectral
statistics that is compatible with the theoretical predictions
and allows us to characterize the critical properties of the two
transitions: The transition from the fully delocalized phase to
the semilocalized one is accompanied by a correlation volume
that diverges exponentially fast when the transition point is
approached from above, |λ| → 2+, with an exponent νGOE ≈
0.5. The transition from Poisson to Wigner-Dyson statistics
occurring at the AL threshold is instead associated to an ex-
ponent νloc ≈ 1. This analysis also highlights the differences
with respect to the standard AL on sparse random graphs
induced by the disorder in the local potential. In fact, in this
case, it is well established that the critical point belongs to the
localized phase [6,7,11,13–15,112], while in the present case
the critical point is described by the Wigner-Dyson statistics,
as also found in random matrix models of the RP type which
feature an intermediate partially delocalized but nonergodic
phase [56,76].

Finally, we have characterized the statistics of the fluc-
tuations of the largest eigenvalue, which are essentially
controlled by the fluctuations of the largest degree in the
network.

Since critical ER graphs provide an idealized representa-
tion of the topological features of the Hilbert space of generic
interacting many-body systems, we believe the results pre-
sented here might give new insights on the understanding
of the mechanisms that produce localized and multifractal
wave functions even in more complex settings. In fact we put
forward a direct correspondence between the phase diagram
of critical ER graphs and the out-of-equilibrium phase dia-
gram of the QREM, which is the simplest model featuring a
many-body localization transition. In this respect, it might be
useful to generalize the approximate treatment of the cavity
equations proposed in Sec. IV B to similar situations in which
wave functions are localized around many resonant nodes,
such as, for instance, in the QREM.

Several important questions remain of course still open.
The most important one is probably related to the possi-
bility that the putative delocalized but nonergodic phase is
only a finite-size crossover and eventually disappears in the
thermodynamic limit. In fact, the estimation of the mobility
edge based on the Mott criterion does not take into account
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neither the effect of the loops nor of higher order terms
in the perturbative expansion, while the approximate treat-
ment of the cavity equations is also based on a quite drastic
simplification in which the local fluctuations of the degree
are completely neglected. The finite-size scaling analysis of
the observables related to the spectral statistics presented in
Fig. 4 is limited to too small sizes to rule out definitely
this possibility. One might therefore wonder whether for very
large sizes, i.e., N � Nc(λ), eventually all the eigenvectors
in the tails of the spectrum become fully localized. A similar
crossover occurs for instance in the tight-binding Anderson
model on random-regular graphs, where the existence of a
genuine delocalized but nonergodic phase in the infinite size
limit has been the subject of an intense debate in the lat-
est years and has been strongly questioned by recent works
[15,33,105,110–112,114,122–129]. Another important aspect
concerns the structure of the fractal states. In fact, throughout
this paper, we have assumed that the partially delocalized
but nonergodic phase is analogous to the one found in RP-
type models with uncorrelated entries [52–54,56,73,74]. On
the other hand, there are several correlated random matrix
models [66–68] in which the structure of the fractal states is
quite different and do not feature, for instance, the formation
of minibands within which the Wigner-Dyson statistics is es-
tablished. In the tails of critical ER graphs, the energies of the
localization centers of a given degree (which depend mostly
on the degrees of the neighbors [18,21]) and the effective
tunneling amplitudes between them (which depend mostly
on their distances) are essentially uncorrelated. It is therefor
natural to assume that RP models with iid elements provide
the correct physical picture for the partially delocalized but
nonergodic wave functions. Yet, it would be highly desirable
to put our conclusions on a firmer and more rigorous ground
and to provide more stringent numerical tests of the existence
of the partially extended but nonergodic phase and of its
nature.

Another important open question is related to the critical
behavior for b > bloc. Indeed our analysis indicates that the
intermediate partially delocalized but nonergodic phase only
exists provided that b is smaller than bloc = b�/2 (see Fig. 2),
while for b ∈ (bloc, b�), one should observe a direct transition
at |λ| = 2 from the fully delocalized phase in the bulk of
the spectrum to a fully Anderson localized phase in the tails
in which eigenvectors are exponentially localized around a
unique localization node. In this case the critical properties
of such transition might be different compared to the one
observed at b = 0.5 and discussed in Sec. V, and it is nat-
ural to wonder whether at large b one recovers the standard
critical behavior of AL on sparse random graphs induced by a
quenched random potential.

The limit b → 0 is also puzzling for two reasons, and
deserves special attention. On the one hand, the exponents τ

and D, which are predicted to exhibit a finite jump from 1 for
|λ| = 2 to 1 − b/b� and 1 − 2b/b� respectively for |λ| → 2+,
behave continuously at the transition from the fully delocal-
ized GOE-like phase to the partially extended but nonergodic
phase for b → 0, which could result in a modification of the
critical properties compared to the b > 0 case. On the other
hand, we know from previous studies [88,94,95] that for c
arbitrarily large but finite the spectrum of ER graphs is char-

acterized by Lifshitz tails due to extremely rare fluctuations
of the local degrees associated to fully localized eigenvectors,
which, however, does not match with the b → 0 limit of the
phase diagram of Fig. 2.

Possibly the most interesting perspective for future work
is to study how the addition of some amount of disorder
in the local potential affects the spectral properties of crit-
ical ER graphs. On the one hand, one might expect that
quenched on-site randomness might destabilize the partially
delocalized phase by suppressing the effective tunneling rates
between the far-away localization centers. On the other hand,
since the Anderson tight-binding model on random graphs
of fixed connectivity is already at the brink of developing
a delocalized but nonergodic phase [15,33,53,54,105,110–
112,114,122–129], the addition of strong fluctuations of the
local degrees might in fact favor the formation of multifractal
wave functions.
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APPENDIX: UPPER BOUND ON THE POSITION
OF THE MOBILITY EDGE

In this Appendix, we revise the rules of thumb criteria for
localization and ergodicity discussed in Sec. IV A attempting
to provide an upper bound on the position of the mobility edge
and for the support set of the minibands.

In fact the matrix elements between the localization cen-
ters, Eq. (6), decay exponentially fast with the distance with a
very high rate. One might then argue that the amplitudes Gr (λ)
are dominated by the pairs of closest resonant localization
centers. In the following we repeat the reasoning of Sec. IV A
but, instead of using the typical distance between all pairs
of localization nodes, rtyp = ln N/ ln c, to estimate the typical
value of the tunneling rates, we take instead the minimal
distance between pairs of nearby localization centers. This
should provide a upper bound for |Gr (λ)| and hence for the
position of the mobility edge as well as for the exponent D.

In order to compute the minimal distance between pairs of
localization centers at a given energy λ, we start by evaluating
the probability Pλ(r) to find a localization center (at energy
λ) at distance r from a given localization center (at the same
energy) located at the origin. This is given by the probability
that a ball of radius r around the origin (which roughly con-
tains kcr−1 vertices) does not contain a localization center of
energy λ times the probability to find one localization center
exactly at distance r from the origin:

Pλ(r) ≈ ρ(λ)kcr−1(1 − ρ(λ))kcr−1

≈ ρ(λ)κ̃ (λ)cre−κ̃ (λ)ρ(λ)cr
,

where k = cκ̃ (λ) is the connectivity of the localization nodes
which give rise to eigenstates of energy λ. From the expres-
sion above one immediately obtains the typical value of the
distance between the two closest localization centers at energy
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FIG. 13. Scaling behavior of the distance between localization centers for critical ER graphs with b = 0.5. In the left panel, we plot the
typical value of the minimal distance between pairs of resonant localization centers of degree k > 2c. The data corresponding to different
system sizes (as indicated in the legend) are divided by ln N/ ln c and are plotted as a function of the energy of the corresponding eigenstates
	(k/c). The solid line correspond to 1 − τ (λ), in agreement with the scaling given in Eq. (A1). In the middle panel, we plot the typical distance
between all pairs of resonant localization centers of degree k > 2c divided by ln N/ ln c as a function of the energy of the corresponding
eigenstates 	(k/c) for the same values of N as before. Similar results are found for different values of b. In the right panel, we plot the
probability distributions of the distances between pairs of localization nodes of fixed energies. In particular, we consider vertices of degree
n within graphs of size N = 2n, giving rise asymptotically to eigenvalues of energy |λ| ≈ 2.1014 for b = 0.5. The distance r is rescaled by
ln N/ ln c.

λ as

rmin(λ) ≈ − ln [κ̃ (λ)ρ(λ)]

ln c
. (A1)

Hence, for critical ER graphs, rmin scales in the ther-
modynamic limit as rmin(λ) ∝ (1 − τ (λ)) ln N/ ln(b ln N )
minus a small λ-dependent correction proportional to
ln κ̃ (λ)/ ln(b ln N ). The origin of this correction comes from
the fact that the volume of a ball of radius r around a localiza-
tion center increases with the energy λ (i.e., the degree cκ̃ (λ)
of the node). Note that for ρ → 0, one has that rmin coincides
with the radius of the ER graph rtyp = ln N/ ln c, while for
ρ → 1 the minimal distance becomes of order 1, as expected.

In order to check that the scaling obtained in Eq. (A1) is
correct, we have computed numerically the typical value of
the minimal distance between localization centers for critical
ER graphs with b = 0.5 as explained below. We generate
random instances of the adjacency matrix according to the
probability distribution (1) and considered all the nodes of
abnormally large connectivity k > 2c. For any given node
of connectivity k [corresponding to a localization center of
energy λ = 	(k/c)], we measure the distance from its clos-
est localization center of the same degree, and average this
distance over all the nodes of degree k and over different
random realizations of the graph. The results are reported in
the left panel of Fig. 13, where this distance is plotted as a
function of λ = 	(k/c). We see that the points corresponding
to different sizes of the graph n = log2 N collapse on the same
curve corresponding to 1 − τ (λ) when rescaled by the factor
ln N/ ln c, in agreement with Eq. (A1). (Small deviations are
observed for the smallest sizes at large λ, as explained above.)
In the middle panel, we also plot the average distance between
all pairs of nodes of degree k as a function of λ and for several
values of N . We see that the data points corresponding to dif-
ferent sizes approach 1 when rescaled by the factor ln N/ ln c,
as expected. The origin of the finite-size corrections can be
again understood recalling that nodes with abnormally large
degree have κ̃ (λ) more neighbors at a given distance than
the nodes with degree of order c. Finally, in the right panel

of Fig. 13, we plot the whole probability distributions F (r)
of the distance between pairs of localization nodes of fixed
energy for several sizes of the graph. In particular, we focus
on vertices of degree n found within graphs of N = 2n nodes.
Via the bijection (2) their energy corresponds asymptotically
to |λ| = 	((b ln 2)−1) ≈ 2.1014 for b = 0.5. One clearly ob-
serves that, upon rescaling the distance r by ln N/ ln c, the
distributions are peaked around 1, as expected, and become
more narrow as N is increased.

Inserting now the estimation of rmin (A1) into Eq. (6), the
Mott criterion for full localization around a unique vertex
yields |Grmin (λ)(λ)| < (Nρ(λ))−1, i.e.,

N[τ (λ)−(1−τ (λ))( 1
2 + ln λ

ln c )] < 0.

In the thermodynamic limit (and in the critical regime, c =
b ln N), this condition is only fulfilled provided that τ (λ) <

1/3. Using the asymptotic expression for the exponent τ given
in Eq. (3), one then obtains a modified implicit equation for
the mobility edge:

κ̃ (λ̃loc)[ln κ̃ (λ̃loc) − 1] = 2

3b
− 1. (A2)

Since τ (λ) is a decreasing function of λ which tends to 1 −
b/b� for |λ| → 2+, the existence of the partially delocalized
but nonergodic phase is only possible if b < b̃loc = 2b�/3 =
1/(ln 8 − 3/2).

At this point, one can proceed further and compute the
escape rate of a particle sitting on a localization center using
rmin instead of rtyp in the expression of the transition rate, and
compare it to the spectral bandwidth at the same energy. The
Fermi golden rule gives

�(λ) ≈ 2πNρ(λ)|Grmin (λ)(λ)|2 ∝ N2τ (λ)−1.

Assuming again for simplicity that this energy scale coincides
with the number of hybridized states within a miniband times
the mean level spacing, one obtains a direct estimation of the
fractal exponent D as 
ND ∝ �, with 
 = 1/(Nρ), yielding
D = 3τ − 1 (note that D = 0 at the localization threshold
where τ (λ̃loc) = 1/3).
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Since the number of localization centers is at most equal
to Nρ, one has that D is at most equal to τ , and D(λ) =
min{τ (λ), 3τ (λ) − 1}. Hence, this argument predicts the exis-
tence of another transition at an energy λergo within the tails of
the spectrum from a phase, for |λ| ∈ (2, λergo], where the wave
functions spread uniformly over all the Nτ localization centers
(i.e., D = τ ), to a nonergodic phase, for |λ| ∈ (λergo, λ̃loc), in
which the wave functions only occupy a small fraction of
the Nτ localization centers at that energy (i.e., D is strictly
smaller than τ ). The implicit equation for λergo is given by the

condition τ (λergo) = 1/2, which is in fact the same condition
that we obtained for the mobility edge when we used the typ-
ical distance between pairs of localization centers to evaluate
the transition amplitudes, Eq. (7). Finally, this argument gives
the following upper bound for the fractal exponent D in the
thermodynamic limit:

D(λ) =

⎧⎪⎨
⎪⎩

τ (λ) for 2 < |λ| < λergo,

3τ (λ) − 1 for λergo < |λ| < λ̃loc,

0 for |λ| > λ̃loc.
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