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Molecular chirality detection and enantiomer discrimination are very important issues for many areas of
science and technology, prompting intensive investigations via optical methods. However, these methods are
hindered by the intrinsically weak nature of chiro-optical signals. Here, we investigate and demonstrate the
potential of gain materials and of combined gain-loss media to enhance these signals. Specifically, we show that
the proper combination of a thin chiral layer with a gain-loss bilayer can lead to large enhancements of both
the circular dichroism (CD) response and the dissymmetry factor g compared with the chiral layer alone. The
most pronounced enhancements are obtained in the case of a parity-time (PT) symmetric gain-loss bilayer, while
deviations from the exact PT symmetry lead to only moderate changes of the CD and g response, demonstrating
also the possibility of tuning the system response by tuning the gain layer properties. In the case of PT-symmetric
gain-loss bilayers, we found that the largest CD enhancement is obtained at the system lasing threshold, while the
g enhancements are at the anisotropic transmission resonances of the systems. Our results clearly demonstrate
the potential of gain materials in chirality detection. Moreover, our gain-involving approach can be applied in
conjunction with most of the nanophotonics/nanostructures-based approaches that have already been proposed
for chirality sensing, further enhancing the performance/output of both approaches.
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I. INTRODUCTION

Chiral objects, i.e., three-dimensional objects that present
mirror asymmetry [1], are all around us, ranging from our
DNA and other important biomolecules to chemical drugs,
and extending over spiral galaxies [2]. Chiral objects are
classified according to their handedness, with the left- and
right-handed forms of an object known as enantiomers. There
are many chiral biomolecules and chemical drugs for which
the two enantiomers interact differently with a biological
organism having severely different therapeutic and/or tox-
icological effects [3]. Therefore, an efficient detection and
discrimination of the different enantiomers of a chiral sub-
stance is crucially important in many scientific fields, like
medicine, pharmacology, biology, chemistry [4], and funda-
mental physics [5]. A major problem, though, in this detection
is the very weak chiro-optical signals encountered in all the
light-related schemes applied for chirality detection.

Chirality, in addition to being a property of matter, is
a property of the electromagnetic field [6]. Although the
electromagnetic field cannot be chiral in the conventional
sense, as it is not an object, the chirality arises from the
polarization rotating electric and magnetic fields as the wave
propagates in space, forming left- or right-handed helical pat-
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terns. The field chirality is usually quantified by the quantity
C = −ωIm[E · H∗]/2c2, proportional to the inner product of
electric and magnetic field, which is called optical chirality
[6,7] (ω is the wave frequency and c the vacuum light speed).
The simplest example of a chiral field is circularly polarized
(CP) light, and it has been used for over 200 years to measure
molecular chirality [8]. Fields of higher C than CP light are
characterized as superchiral. Recent studies have shown that
superchiral fields can play an important role in the detection of
chiral molecules, as they offer enhancement of chiro-optical
signals, thus greatly facilitating the chirality detection and
the discrimination of the different enantiomers [6]. Therefore,
many studies have been devoted recently to the generation
of strong superchiral fields and their exploitation for chiral
molecule detection [7,9–21]. Many of them have explored
various nanophotonic [10], plasmonic [11,12], and metama-
terial platforms [15] as means to enhance chiral local fields.
For example, high-index dielectric nanoparticles [10,14,16–
18], plasmonic spheres [9] or disks [10], helicity preserv-
ing optical cavities [13,19,20,22–24], and others [16,25–27]
have been employed for chiral detection and enhancement of
chiral sensing. However, all the above-mentioned approaches
target enhancement of the circular dichroism (CD) response
signal [i.e., the absorption difference between right-handed
CP (RCP/+) and left-handed CP (LCP/−) incident waves,
i.e., A+ − A−], a quantity directly proportional to the volume
of the chiral substance to be detected. A quantity strongly
related to CD, of additional merit regarding chiral interactions
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and chirality sensing, is the so-called Kuhn’s dissymmetry
factor g [7,18,28–30], defined as the absorption difference for
RCP and LCP waves (i.e., the CD) divided by the average
absorption [i.e., (A+ + A−)/2]:

g = (A+ − A−)

(A+ + A−)/2
∝ 8cκ ′′C

ω(ε′′|E|2 + μ′′|H|2 )
. (1)

In Eq. (1), C is the optical chirality (see Appendix F for
details), and ε′′, μ′′, and κ ′′ are the imaginary part of electric
permittivity, magnetic permeability and chirality parameter,
respectively, of the chiral medium. [For the derivation of the
right-hand side of Eq. (1), see Appendix F.]

The dissymmetry factor g is a useful dimensionless quan-
tity describing the relative preferential absorption of CP waves
by a chiral sample. Enhanced g results to enhanced enantios-
electivity in all chiral light-matter interactions involving light
absorption, including fluorescence (used, e.g., for sensing [7],
photolysis, and photopolymerization [4]). From Eq. (1), it is
evident that the relative chiral asymmetry in the absorption
is proportional to both the chirality of matter (κ) and the
chirality of the electromagnetic field (C); therefore, its max-
imization through proper electromagnetic field enhancement
or structuring promises a viable route toward enhanced enan-
tioselectivity in chiral light-matter interactions. Maximization
of g using common nanophotonic resonances and platforms
[7,26,31,32] is not a straightforward task, as the maximization
of the absorption difference there (numerator of g) is always
associated with enhancement of the absolute absorptions A+
and A− (g denominator), which reduces the g value. Ap-
proaches to enhance g, in addition to the change/optimization
of the nanophotonic or metamaterial structure employed,
include optical approaches to create superchiral light. The
dominant approach is the exploitation of field nodes created
in a cavity by the interference of two counterpropagating
CP waves [7], while other approaches include an efficient
manipulation of the orbital angular momentum delivered by
optical vortices [33] and the use of nonlinear phenomena
[34]. However, most of the above-mentioned approaches, es-
pecially the first one, are associated with small field intensities
in the region of the superchiral fields, thus limiting the overall
efficiency of the light-matter interaction.

A simple approach that can decouple the simultaneous
maximization of the numerator and denominator of g, being
thus suitable for its maximization without concurrent mini-
mization of the overall field intensity, can be offered by the
involvement of gain media. Here, we propose and investigate
such an approach and its potential and capabilities for CD
and dissymmetry factor enhancement in a molecular chirality
sensing scheme. We propose a simple structure combining a
thin chiral layer (which is the chiral material under detection)
with gain and loss media in balance, as to exhibit parity-time
(PT) symmetry, or beyond such a balance. PT-symmetric sys-
tems exploit strong electromagnetic fields at the interfaces
of the gain-loss media [35,36] as well as exotic scattering
features, such as anisotropic transmission resonances (ATRs)
[35], and exceptional points associated with strong sensitivity
[37–40]. Due to such peculiar features, PT-symmetric optical
systems have gained growing attention in both fundamental
and applied research [41–53].

FIG. 1. A three-layer system, consisting of a thin layer of a chiral
medium sandwiched between a gain and a loss slab (both of thickness
d along the z direction and infinite along x and y). a±, b±, c±, and d±
are the amplitudes of ingoing and outgoing (see arrows) right-handed
circularly polarized (RCP/+) and left-handed circularly polarized
(LCP/−) waves.

As already mentioned, there are many works investigat-
ing and proposing schemes for efficient molecular chirality
detection and enantiomer discrimination. Since chiral light-
matter interactions are inherently extremely weak (at optical
frequencies, natural materials have κ ∼ 10−5), this detection
can be very challenging, especially when only tiny amounts of
substances are involved, e.g., ultrathin chiral layers. We show
here that our approach of combining a thin chiral layer with
a gain-loss PT-symmetric bilayer can to a large degree over-
come the main challenges involved in chiral detection. More
specifically, by both analytical and numerical calculations, we
demonstrate strong CD signals in our PT-symmetric system
and high values of the dissymmetry factor g. Furthermore, we
investigate the necessity of the PT-balanced gain-loss in our
system; by changing the gain-loss ratio, we can still achieve
enhanced CD and dissymmetry factor, while overcoming the
strict PT-symmetry highly facilitates experimental realization
and validation of our findings. Investigating further the ori-
gin and the potential of the g enhancement in our systems,
we find that (a) in PT-symmetric systems, it occurs at the
ATR points of the systems [35], which are associated with
unidirectional zero reflection and unity transmission; and (b)
g enhancement is associated with no reduction or even en-
hancement of the total field intensity, a quantity critical for the
overall efficiency of any light-matter interaction. Finally, we
must mention that our approach of employing gain media for
chirality sensing can be used in conjunction with most of the
proposed nanophotonics-based approaches, expanding further
their potential as chirality sensing platforms and proposing
the area of active nanophotonics as a viable route for chirality
sensing and differentiation.

II. PT -SYMMETRIC TRILAYERS

In this paper, we first consider a three-layer geometry with
total thickness L = d + dC + d along the z direction (and
infinite along the x and y directions) in free space, as shown
in Fig. 1, where a thin chiral layer, of thickness dC , is sand-
wiched between a gain and a loss layer, both of thickness d.
We use the exp(−iωt ) time convention (in this convention, the
positive imaginary part of the refractive index describes loss,
while negative values of this quantity correspond to gain).

We are interested in exploiting the electromagnetic
response of our purposed system under CP incident
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waves. We solve Maxwell’s equations ∇ × E = iωB and
∇ × H = −iωD with the appropriate boundary conditions,
and for the chiral layer, we assume the constitutive relations
[54] D = εrε0E + i(κ/c)H and B = μrμ0H − i(κ/c)E,
where εr , μr, and κ refer to the relative permittivity,
permeability, and the chirality (Pasteur) parameter
(quantifying the magnetoelectric coupling), respectively
(ε0 and μ0 are the vacuum permittivity and permeability,
respectively). Inserting the above constitutive relations into
Maxwell’s equations, we can find the chiral Helmholtz
equation to be ∇2E + ω2[ (εrμr−κ2 )

c2 ]E + ( 2ωκ
c2 )∇ × E = 0.

Assuming plane waves propagating along z, we obtain
the elementary solutions of the chiral Helmholtz
equation as E± = E±(x̂ ± iŷ)exp[i(k±z−ωt )], where
k± = ω(

√
εrμr ± κ )/c are the wave vectors in the chiral

slab, and E+ and E− are the amplitudes for RCP and LCP
waves, respectively (employing source side view). The
magnetic field can be found from E± by H± = ∓iZ−1E±,

where Z =
√

μrμ0

εrε0
is the wave impedance.

For the (nonchiral) gain and loss media, the above equa-
tions are simplified by taking κ = 0, so the wave vector
takes the well-known form k = ω

c

√
εrμr . To obtain gen-

eral expressions allowing investigation of different material
combinations, we start with layers of arbitrary material pa-
rameters. Considering incident LCP and RCP waves and
requiring the continuity of the tangential components (x, y)
of E and H at each of the four interfaces of the system
[z = −(d + dC

2 ), z = − dC
2 , z = dC

2 , and z = (d + dC
2 )], we

obtain a 16 × 16 linear system of equations which is solved
analytically, giving the scattering coefficients (transmission
and reflection) of the total system (see Appendix A for ana-
lytical expressions).

III. CIRCULAR DICHROISM RESPONSE

To characterize the chiral response of our system, and
through it the chiral properties of the chiral layer under
investigation, we further analyze the scattering properties,
calculating CD = A+ − A−. The absorption coefficients are
given by A+ = 1 − |t++|2 − |r−+|2 for RCP/+ and A− = 1 −
|t−−|2 − |r+−|2 for LCP/− incidence, where the first subscript
in the transmission (t) and reflection (r) coefficients indicates
the output polarization and the second the incident polariza-
tion. The different subscripts in the reflection coefficients are
due to the property of chiral interfaces to reverse the circular
polarization upon reflection [55,56], i.e., when an incidence
wave is RCP, it is transformed to LCP upon reflection and
vice versa. By analytical calculations, we find r−+ = r+− for
incidence from either side of the system; hence, the CD is
proportional to the transmission difference for LCP and RCP
waves, and it is the same for left- and right-side incident
waves due to reciprocity. Calculating the CD for the case of
PT-symmetric loss and gain slabs, i.e., with equal real parts
of permittivity and permeability and opposite imaginary parts
[35–38,41,42], we find

CD = |t−−|2 − |t++|2 = 512exp(−2kdCIm[nC])

|ZGZCZL (A1 + A2 + B1 + B2)|2
× sinh(2kdCIm[κ]), (2)

FIG. 2. Circular dichroism (CD) for the system shown in Fig. 1
and two related systems. (a) corresponds to a chiral layer alone;
(b) corresponds to the PT-symmetric system shown in Fig. 1 with
the middle/chiral layer the same as in (a); and (c) corresponds to a
general non-Hermitian system, again with the same chiral layer (gray
area) but placed next to the gain layer. For geometrical and material
parameters, see main text. The black lines correspond to positive sign
of the chirality (both real and imaginary) κ of the chiral layer and the
red lines to negative sign. The transmission amplitudes employed for
the CD calculation as well as the CD in a broader frequency region
are shown in Fig. 8 in Appendix D.

where k = ω/c is the wave number in the vacuum, and nC =√
εCμC is the nonchiral part of the index of refraction in

the chiral medium. The wave impedance in each layer is
Zi = √

μ0μi/ε0εi, where the subscript i = {G, C, L} denotes
the gain, chiral, or loss region, respectively. The terms A1, A2

and B1, B2 in Eq. (2) depend on the impedances and wave
vectors and are totally independent of the chirality parameter
κ (see Appendixes A and B). Thus, Eq. (2) shows that CD
depends only on the imaginary part of the chirality parameter
[through sinh(2kdCIm[κ])]; for positive chirality, Im[κ] > 0,
the hyperbolic sin is positive, while for negative chirality,
Im[κ] < 0, sinh is negative; this change of sign allows em-
ployment of the system for discrimination of the two different
enantiomers of a chiral molecular system (note that the two
enantiomers have opposite chirality parameter κ). The sinh
prefactor in Eq. (2) depends only on the nonchiral absorption
of the chiral layer (via Im[nc]) as well as on the gain-loss
media and determines the position of the resonances of the
total system.

In the following, we apply our formalism to systems with
close-to-realistic material parameters to investigate and quan-
tify the potential of those systems for molecular chirality
sensing. In Fig. 2(a), we plot the CD for a thin chiral layer
alone (of thickness dC = 10 nm), with chirality parameter
κ = ±5(10−4 + 10−5i), which is very close to the chirality of
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aqueous solutions of chiral molecules [22] and with a typical
ratio between real and imaginary parts [57]; its nonchiral
refractive index is nC = 1.33 + 0.01i. In Fig. 2(b), we plot
the CD for the thin chiral slab placed in the middle of a
PT-symmetric bilayer, as shown in Fig. 1 (see also Fig. 8 in
Appendix D for the CD in a wider frequency range). The
gain and loss slabs have refractive index nG/L = 3 ∓ 0.04i,
where the − sign corresponds to the gain medium and the +
sign to the loss medium, as dictated by PT symmetry [48].
(Note that PT-symmetric optical systems with parameters
very close to ours have already been studied both theoretically
[48] and experimentally [58,59]. Note also that the gain value
employed, although not achievable with the current bulk gain
materials, can be achieved (as effective gain) in gain-involving
metamaterials, due to the resonance-induced enhancement.
Each of the two layers has thickness d = 2.5 μm. The black
lines in Fig. 2 correspond to positive signs in the chirality
parameter and the red lines to negative signs. We observe that
the CD depends on the sign of the imaginary part of chirality,
as predicted from Eq. (2). Comparing Figs. 2(a) and 2(b), we
observe that the presence of the PT-symmetric bilayer leads to
CD up to 75× larger than that of the chiral layer alone. As a
comparison, we note that the CD signal of our PT-symmetric
configuration is close to one order of magnitude larger than
the CD signals of the chiral and achiral nanophotonic systems
that have been already studied and proposed for chirality
sensing [9].

Because of the strict conditions imposed by the full PT-
symmetry requirement, which limit the practical realization
and exploitation of such systems, it is important to know if and
to what extent the exact PT-symmetry condition is essential
for the observed CD enhancement. For that, we investigated
also general non-Hermitian systems where the gain-loss me-
dia are not in balance. An example is shown in Fig. 2(c) (see
also Fig. 8 in Appendix D), where we assume a gain layer
with index nG = 2−0.05i and thickness dG = 2 μm, a loss
layer with index nL = 3 + 0.04i and thickness dL = 3 μm,
and where the chiral layer [same as in Figs. 2(a) and 2(b)] is
placed at the left side of the gain-loss bilayer (i.e., it is attached
to the gain layer); this configuration is more amenable to
experimental realization. We observe also here a CD enhance-
ment comparable with Fig. 2(b), despite the thinner-gain and
thicker-loss layer. We observe that, at frequencies ∼617 THz,
we have values of CD >10 times larger than that of the chiral
layer alone. The large CD enhancement regions in both cases
of Figs. 2(b) and 2(c) coincide with the transmission reso-
nances of the structures (Fabry-Perot resonances; see Fig. 8
in Appendix D), while the largest enhancement is obtained
at frequencies 643.7 and 655 THz, respectively, which are
close to the lasing threshold of the corresponding structure
[35]—see Fig. 8 in Appendix D.

Note that the CD peaks of both systems of Fig. 2 are associ-
ated with quite high quality factor (Q = Re[ω0]

2Im[ω0] > 100, where
ω0 is the resonance frequency), not only around the lasing
threshold but also below the lasing threshold (and exceptional
point). This is attributed to the balanced gain-loss, particularly
in the PT-symmetric case. In PT-symmetric systems, below
the exceptional point, the gain balances the loss [35–38,41–
50], and we have almost lossless modes. As the frequency
increases and the system approaches the lasing threshold, a

FIG. 3. Circular dichroism (CD) three different gain-loss
[Im(nG)-Im(nL)] ratios for the system of Fig. 2(b). In all cases,
we assume positive sign of the chirality parameter (both real and
imaginary parts) of the thin chiral layer.

transmission pole in the complex frequency plane approaches
and finally crosses the real axis, i.e., Im[ω0] → 0 ⇒ Q → ∞.

To investigate further and understand the role and necessity
of PT symmetry regarding the achievable CD enhancement,
we calculated the CD for the system of Fig. 1 for different
gain-loss contrasts. The result is shown in Fig. 3 and com-
pared with the exact PT case (the one of Figs. 2(b) and 8
in Appendix D). As can be seen in Fig. 3, a small deviation
(increase/decrease of gain) from the exact PT-symmetric case
(black line in Fig. 3) leads to only moderate deterioration of
the CD peaks. Moreover, with increase of the gain parameter
[Im(nG)], we observe a frequency shift in the maximum CD
response due to the lasing threshold and the corresponding
exceptional point moving in lower frequencies [35], while
the opposite behavior is observed with decrease of the gain
parameter. We must note here that, when the system reaches
the lasing threshold, it becomes unstable (a self-sustained os-
cillator); hence, quantities such as transmittance power are not
well defined. That is why we concentrate our attention mostly
before the lasing threshold, where strong CD enhancement
also takes place. The results of Fig. 3 clearly demonstrate
that PT-symmetric gain-loss is a sufficient but not a necessary
condition for large CD enhancement in gain-loss systems.

IV. DISSYMMETRY FACTOR

As already mentioned in the introduction, the dissymmetry
factor determines to a large degree the percentage of enantios-
electivity in all photoinduced chiral light-matter interactions
(photoionization, fluorescence, photolysis, etc.), which can
be exploited not only for enantiomer discrimination but also
for enantioselective synthesis, critical for the pharmaceutical
industry. To evaluate the dissymmetry factor in our system,
we employ the defining Eq. (1); there we notice that the
numerator CD [see Eq. (2)] depends on the chirality as
sinh(2kdCIm[κ]), and it is independent of the side of inci-
dence. The total absorption [denominator of Eq. (1)], A+ +
A− = 2 − |t++|2 − |t−−|2 − |r−+|2 − |r+−|2, depends on the
reflection which is different for waves incident from opposite
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FIG. 4. Dissymmetry factor g calculations for the three systems
of Fig 2, with waves incident from the left side (left column) and
waves incident from the right side (right column) of the systems;
(a) and (d) correspond to the chiral layer alone, (b) and (e) corre-
spond to the PT-symmetric system, and (c) and (f) to the general
non-Hermitian system. The black lines correspond to positive sign
of the chirality (both real and imaginary) κ of the chiral layer and the
red lines to negative sign. The material parameters are the same as in
Fig. 2.

system sides, making the dissymmetry factor side dependent.
From analytical calculations, we find for the system of PT-
symmetric gain-loss layers the dissymmetry factor for waves
incident from the left g(L) and from the right g(R) as

g(L) = −2 tanh(2kdCIm[κ]) + 512exp(−2kdCIm[nC])

× sinh(2kdCIm[κ])

[
1

P
+ 1

Q(L)

]
, (3)

g(R) = −2 tanh(2kdCIm[κ]) + 512exp(−2kdCIm[nC])

× sinh(2kdCIm[κ])

[
1

P
+ 1

Q(R)

]
, (4)

where P = |ZGZCZL (A1 + A2 + B1 + B2)|2, Q(L) =
|ZGZCZL [C(L)

1 + C(L)
2 + D(L)

1 + D(L)
2 ]|2, and Q(R) =

|ZGZCZL[C(R)
1 + C(R)

2 + D(R)
1 + D(R)

2 ]|2. The terms C(R)
1 ,

C(R)
2 , D(R)

1 , and D(R)
2 in Q(R) and C(L)

1 , C(L)
2 , D(L)

1 , and D(L)
2 in

Q(L) are given in Appendix A.
To obtain quantitative data regarding the dissymmetry fac-

tor, we consider the same systems as in Fig. 2. In Fig. 4,
we plot the dissymmetry factor g for CP waves impinging
our systems from both sides. In panels (a) and (d), we show
the g values for the chiral layer alone (for comparison); it
is evident that g depends on the sign of chirality [through
the CD numerator of Eq. (1)]. In panels (b) and (e), we
present the g values for the PT-symmetric case. We observe
two discrete side-dependent peaks which demonstrate an up
to 7× g enhancement compared with the chiral layer alone.
The positions of the peaks are at frequencies where the total
absorption [denominator of Eq. (1)] approaches zero (but not
exactly zero, where g goes to infinity), as we will discuss
and analyze in more detail later on. Finally, in panels (c)

and (f), we observe, like the PT-symmetric case, behavior in
the more general non-Hermitian system of unbalanced loss
and gain materials [system of Fig. 2(c)]. Again here, the g
peaks are observed at frequencies where the total absorption
(denominator of g) tends to zero. (Note that, although the term
absorption is usually connected with material losses and takes
positive values, here, we keep the same terminology even for
materials with gain, meaning field enhancement and taking
negative values.) Observing the results of Fig. 4, one can also
see an asymmetry in the g-resonance profile, resembling anti-
symmetric Fano profiles, like the ones discussed in Ref. [60].
This asymmetry seems to originate from the asymmetric cou-
pling of the chiral layer with the gain and loss layers as well
as from the asymmetry of the propagation (and absorption)
characteristics for left and right incidence, as is revealed from
the corresponding field analysis (see Sec. VI).

V. SCATTERING MATRIX ANALYSIS OF THE
PT -TRILAYER STRUCTURE

To fully understand the response of our non-Hermitian
three-layer structures and the origin of the high achievable
g values, we further investigate the scattering properties of
our systems. Scattering processes are usually characterized by
the properties (eigenvalues, eigenvectors, poles, zeros, etc.) of
the scattering matrix S, which describes the relation between
incoming and outgoing waves [35,49–53]. In our scattering
(reflection/transmission) system, depending on the arrange-
ment of the input and output ports (RCP or LCP waves), we
can build our scattering matrix formalism in several ways.
However, there are two cases/arrangements, which charac-
terize two different physical processes. The first case, called
here S(1), is related to the position of exceptional points, at
which the system passes from PT-symmetric phase (associ-
ated with real spectrum and PT-symmetric eigenfunctions) to
broken-PT phase [35] (complex spectrum, non-PT-symmetric
eigenfunctions), i.e., the points at which the scattering matrix
eigenvalues cease to be unimodular are the exceptional points,
marking the change of the PT phase. In the second scattering
matrix case, called here S(2), the points at which the scatter-
ing matrix eigenvalues cease to be unimodular (called here
crossing points) correspond to ATRs, in which the reflection
from one side (left or right) vanishes, and the transmission
is unity [35], leading to zero absorption, a condition favor-
ing dissymmetry factor enhancement. This second S-matrix
configuration has already been discussed quite extensively in
the case of nonchiral PT-symmetric systems [19,44] (2 × 2
scattering matrix). In the case of systems involving chiral me-
dia, because of the two possible input/circular polarizations
at each of the two sides of the structure, the system needs to
be described by a 4 × 4 scattering matrix S(2) [50–52]. Here,
S(2) is defined by

⎛
⎜⎝

c+
b−
c−
b+

⎞
⎟⎠ = S(2)

⎛
⎜⎝

a+
d−
a−
d+

⎞
⎟⎠ ≡

⎛
⎜⎜⎜⎝

t (L)
++ r (R)

+− 0 0

r (L)
−+ t (R)

−− 0 0

0 0 t (L)
−− r (R)

−+
0 0 r (L)

+− t (R)
++

⎞
⎟⎟⎟⎠

⎛
⎜⎝

a+
d−
a−
d+

⎞
⎟⎠,

(5)
where the input and output wave amplitudes are shown in
Fig. 1. The calculation of the eigenvalues of S(2) yields two
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FIG. 5. (a) and (d) Dissymmetry factor calculations for the sys-
tem of Figs. 4(b) and 4(e), with positive (left column) and negative
(right column) chirality parameter. (b) and (e) Eigenvalues of the
scattering matrix S(2). (c) and (f) Transmission and reflection power
coefficients for circularly polarized plane waves impinging in both
sides of the system. The vertical dashed lines correspond to the
anisotropic transmission resonances (ATRs) of the system.

degenerate pairs of eigenvalues, which are given by

σ1,2 = 1
2 [t++ + t−− ±

√
(t−− − t++)2 + 4r (L)r (R)] (6)

Figures 5(b) and 5(e) show the eigenvalues of S(2) for
our PT-symmetric case [system of Fig. 4(b)]. Although these
eigenvalues depend on the chiral layer chirality, here, due
to the small thickness of the chiral layer (10 nm) and the
very weak chiral response (of the order of 10−5), the chiral
dependence can be assumed as a small perturbation; thus,
the eigenvalues are practically independent of chirality. If the
chirality parameter is strong, i.e., in chiral metamaterials [56],
the non-Hermitian/PT-symmetric properties, like exceptional
points and ATRs, are strongly dependent and controllable by
the chirality [51]. As can be seen in Fig. 5, at the transi-
tion points from unimodular to nonunimodular eigenvalues
(multiple points in this case), which coincide with the ATRs
[35], the reflection from one system side is zero, while both
transmittances approach unity (T++ = |t++|2 ∼= 1 and T−− =
|t−−|2 ∼= 1)—see Figs. 5(c) and 5(f). Considering the above
properties, the total absorption goes to zero, A+ + A− = 2 −
T++ − T−− ∼= 0; this quantity is displayed in the denominator
of the dissymmetry factor g [Eq. (1)]; hence, the points where
a g peak occurs in our PT-symmetric system coincide with
the ATR points of the system, as shown comparing Figs. 5(a)
and 5(d) with Figs. 5(b) and 5(e), respectively. These figures
clearly demonstrate and highlight the importance of the ATR
points of PT-symmetric systems for g-factor maximization.
Note that the results shown in Fig. 5 concern only a rela-
tively narrow frequency region; analogous results for a much
broader frequency range are shown in Fig. 8 in Appendix D.

Those results demonstrate a multitude of frequency ranges
where g enhancement is achievable, both above and below the
system exceptional point—for the PT-like case.

VI. FIELD ANALYSIS AND DISCUSSION

As was mentioned also in the introduction and in the
previous section, the interplay between loss and gain media
(resulting in positive and negative absorption, respectively)
allows vanishing of the total absorption without reduction of
the field intensity in the system. Thus, in principle, one has
the potential to enhance the dissymmetry factor, enhancing
thus the enantioselectivity of the chiral light-matter interac-
tion, keeping also high field intensity values, i.e., keeping or
enhancing the overall efficiency of the interaction. To demon-
strate this potential for our systems, we evaluate and plot the
electric field intensity and the field chirality C along the sys-
tem for the systems shown in Figs. 2 and 4 at the frequencies
of the evaluated g peaks shown in Fig. 4. For completeness
and comparison, we present the same quantities also at CD
peaks. The results are shown in Fig. 6.

More specifically, in Figs. 6(a) and 6(c), we plot the
normalized electric field along the PT-symmetric trilayer
structure, as well as the optical chirality (normalized by the
vacuum optical chirality C0—note that the field is everywhere
in our system CP) for RCP wave propagation, at frequency
248.79 THz for waves incident from the left side [Fig. 6(a)]
and at frequency 249.34 THz for waves incident from the
right side [Fig. 6(c)]. (Note that these frequencies coincide
with the g peaks of Figs. 4(b) and 4(e) and that very similar
results are obtained also for LCP waves—not shown here.) We
observe that both the field intensity and the optical chirality
are enhanced toward the center of the system (where the chiral
layer is located) when the wave incidence is from the gain
side, while they decrease for incidence from the loss side,
even though the transmission and reflection is in both cases the
same. The reason behind this asymmetry in field and optical
chirality between Figs. 6(a) and 6(c) is the coupling of the
incident wave to a different system mode in the two cases,
as observed and discussed also in Ref. [35]. This asymmetry
can have significant impact in sensing schemes like the one
discussed here (i.e., layer under sensing between loss and
gain slabs), indicating a wrong and a right incidence side for
enhanced sensing signals. In addition to the above-mentioned
asymmetry, one can observe also from Figs. 6(a) and 6(c)
that the fields and optical chirality are symmetric in the gain
and loss slabs, as expected for PT-symmetric systems at ATR
points [35]. (Note that the presence of the chiral layer breaks
the exact PT symmetry of the gain-loss bilayer; due to its very
small thickness, the chiral layer acts as a small perturbation,
allowing the system to preserve the basic characteristics of the
exact PT case.)

In Figs. 6(b) and 6(d), we show the same results as in (a)
and (c) at a CD peak of the same system [at frequency 623.9
THz, where the highest CD peak is observed—see Fig. 2(b)].
Here, as expected, we observe very strong field and optical
chirality enhancement inside the system and particularly at
its center, i.e., at the location of the chiral layer, while again
here, the incidence from the gain side leads to higher field
and optical chirality values than the incidence from the loss
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FIG. 6. Normalized electric fields and optical chirality calcula-
tions for the two systems of Figs. 2(b) and 2(c), for right-handed
circularly polarized (RCP) waves incident from the left side (left
column) and from the right side (right column). (a)–(d) correspond
to the PT-symmetric system [of Fig. 2(b)], and (e)–(h) correspond
to the general non-Hermitian system [of Fig. 2(c)]. (a), (c), (e), and
(g) concern frequencies of dissymmetry factor peaks and (b), (d), (f),
and (h) frequencies of circular dichroism (CD) peaks. The material
parameters are the same as in Fig. 2, and we assume positive sign
of the chirality parameter of the thin chiral layer (both real and
imaginary parts). L is the total system length.

side. Moreover, the fields and optical chirality are not sym-
metric anymore between gain and loss layers, showing that
this frequency is beyond the exceptional point of the system,
as expected for PT-symmetric systems at the lasing threshold
point and as verified from related scattering matrix calcula-
tions (see Appendix D).

In Figs. 6(e)–6(h), we plot the normalized electric field
amplitude and the optical chirality along the system for the
general non-Hermitian system of Fig. 2(c) (for RCP wave
propagation). Specifically, Figs. 6(e) and 6(g) concern g-peak

FIG. 7. Kuhn’s dissymmetry factor (g) calculated considering the
absorption only inside the chiral layer for the systems of Fig. 2. In all
cases, we assume positive sign of the chirality parameter (both real
and imaginary parts) of the thin chiral layer.

frequencies {246.6 THz for waves incident from the left side
[Fig. 6(e)] and 246.85 THz for waves incident from the right
side [Fig. 6(g)]} and Figs. 6(f) and 6(h) a CD-resonance
frequency [617 THz—see Fig. 2(c)].

Observing the results of Fig. 6, one can see that, at
the g-peak frequencies, the field intensity and the optical
chirality (for both the PT and the non-PT trilayer) in the
region of the chiral layer are considerably higher than their
incident/vacuum values, ensuring increase of both differen-
tial and overall absorption, critical for enhanced chiro-optical
response.

To investigate further the impact of the gain-loss bilayer on
the chiro-optical response of our chiral layer, we calculate the
local dissymmetry factor in our systems under investigation,
i.e., the dissymmetry factor evaluated by considering the ab-
sorption only inside the chiral layer. For that, we employ the
formula of Eq. (1), right-hand side (derived in Appendix F),
integrating both numerator and denominator over the extent
of the thin chiral layer only—see Eqs. (F10) and (F13). For
simplicity, we assume only the positive values for the chirality
parameter of the chiral layer; we also consider incidence from
the left (gain) side, which appeared to be the proper side,
i.e., the side maximizing the fields, according to the previ-
ous discussion (in connection with Fig. 6). For comparison,
we calculate first the dissymmetry factor for the chiral layer
alone—see Fig. 7(a). (The results, as expected, are the same
as the corresponding ones of Fig. 4.) Then we repeat the
calculations considering the presence of the gain and loss
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layers (both for the PT-symmetric case and for the general
non-Hermitian case).

In the case of the PT-symmetric trilayer, we observe that,
at a broad frequency range, local g shows an up to fivefold
increase due to the presence of the gain-loss bilayer, while
it remains always >2× the single chiral layer value. In the
case of the general non-Hermitian structure [Fig. 7(c)], the
enhancement is more irregular, but it achieves even higher
values. Note that the g enhancement shown in Figs. 4 and
7 is achieved without imposing any nanostructuring in the
systems, which would lead to even more enhanced local fields
and possibly enhanced local field chirality. Combining our
approach (i.e., the gain approach) with such a nanostructuring
(as, e.g., in Refs. [9,10]), we expect an additive effect, leading
to particularly high g factors and opening prospects in the
chirality detection and synthesis.

As a closing remark, we want to mention that the pur-
pose of this paper is mostly to illustrate the potential and
perspective of the combined gain-loss systems for CD and g
enhancement, rather than to provide detailed guidelines for
design of realistic systems. That is why we employ systems
of constant gain and loss values within the whole optical
range. For the realization of practical gain-loss systems for
chirality detection enhancement, one can use a variety of
active media, depending on the desired operation frequency.
Critical requirements are (a) the spectral overlapping of the
gain material bandwidth with resonances of the structure; (b)
a spatial (modal) coupling of gain, loss, and chiral materials
via close proximity; and (c) the chiral material being placed
in contact with the gain material and, if possible, illuminated
by the gain side. To satisfy the above requirements ensuring
also maximum structure performance (e.g., operation close to
the lasing threshold for maximum CD enhancement) is not
straightforward, requiring also guiding by detailed numerical
simulations. As our results suggest, even if the maximum per-
formance regarding the CD is not achieved, there will always
be substantial dissymmetry factor enhancement, as such an
enhancement does not require operation close to the lasing
threshold and can be encountered in a broad frequency range.

Regarding the gain materials that can be employed for the
realization of suitable gain-loss systems, possible candidates
can be dye molecules (they demonstrate a gain parameter
of γ = 4π Im[n]/λ = 1590 cm−1 at wavelength λ = 710 nm
[61] and the half-width of the resonance 6000 nm), quan-
tum wells or dots (with gain parameter of γ = 5000 cm−1

at wavelength λ = 710 nm [62]), two-dimensional transition
metal dichalcogenides (with gain parameter up to γ = 3 ×
104 cm−1 at wavelength λ = 640 nm [63]), and others [59,64].

VII. CONCLUSIONS

We investigated non-Hermitian (i.e., combined gain-loss)
systems, both PT symmetric and non-PT symmetric, for
enhancement of chiro-optical signals of a thin chiral layer
incorporated in those systems. By both analytical calculations
and numerical modeling, we found that, in the PT-symmetric
case, the CD and the dissymmetry factor g of the thin chiral
layer placed between the gain and loss media can be enhanced
by 75× and 7×, respectively, compared with the chiral layer
alone. The largest CD enhancement was obtained at the lasing

threshold of the total system and the largest g factor at its
ATRs; a particularly interesting and useful feature is that the
g-factor enhancement here is also associated with total field
enhancement. Departing from the exact PT-symmetry condi-
tion for the gain and loss layers and going to systems more
amenable to practical realization, we still found considerable
CD and g enhancement, in some cases, even more intense
than in the PT case. Although our approach concerns a res-
onant, essentially double-layer, gain-loss structure, it clearly
reveals the rich possibilities offered by going to more complex
structures, e.g., multistack PT-symmetric structures [35,49];
adding more layers, we may be able to create an even more
enhanced response, enhancing the field and its confinement
around the chiral layer.

Our results clearly demonstrate the potential of gain
materials and of combined gain-loss media for chirality sens-
ing. Moreover, our approach can be applied in combination
with other optical approaches that have been proposed for
chiro-optical signal enhancement, expanding the potential of
those approaches and leading to photonic schemes for chiral
biosensing.

Although this paper concerns a simple route for chirality
enhancement in a thin chiral layer, it clearly reveals the rich
possibilities offered by combining gain and loss. We expect
those possibilities to be even more enhanced and exploitable
in other weak electromagnetic phenomena, particularly as-
sociated with nonreciprocal materials, e.g., magneto-optical
materials [65,66], where the combination of gain and loss with
the system resonances may lead to even larger enhancements,
opening directions in the field of non-Hermitian photonics.
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APPENDIX A: ANALYTICAL CALCULATION OF THE
REFLECTION AND TRANSMISSION FOR THE

THREE-LAYER SYSTEM—THE CHIRAL TRANSFER
MATRIX METHOD

To find the reflection and transmission amplitudes of the
three-layer (gain, chiral, and loss) structure shown in Fig. 1 of
the main text, we consider waves arriving at normal incidence
from either side of the structure, and we solve Maxwell’s
equations, applying the boundary conditions at each interface.
The waves propagate along the z direction, as illustrated in
Fig. 1, and their polarization can be either linear or circu-
lar. We start with layers with arbitrary material parameters
ει, μi, and κi to obtain general expressions (the subscript i =
{G, C, L} denotes the gain, chiral, and loss regions, respec-
tively). Due to the two possible input circular polarizations
(denoted as RCP/+ and LCP/−) at each of the two sides
of the system, the full description of the scattering process
requires four input and four output ports; hence, the system
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is described by a 4 × 4 scattering matrix, consisting of eight
transmission (t) and eight reflection (r) coefficients.

To determine the reflection and transmission coefficients,
we assume that we have either RCP/+ or LCP/− polarized
incident plane waves, arriving from the left side (see Fig 1):

Eair
in = a±ê±eikz,

(A1)
Hair

in = ∓iZ−1a±ê±eikz,

(the structure is embedded in air, and the subscript “in” de-
notes the incident wave). The reflected electromagnetic fields
can be expressed as

Eair
ref = −b+ê−e−ikz − b−ê+e−ikz,

(A2)
Hair

ref = −iZ−1(−b+)ê−e−ikz + iZ−1(−b−)ê+e−ikz,

where a± and b± are the amplitudes of the ingoing and out-
going, respectively, RCP/+ and LCP/− waves (as observed
from the source point), and ê± = (x̂ ± iŷ)/

√
2. A similar

expression can be employed for electric and magnetic fields
inside the gain, loss, and chiral layers, where the total field
is a sum of a forward- and a backward-propagating wave.
In the chiral layer, due to the two different refractive indices
n± = √

με ± κ , we have different wave vectors for the RCP
and LCP components. Thus, in the chiral layer, the electro-
magnetic field can be expressed as

Echiral
forw = E (L)

+ ê+eik+z + E−ê−eik−z,
(A3)

Hchiral
forw = ∓iZ−1

[
E (L)

+ ê+eik+z + E−ê−eik−z
]
,

and

Echiral
back = −E (R)

+ ê−e−ik−z − E−ê+e−ik+z,
(A4)

Hchiral
back = ∓iZ−1

[−E (R)
+ ê−e−ik−z − E−ê+e−ik+z

]
.

The transmitted electromagnetic fields can be expressed as

Eair
tr = c+ê+eikz + c−ê−eikz,

(A5)
Hair

tr = −iZ−1c+ê+eikz + iZ−1c−ê−eikz,

where c± are the amplitudes of the transmitted waves (see
Fig. 1). Equating the tangential components of E and H
(Ex, Ey, Hx, Hy) at the four structure interfaces, we obtain a 16
× 16 linear system of equations with 72 out of 256 nonzero el-
ements, which is solved analytically or numerically (using, for
example, Gaussian elimination with the partial pivot method),

giving the scattering coefficients (for more detailed analysis
regarding the methodology, see Refs. [10,51]). The reflection
and transmission coefficients when the incident wave arrives
from the right side of the structure can be obtained by applying
the same analysis as above or, more easily, by exchanging the
material parameters in the gain-loss layers.

Although, in this paper, we focus on the analytical
derivation (although cumbersome yet straightforward) of the
reflection and transmission coefficients for a three-layer sys-
tem, we consider it useful to provide a derivation approach
that can be extended to multilayer systems, being also more
compact in the formalism. Such an approach is provided by
the transfer matrix method. Therefore, we present below the
transfer matrix formalism in circular polarization basis, suit-
able for the analysis of electromagnetic wave propagation in
multilayer structures (including chiral layers), under normal
incidence. The transfer matrix M relates the fields on one
side of an interface to those of the other side (see Fig. 1 for
the definition of field amplitudes). Because the electric field
in the circular polarization basis is described by four waves,
two (LCP/+ and RCP/− as a source view) incident on the
interface and the other two outgoing, the matching matrix M
is a 4 × 4 matrix of the form:⎛

⎜⎝
a+
a−
b+
b−

⎞
⎟⎠

i

= Mi,i+1

⎛
⎜⎝

c+
c−
d+
d−

⎞
⎟⎠

i+1

, (A6)

where i (counting the layers) denotes the layer left to the
interface, and Mi,i+1 is block symmetric of the form Mi,i+1 =
(A B
B A), with the corresponding submatrices given by

A =
( 1

2

( Zi
Zi+1

+ 1
)

0
0 1

2

( Zi
Zi+1

+ 1
)
)

, (A7)

B =
(

0 1
2

( Zi
Zi+1

− 1
)

1
2

( Zi
Zi+1

− 1
)

0

)
. (A8)

Referring to Fig. 1, the fields on the left side of the system
and those on the right side are connected with the total transfer
matrix M (total). For the construction of M (total), in addition to
the transfer matrices of the individual interfaces, one must
also consider the phase matrices. A phase matrix Pi accounts
for the phase contributed by forward and backward waves
propagating inside the medium i, with a thickness of di, and is
given by

Pi =

⎛
⎜⎜⎜⎝

exp[ik(i)
+ di] 0 0 0

0 exp[ik(i)
− di] 0 0

0 0 exp[−ik(i)
+ di] 0

0 0 0 exp[−ik(i)
− di]

⎞
⎟⎟⎟⎠. (A9)

For nonchiral layers, the Pi matrices can be simplified by taking k(i)
+ = k(i)

− = k(i). The system of multilayers can then
be solved by the ordered multiplication of interface transfer matrices Mi,i+1 and the in-layer phase matrices Pi. The
resulting transfer matrix M (total) contains all the wave reflection and transmission information for the system. For the
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gain-chiral-loss system of Fig. 1, the total transfer matrix is given by

⎛
⎜⎝

a+
a−
b+
b−

⎞
⎟⎠ = M (total)

⎛
⎜⎝

c+
c−
d+
d−

⎞
⎟⎠ ≡ M01P1M12P2M23P3M34

⎛
⎜⎝

c+
c−
d+
d−

⎞
⎟⎠, (A10)

where the subscripts 0 and 4 correspond to the layers before and after the structure, respectively (both air in our case). Having
evaluated the transfer matrix M (total), one can decompose it in four 2 × 2 submatrices, of the form M (total) = (T1 R1

R2 T2
). Then the

reflection and transmission matrices for incidence from the left side of the system are given by R(L) = (
r(L)
++ r(L)

+−
r(L)
−+ r(L)

−−
) = R2(T1)−1

and T (L) = (
t (L)
++ t (L)

+−
t (L)
−+ t (L)

−−
) = (T1)−1 and for incidence from the right side are given by R(R) = (

r(R)
++ r(R)

+−
r(R)
−+ r(R)

−−
) = −(T1)−1R1 and T (R) =

(
t (R)
++ t (R)

+−
t (R)
−+ t (R)

−−
) = T2 − R2(T1)−1R1 [67,68].

For layers of isotropic chiral materials (reciprocal) and normal incidence, it is in general valid, that t (L)
++ = t (R)

++, t (L)
−− = t (R)

−−
and r (L)

+− = r (L)
−+, r (R)

+− = r (R)
−+, while the remaining eight coefficients r (L)

++ = r (L)
−− = r (R)

++ = r (R)
−− = t (L)

+− = t (L)
−+ = t (R)

+− = t (R)
−+ = 0

regardless of the side of incidence. The analytical expressions of r and t for circularly and linearly polarized waves are listed
below.

Scattering coefficients for CP waves
Incident from left:

t (L)
++ = −16 exp{i[dC (k − kG − kL) + d (2k − kG − kL)]}

ZGZCZL(A1 + A2 + B1 + B2)
exp(ikC1dC ),

t (L)
−− = −16 exp{i[dC (k − kG − kL ) + d (2k − kG − kL)]}

ZGZCZL(A1 + A2 + B1 + B2)
exp(ikC2dC ),

t (L)
−+ = t (L)

+− = 0,

r (L)
+− = r (L)

−+ = exp
[−2ik

(
d + dc

2

)][
C(L)

1 + C(L)
2 + D(L)

1 + D(L)
2

]
(A1 + A2 + B1 + B2)

,

r (L)
++ = r (L)

−− = 0. (A11)

Incident from right:

t (R)
++ = −16 exp{i[dC (k − kG − kL) + d (2k − kG − kL)]}

ZGZCZL(A1 + A2 + B1 + B2)
exp(ikC1dC ),

t (R)
−− = −16 exp{i[dC (k − kG − kL) + d (2k − kG − kL)]}

ZGZCZL(A1 + A2 + B1 + B2)
exp(ikC2dC ),

t (R)
−+ = t (R)

+− = 0,

r (R)
+− = r (R)

−+ = exp
[−2ik(d + dc

2 )
][

C(R)
1 + C(R)

2 + D(R)
1 + D(R)

2

]
(A1 + A2 + B1 + B2)

,

r (R)
++ = r (R)

−− = 0. (A12)

Scattering coefficients for linearly polarized waves
Incident from left, x polarized:

t (L)
xx = −8 exp{−i[dC (k − kG − kL) + d (2k − kG − kL)]}

ZGZCZL(A1 + A2 + B1 + B2)
[exp(ikC1dC ) + exp(ikC2dC )],

t (L)
yx = −i

8 exp{−i[dC (k − kG − kL) + d (2k − kG − kL)]}
ZGZCZL(A1 + A2 + B1 + B2)

[exp(ikC1dC ) − exp(ikC2dC )],

r (L)
xx = exp

[−2ik
(
d + dc

2

)][
C(L)

1 + C(L)
2 + D(L)

1 + D(L)
2

]
(A1 + A2 + B1 + B2)

,

r (L)
yx = 0. (A13)
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Incident from right, x polarized:

t (R)
xx = t (L)

xx ,

t (R)
yx = −t (L)

yx ,

r (R)
xx = exp

[−2ik
(
d + dc

2

)][
C(R)

1 + C(R)
2 + D(R)

1 + D(R)
2

]
(A1 + A2 + B1 + B2)

,

r (R)
yx = 0. (A14)

Incident from left, y polarized:

t (L)
yy = t (L)

xx ,

t (L)
xy = −t (L)

yx ,

r (L)
yy = r (L)

xx ,

r (L)
xy = r (L)

yx . (A15)

Incident from right, y polarized:

t (R)
yy = t (R)

xx ,

t (R)
xy = −t (R)

yx ,

r (R)
yy = r (R)

xx ,

r (R)
xy = r (R)

yx . (A16)

In the above formulas Eqs. (A11)–(A16), the superscripts (L) and (R) denote incidence from the left and right side of the system,
respectively, the first subscript in r and t denotes the output polarization and the second the input polarization, and

A1 = exp

[
2i

(
d + dC

2

)
(kG + kL)

](
1

ZG
− 1

)(
1

ZG
− 1

ZC

)(
1

ZC
− 1

ZL

)(
1

ZL
− 1

)

− exp

{
2i

[
kLd + (kG + kL)dC

2

]}(
1

ZG
+ 1

)(
1

ZG
+ 1

ZC

)(
1

ZC
− 1

ZL

)(
1

ZL
− 1

)
,

A2 = −exp[idC (kG + kC1 + kC2 + kL)]

(
1

ZG
+ 1

)(
1

ZG
− 1

ZC

)(
1

ZC
− 1

ZL

)(
1

ZL
+ 1

)

+ exp

{
2i

[
kGd + (kG + kC1 + kC2 + kL)dC

2

]}(
1

ZG
− 1

)(
1

ZG
+ 1

ZC

)(
1

ZC
− 1

ZL

)(
1

ZL
+ 1

)
,

B1 = −exp

{
2i

[
kLd + (kG + kC1 + kC2 + kL)dC

2

]}(
1

ZG
+ 1

)(
1

ZG
− 1

ZC

)(
1

ZC
+ 1

ZL

)(
1

ZL
− 1

)

+ exp

{
2i

[
(kG + kL)d + (kG + kC1 + kC2 + kL)dC

2

]}(
1

ZG
− 1

)(
1

ZG
+ 1

ZC

)(
1

ZC
+ 1

ZL

)(
1

ZL
− 1

)
,

B2 = exp

{
2i

[
kGd + (kG + kL)dC

2

]}(
1

ZG
− 1

)(
1

ZG
− 1

ZC

)(
1

ZC
+ 1

ZL

)(
1

ZL
+ 1

)

− exp[i(kG + kL)dC]

(
1

ZG
+ 1

)(
1

ZG
+ 1

ZC

)(
1

ZC
+ 1

ZL

)(
1

ZL
+ 1

)
. (A17)

C(L)
1 = −exp

[
2i

(
d + dC

2

)
(kG + kL)

](
1

ZG
+ 1

)(
1

ZG
− 1

ZC

)(
1

ZC
− 1

ZL

)(
1

ZL
− 1

)

+ exp{2i[kLd + (kG + kL)dC/2]}
(

1

ZG
− 1

)(
1

ZG
+ 1

ZC

)(
1

ZC
− 1

ZL

)(
1

ZL
− 1

)
,

C(L)
2 = exp[idC (kG + kC1 + kC2 + kL)]

(
1

ZG
− 1

)(
1

ZG
− 1

ZC

)(
1

ZC
− 1

ZL

)(
1

ZL
+ 1

)

− exp

{
2i

[
kGd + (kG + kC1 + kC2 + kL)dC

2

]}(
1

ZG
+ 1

)(
1

ZG
+ 1

ZC

)(
1

ZC
− 1

ZL

)(
1

ZL
+ 1

)
,
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D(L)
1 = exp

{
2i

[
kLd + (kG + kC1 + kC2 + kL)dC

2

]}(
1

ZG
− 1

)(
1

ZG
− 1

ZC

)(
1

ZC
+ 1

ZL

)(
1

ZL
− 1

)

− exp

{
2i

[
(kG + kL)d + (kG + kC1 + kC2 + kL)dC

2

]}(
1

ZG
+ 1

)(
1

ZG
+ 1

ZC

)(
1

ZC
+ 1

ZL

)(
1

ZL
− 1

)
,

D(L)
2 = −exp

{
2i

[
kGd + (kG + kL)dC

2

]}(
1

ZG
+ 1

)(
1

ZG
− 1

ZC

)(
1

ZC
+ 1

ZL

)(
1

ZL
+ 1

)

+ exp[i(kG + kL)dC]

(
1

ZG
− 1

)(
1

ZG
+ 1

ZC

)(
1

ZC
+ 1

ZL

)(
1

ZL
+ 1

)
. (A18)

C(R)
1 = −exp

[
2i

(
d + dC

2

)
(kG + kL)

](
1

ZL
+ 1

)(
1

ZL
− 1

ZC

)(
1

ZC
− 1

ZG

)(
1

ZG
− 1

)

+ exp{2i[kGd + (kG + kL)dC/2]}
(

1

ZL
− 1

)(
1

ZL
+ 1

ZC

)(
1

ZC
− 1

ZG

)(
1

ZG
− 1

)
,

C(R)
2 = exp[idC(kG + kC1 + kC2 + kL)]

(
1

ZL
− 1

)(
1

ZL
− 1

ZC

)(
1

ZC
− 1

ZG

)(
1

ZG
+ 1

)

− exp

{
2i

[
kLd + (kG + kC1 + kC2 + kL)dC

2

]}(
1

ZG
+ 1

)(
1

ZG
+ 1

ZC

)(
1

ZC
− 1

ZL

)(
1

ZL
+ 1

)
,

D(R)
1 = exp

{
2i

[
kGd + (kG + kC1 + kC2 + kL)dC

2

]}(
1

ZL
− 1

)(
1

ZL
− 1

ZC

)(
1

ZC
+ 1

ZG

)(
1

ZG
− 1

)

− exp

{
2i

[
(kG + kL)d + (kG + kC1 + kC2 + kL)dC

2

]}(
1

ZL
+ 1

)(
1

ZL
+ 1

ZC

)(
1

ZC
+ 1

ZG

)(
1

ZG
− 1

)
,

D(R)
2 = −exp

{
2i

[
kLd + (kG + kL)dC

2

]}(
1

ZL
+ 1

)(
1

ZL
− 1

ZC

)(
1

ZC
+ 1

ZG

)(
1

ZG
+ 1

)

+ exp[i(kG + kL)dC]

(
1

ZL
− 1

)(
1

ZL
+ 1

ZC

)(
1

ZC
+ 1

ZG

)(
1

ZG
+ 1

)
. (A19)

In the above relations, Zi = √
μ0μi/ε0εi, i = {G, C, L}, is the wave impedance, and kG = ω(

√
εGμG )
c , kL = ω(

√
εLμL )
c , and kC1 =

ω(
√

εCμC+κ )
c , kC2 = ω(

√
εCμC−κ )

c are the wave vectors in the gain, loss, and chiral regions, respectively.

APPENDIX B: DERIVATION OF EQS. (2)–(4)

In this section, we calculate the CD and the dissymmetry factor g for the system shown in Fig. 1 of the main text with
PT-symmetric gain-loss layers. To calculate the CD and g, it is necessary to calculate the absorption amplitudes for RCP and
LCP waves. According to the scattering matrix S theory [67], the main diagonal of the difference 1̂ − S†S (where 1̂ is the identity
matrix and † means a transpose and complex conjugate) contains the absorption amplitudes for different circular polarizations
(RCP/+)-(LCP/−) and sides of incidence. We express them as

A(L)
+ = 1 − |r (L)

−+|2 − |t (L)
++|2,

A(R)
− = 1 − |r (R)

+−|2 − |t (R)
−−|2,

A(L)
− = 1 − |r (L)

+−|2 − |t (L)
−−|2,

A(R)
+ = 1 − |r (R)

−+|2 − |t (R)
++|2. (B1)

In the previous section, we found that t (L)
++ = t (R)

++ ≡ t++ and t (L)
−− = t (R)

−− ≡ t−− (reciprocal system), while r (L)
−+ = r (L)

+− ≡ r (L)

and r (R)
+− = r (R)

−+ ≡ r (R); therefore, CD = A+ − A− becomes

CD(L) = CD(R) ≡ CD = |t−−|2 − |t++|2. (B2)

Inserting the transmission coefficients from Eq. (A11) into Eq. (B2), we find

CD = 256exp(−2{Im(kC1dC ) + Im(kC2dC ) + Im[dC (k − kG − kL) + d (2k − kG − kL)]})

|ZGZCZL (A1 + A2 + B1 + B2)|2 {exp[2Im(kC1dC )]e2Im(kC1dC )

− exp[2Im(kC2dC )]e2Im(kC2dC ). (B3)
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In the case of PT-symmetric gain-loss layers, the wave vectors obey kG = (kL)∗; moreover kC1 = ω(nC + κ )/c, kC2 =
ω(nC − κ )/c, where nC and κ are the nonchiral refractive index and the chirality parameter of the chiral layer, respectively. After
some algebra, the term exp[2Im(kC1dC )]−exp[2Im(kC2dC )] in Eq. (B3) can be simplified as 2exp(2kdCIm[nC]) sinh(2kdCIm[κ])
and the term exp(−2{Im(kC1dC ) + Im(kC2dC ) + Im[dC (k − kG − kL) + d (2k − kG − kL)]}) can be expressed as
exp(−4kdCIm[nC]). Hence, the CD in the PT case can be written [Eq. (2) of the main text] as

CD = 512exp(−2kdCIm[nC])

|ZGZCZL(A1 + A2 + B1 + B2)|2 sinh(2kdCIm[κ]), (B4)

where the terms A1, A2, B1, and B2 are given in the previous section and are totally independent of the chirality parameter κ .
For the calculation of the dissymmetry factor g defined as [7]

g = 2CD

A+ + A−
, (B5)

in addition to CD, one needs to also calculate the total absorption A+ + A− (for RCP and LCP waves) for incidence from both
system sides. From Eq. (B1), we see that the total absorption depends on the reflectance and therefore depends on the side of
incidence, as

A(L)
+ + A(L)

− = 1 − |r (L)
−+|2 − |t (L)

++|2 + 1 − |r (L)
+−|2 − |t (L)

−−|2 ≡ 2 − |t++|2 − |t−−|2 − 2|r (L)|2,
A(R)

+ + A(R)
− = 1 − |r (R)

−+|2 − |t (R)
++|2 + 1 − |r (R)

+−|2 − |t (R)
−−|2 ≡ 2 − |t++|2 − |t−−|2 − 2|r (R)|2. (B6)

By substituting Eqs. (B3) and (B6) into (B5) and after extensive but straightforward calculations, we obtain

g(L) = −256{exp[2Im(kC1dC )] − exp[2Im(kC2dC )]}
(

1

128{exp[2Im(kC1dC )] + exp[2Im(kC2dC )]}

− 1

Pexp{2Im[dC (k − kG + kC1 + kC2 − kL) + d (2k − kG − kL)]}

+ 1

Q(L)exp{2Im[dC (k − kG + kC1 + kC2 − kL) + d (2k − kG − kL)]}
)

(B7)

g(R) = −256{exp[2Im(kC1dC )] − exp[2Im(kC2dC )]}
(

1

128{exp[2Im(kC1dC )] + exp[2Im(kC2dC )]}

− 1

Pexp{2Im[dC (k − kG + kC1 + kC2 − kL) + d (2k − kG − kL)]}

+ 1

Q(R)exp{2Im[dC (k − kG + kC1 + kC2 − kL) + d (2k − kG − kL)]}
)

, (B8)

where P = |ZGZCZL (A1 + A2 + B1 + B2)|2, Q(L) = |ZGZCZL [C(L)
1 + C(L)

2 + D(L)
1 + D(L)

2 ]|2, and Q(R) =
|ZGZCZL[C(R)

1 + C(R)
2 + D(R)

1 + D(R)
2 ]|2. Considering the PT symmetry of the gain-loss layers, Eqs. (B7) and (B8) can be

simplified as

g(L) = −2 tanh(2kdCIm[κ]) + 512exp(−2kdCIm[nC]) sinh(2kdCIm[κ])

[
1

P
+ 1

Q(L)

]
, (B9)

g(R) = −2 tanh(2kdCIm[κ]) + 512exp(−2kdCIm[nC]) sinh(2kdCIm[κ]

)[
1

P
+ 1

Q(R)

]
. (B10)

APPENDIX C: SCATTERING MATRIX APPROACH

It is often convenient to describe scattering systems in
terms of their scattering matrix S. Among others, S can be
used to identify and/or analyze exotic scattering phenomena
such as PT-symmetric and broken-PT-symmetric phases, ex-
ceptional points, or ATRs [35,52,53]. The scattering matrix
of a system describes the relation between its incoming and
outgoing waves. In systems involving chiral media (and there-
fore interacting differently with RCP and LCP waves), such
as the one of Fig. 1 of the main text, because of the two
possible circular polarizations at each of the two sides of a
system, it should be described by a 4 × 4 scattering matrix

S. Depending on the arrangement of the input and output
ports (RCP or LCP waves), we can build the scattering matrix
formalism in several ways. However, as the main information
we want to extract is related to the position of the exceptional
points (where a PT system passes from PT-symmetric phase
to broken-PT phase) and of the ATRs, we will list here only
the two relevant (as shown in the literature [35]) scattering
matrix configurations along with their eigenvalues. The first
configuration (case I), denoted here by S(1), is related to the
position of exceptional point/points, i.e., the points at which
S(1) eigenvalues stop being unimodular are exceptional points,
where two or more eigenvalues and eigenvectors coincide.
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In this definition, the reflection coefficients are on the di-
agonal, and the outgoing waves are related to the incident
waves through time reversal. This behavior mimics the 2 ×
2 matrix representation of PT-symmetric Hamiltonian [69] or
PT-symmetric coupled optical waveguides [46] with the dif-
ferent reflected coefficients due to different wave impedances
in the gain-loss layers. The S matrix of case II [S(2)] gives the

positions of the ATRs of the system (i.e., its crossing points,
where eigenvalues turn from unimodular to nonunimodular
and vice versa are ATRs), which coincide with the peaks of
the g factor, as discussed in the main text. Here, the transmis-
sion coefficients are on the diagonal as a result of a different
criterion for PT-symmetric breaking phases [35]. S(1) and S(2)

are defined as shown below:

Case I :

⎛
⎜⎝

b−
c+
b+
c−

⎞
⎟⎠ = S(1)

⎛
⎜⎝

a+
d−
a−
d+

⎞
⎟⎠ ≡

⎛
⎜⎜⎝

r (L)
−+ t (R)

−− 0 0
t (L)
++ r (R)

+− 0 0
0 0 r (L)

+− t (R)
++

0 0 t (L)
−− r (R)

−+

⎞
⎟⎟⎠

⎛
⎜⎝

a+
d−
a−
d+

⎞
⎟⎠, (C1)

with two degenerate pairs of eigenvalues σ :

σ
(1)
1,2 = 1

2 {r (L) + r (R) ±
√

[r (L) − r (R)]2 + 4t++t−−}, (C2)

Case II :

⎛
⎜⎝

c+
b−
c−
b+

⎞
⎟⎠ = S(2)

⎛
⎜⎝

a+
d−
a−
d+

⎞
⎟⎠ ≡

⎛
⎜⎜⎝

t (L)
++ r (R)

+− 0 0
r (L)
−+ t (R)

−− 0 0
0 0 t (L)

−− r (R)
−+

0 0 r (L)
+− t (R)

++

⎞
⎟⎟⎠

⎛
⎜⎝

a+
d−
a−
d+

⎞
⎟⎠, (C3)

with two degenerate pairs of eigenvalues:

σ
(2)
1,2 = 1

2 [t++ + t−− ±
√

(t−− − t++)2 + 4r (L)r (R)] (C4)

APPENDIX D: SCATTERING PROPERTIES AND
FURTHER EXAMPLES

To calculate the CD and g data shown in Figs. 2 and 4
of the main text, as well as the associated scattering matrix
eigenvalues, one needs to evaluate transmission, reflection,
and absorption for the corresponding systems. Here, we
evaluate and present the reflection and transmission am-
plitudes as well as the total absorption [A(L)

+ + A(L)
− ],

[A(R)
+ + A(R)

− ], and absorption difference [CD : (A+ − A−)—
side independent] when RCP/+ and LCP/− waves impinge
at the left and right side of the three-layer systems of Fig. 2
of the main text and another related system. Furthermore, we
plot the eigenvalues of the scattering matrices S(1) and S(2)

[Eqs. (C2) and (C4)] for the same systems. We calculate the
above parameters for a range of frequencies much wider than
that of Figs. 2 and 4 to illustrate that the high achievable values
of the CD and g are not restricted to the range of Figs. 2 and 4
but are realizable in many different frequency ranges.

The first system considered is the one with PT-symmetric
gain-loss layers (see Fig. 1 of the main text), with param-
eters those of Fig. 2(b), i.e., gain-loss slabs of thickness
d = 2.5 μm and refractive index nG/L = 3 ∓ 0.04i, chiral
layer of thickness d = 10 nm, chirality parameter κ =
±5(10−4 + 10−5i), and nonchiral refractive index nC =
1.33 + 0.01i. In Fig. 8, left column and first panel, we show
the transmission and reflection power coefficients for RCP and
LCP waves incident from both sides of the system. In the
second and third panels of Fig. 8, left column, we calculate
the total absorption and the absorption difference (CD), re-
spectively, in the same frequency range. We observe a broad
frequency range where we have multiple regions with total

absorption close to zero; all these points coincide with peaks
of the dissymmetry factor g. Regarding the absorption dif-
ference, the higher peaks here appear above the exceptional
point (in the broken PT phase), where the scattering matrix
eigenvalues of case I (see Appendix C) diverge (see fourth
panel of Fig. 8, left column). These peaks indicate simulta-
neous coherent perfect absorption and lasing, which is one of
the most exotic features of the PT-symmetric systems. Finally,
in the last panel of Fig. 8, left column, we plot the scattering
matrix S(2) eigenvalues (case II of the Appendix C), which
give us the multiple positions of ATRs (points at which the
eigenvalues turn from unimodular to nonunimodular and vice
versa), where the absorption coefficients approach zero and
maximization of g takes place.

The second system considered (see second/middle column
of Fig. 8) is the general non-Hermitian system of Fig. 2(c) of
the main text. Here, the gain layer has thickness d = 2 μm
and refractive index nG = 2−0.05i, the loss layer has thick-
ness d = 3 μm and refractive index nL = 3 + 0.04i, and the
chiral layer has the same parameters as in the previous case
(of the PT-symmetric gain-loss layers). The transmitted and
reflected power for RCP and LCP waves incident from both
system sides are illustrated in the middle column of Fig. 8,
first panel. In the second and third panels, we show the total
absorption and the absorption difference (CD), respectively, in
the same frequency range. Comparing with the PT-symmetric
case, we observe a similar behavior but a shift in frequency,
due to the different gain-loss fraction. This illustrates the
possibility to fully control the CD by tuning the gain-loss
fraction; moreover, it indicates a flexibility and freedom in ex-
perimental realization and validation. The non-PT symmetry
of the current system is also demonstrated by calculating the
eigenvalues of scattering matrix S(1) (middle column, fourth
panel), which are not unimodular in any frequency region.

The last system considered here has the same gain-loss
configuration as in the previous case, but now the chiral layer
is attached to the loss and not to the gain layer, as depicted
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FIG. 8. Transmission and reflection power coefficients (Ti j = |ti j |2, Ri j = |ri j |2, respectively, i,j = {+,−}) (first row), total absorption
(A+ + A−) (second row), absorption difference (A+ − A−) (third row), and scattering matrix eigenvalues (σ ) for the scattering matrix S(1)

(fourth row) and S(2) (fifth row), for right-handed circularly polarized (RCP/+) and left-handed circularly polarized (LCP/−) waves incident
on the systems shown in the top insets from both the left and right side [the side is indicated by the superscripts (L) and (R), respectively]. Left
column: system with PT-symmetric gain-loss layers; middle column: chiral-gain-loss general non-Hermitian system; right column: gain-loss-
chiral non-Hermitian system. The material parameters and the layer thicknesses are mentioned in the text.

in the top inset of the right column of Fig. 8. Examining the
transmission, reflection, and absorption results, we observe
that the position of the resonances is practically the same as in
the previous case (of middle column). However, there is quite
a significant difference in the CD peak amplitudes, which is
connected to the different chiral-loss impedance involved here
compared with the chiral-gain one of the previous case and to
the reflection asymmetry of the gain-loss bilayer, leading to
different field amplitudes and thus different absorption in the
chiral layer region.

APPENDIX E: STRONG CHIRAL DISSYMMETRY AT
ACCIDENTAL FLUX-CONSERVING POINTS

A particularly interesting feature of PT-symmetric optical
systems is the accidental flux-conserving points, correspond-

ing to R(L) = R(R). If T � 1, it has been shown [35] that, at
these points, the conservation relation T + R = 1 of the Her-
mitian systems holds, although the system is non-Hermitian,
resulting in zero absorption. Thus, at such points, due to the
vanishing of the total absorption, one can have high values of
the dissymmetry factor even for very weak CD and for inci-
dence from either side of the system. An even more intriguing
feature of PT systems is the possibility of R(L) = R(R) = 0,
T = 1, i.e., an accidental flux-conserving point coinciding
with an ATR; such points are called points of double acciden-
tal degeneracy [35] and need special care for their engineer-
ing. At such points, the dissymmetry factor can be maximized
in our three-layer PT systems. As an example, we calculate the
dissymmetry factor for the system of Fig. 8 (left column) in
a frequency region close to a point of quasidouble accidental
degeneracy. The dissymmetry factor for CP waves incident

174112-15



IOANNIS KATSANTONIS et al. PHYSICAL REVIEW B 105, 174112 (2022)

FIG. 9. (a) Transmission (T) and reflection (R) power coefficients for the system of Fig. 8—left-column; the dashed vertical line
marks a point of quasi-double accidental degeneracy. (b) Dissymmetry factor (g) calculation for the system of (a) for chiral layer with
κ = +5(10−4 + 10−5i). (c) The same as in (b) for κ = −5(10−4 + 10−5i). The black lines correspond to waves incident from the left side
of the system [marked by the superscript (L)] and the red lines from the right side [marked by the superscript (R)]. The subscripts +/− indicate
right/left circularly polarized waves.

from both sides and for positive/negative chirality parameters
are depicted in Figs. 9(b) and 9(c). We observe strong dis-
symmetry factors g(L) ∼= 0.24 and g(R) ∼= 0.12 (one order of
magnitude larger than the dissymmetry factors of Fig. 4) at
frequency ∼119.8 THz, which is a point of quasidouble acci-
dental degeneracy, as shown in Fig. 9(a) (we note again here

that the presence of the chiral layer perturbs the PT-symmetric
character of the gain-loss layers, making the three-layer sys-
tem not fully PT symmetric). In closing, we should note that
the frequency region ∼119.8 THz is not the only region where
accidental flux conservation occurs in our system; there are
multiple points/regions with this property [35].

APPENDIX F: ABSORPTION, CD, AND DISYMMETRY FACTOR FOR A THIN CHIRAL LAYER—DERIVATION OF EQ. (1)

We start with Maxwell’s equations and the constitutive relations for a (Pasteur) chiral medium:

∇ × E(r, t ) = −∂B(r, t )

dt
, (F1)

∇ × H(r, t ) = ∂D(r, t )

dt
, (F2)

D(r, t ) = εE(r, t ) + iκ

c
H(r, t ), (F3)

B(r, t ) = μH(r, t ) − iκ

c
E(r, t ), (F4)

where ε = εrε0 and μ = μrμ0 are the electric permittivity and magnetic permeability, respectively, and κ is the (Pasteur)
chirality parameter. From classical electrodynamics, we know that electromagnetic power density (P) is defined as the flux
of Poynting’s vector S(r, t ), which describes the flow of energy per unit time per unit area (J/sm2 in SI units). For complex
time-harmonic electromagnetic fields of the form e−iωt , the time averaged P (over a period T) can be written as

〈P〉T = [∇ · S(r)] = 1
2 Re{∇ · [E(r) × H∗(r)]}. (F5)

Inserting Maxwell’s Eqs. (F1) and (F2) into the expression ∇ · [E(r, t) × H∗(r, t)], considering the vector identity ∇ ·
(A × B) = B · (∇ × A) − A · (∇ × B) and assuming ε = ε′ + iε′′, μ = μ′ + iμ′′, and κ = κ ′ + iκ ′′, we can write

[H∗ · (∇ × E) − E · (∇ × H∗)] =
[

H∗ ·
(

−∂B
dt

)
− E ·

(
∂D∗

dt

)]

= [H∗ · (iωB) − E · (iωD∗ )] = [−iω(E · D∗ − β · H∗)]

= −iω

[
E ·

(
ε∗E∗ − iκ∗

c
H∗

)
−

(
μH − iκ

c
E

)
· H∗

]

= −iω

[
ε∗|E|2 − μ|H|2 + i(κ − κ∗)

c
E · H∗

]

= −iω

{
(ε′ − iε′′)|E|2 − (μ′ + iμ′′)|H|2 − 2κ ′′

c
[Re(E · H∗) + iIm(E · H∗)]

}
. (F6)
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Therefore, from Eqs. (F5) and (F6), we can write

〈P〉T = −ω

2

[
ε′′|E|2 + μ′′|H|2 − 2κ ′′

c
Im(E · H∗)

]
. (F7)

Defining optical chirality [7] as

C = − ω

2c2
Im(E · H∗), (F8)

Eq. (F7) becomes

〈P〉T = −ω

2
(ε′′|E|2 + μ′′|H|2) + 2cκ ′′C. (F9)

For loss media Re[∇S(r, t )] < 0; hence, the absorbed power can be computed by integrating the time-averaged power density,
Eq. (F9), over the entire volume of the chiral layer. Assuming RCP/+ or LCP/− waves, we can write

A± =
∫ [

ω

2
(ε′′|E±|2 + μ′′|H±|2) + 2cκ ′′C±

]
dV. (F10)

In the case in which the chiral layer is very thin (k±d � 1) or the chirality (κ) is very weak, then |E+|2 ≈ |E−|2 ∼= |E|2, |H+|2 ≈
|H−|2 ∼= |H|2, and C+ = −C− ∼= C. Then the CD, defined as = A+ − A−, becomes

CD = 2cκ ′′
∫

(C+ − C−)dV = 4cκ ′′ ∫CdV, (F11)

and the total absorption of the system as

A+ + A− = ω ε′′
∫

|E|2dV + ωμ′′
∫

|H|2dV + 4cκ ′′ ∫CdV, (F12)

Combining Eqs. (F11) and (F12), we can calculate the dissymmetry factor g as the following:

g = 2CD

A+ + A−
= 8cκ ′′ ∫ CdV

ω(ε′′ ∫[|E|2] dV + μ′′ ∫[|H|2] dV )
. (F13)
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