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We study the ergodic and nonergodic behaviors of a clean Jaynes-Cummings-Hubbard chain for different
parameters based on the average level spacing ratios and the generalized fractal dimensions of eigenstates by
using exact diagonalization. It can be found that a transition from ergodic to nonergodic regimes happens when
increasing the atom-photon detuning, and the nonergodic phases should exist in the thermodynamic limit. We
also find that the nonergodic phase violates the eigenstate thermalization hypothesis and displays many-body-
localization-like behavior. Finally, we study the many-body multifractality of the ground state and find that the
derivative of the generalized fractal dimensions can determine the critical point of the superfluid-Mott-insulation
phase transition in a small range of parameters under different boundary conditions and there is no ergodicity for
the ground state.
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I. INTRODUCTION

Generally speaking, ergodicity is the basic hypothesis of
classical statistical physics, which means that the system will
visit each region of phase space in the process of time evo-
lution and the time spent is proportional to the volume of
the region under the long-time limit [1–3]. Learning from the
idea of classical statistical mechanics, how to connect quan-
tum mechanics with statistical physics has become a topic
of interest. Based on Berry-Tabor conjecture [4], quantum
ergodic theory comes into being: for any quantum system,
it is assumed that the eigenstate of an ergodic Hamiltonian
is essentially an uncorrelated random variable [5]. Therefore,
using the random matrix theory (RMT), the eigenvalues and
eigenstates of many-body quantum systems can predict the
existence of ergodicity [3,6–11].

It was realized very early that not all systems are ergodic,
in general, quantum integrable systems are nonergodic. When
a generic perturbation is added, a few quantum integrable
systems are unstable and become ergodic [5]. Ergodicity is
an obvious property of quantum nonintegrable systems, but
ergodicity breaking has been found in many cases due to
different factors. For example, for a classical periodic driven
one degree of freedom [11] or many-body systems [12–15],
under the quantum regime, the interference effect leads to an
inhibition of energy absorption and forms dynamic localiza-
tion, which shows a nonergodic behavior. When a disorder
is introduced, a complex many-body system cannot be ther-
malized and produces a spatially localized motion integral
with a nonergodic behavior [16–20]. The ergodicity breaking
also occurs in an incompletely chaotic nonintegrable system
which keeps a memory of the initial state [21]. Since 2017,

*tanlei@lzu.edu.cn

researchers have found that in lattice gauge theories, the emer-
gence of local constraints leads to nonergodicity [22–28].
Later, it was found that the large tilt potential can also produce
a similar effect to the disorder, resulting in the nonergodic
many-body systems [29–32], which has been realized in the
latest experiments [33,34]. In addition, the existence of non-
ergodic behaviors is also found for a one-dimensional uniform
Josephson junction chain at higher energies or weak Joseph-
son coupling [35] and a clean Bose-Hubbard chain under
weak tunneling strength [36]. Interesting questions thus arise
and need to be clarified, e.g., whether there are other factors
that can lead to the ergodicity breaking?

Based on the above works, we are interested in explor-
ing whether a clean Jaynes-Cummings-Hubbard (JCH) has a
nonergodicity under the thermodynamic limit and whether the
transition from ergodic to nonergodic phase can be controlled
by changing the atom-photon detunings. In the study of er-
godicity and nonergodicity of many-body systems mentioned
above, most researchers mainly focus on spin, fermion, or
boson systems with direct two-body interaction. While for
the JCH model described a boson and spinlike hybrid sys-
tem, only relatively fewer investigations on the ergodicity and
thermalization are conducted. Recently, the eigenstate ther-
malization and quantum chaos of the JCH model are discussed
primarily by our group based on the open boundary conditions
for the resonance cases. It can be found that the JCH model
has the property of the quantum chaotic system due to the
competition between the effective on-site repulsive poten-
tial and the photon tunneling strength [37,38]. Significantly,
the influence of the atom-photon detuning is absent. As is
well known, detuning is an important controlled parameter,
which is known to have a variety of practical consequences.
A large number of novel physics emerging from the detun-
ing has been widely explored, which includes the photon
blockade [39], non-Markovian behavior [40], polariton Mott
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phases [41], geometric quantum computation [42], popula-
tion transfer [43], and the modification of molecular spectra
with detunings [44], et al. Physically, detuning can affect the
properties of eigenenergies and eigenstates of the system by
controlling the coupling between the atom and the cavity field,
then the on-site repulsive potential can be regulated and the
ergodicity may be changed correspondingly.

Inspired by these works, in this paper, we focus on the non-
ergodic and ergodic phase of a one-dimensional JCH model
for small atom-photon detunings under almost all ranges of
tunneling strength based on the average level spacing ratios
and the finite-size generalized fractal dimensions (GFDs) in
the periodic boundary condition (PBC). We first find that the
atom-photon detuning can control the ergodic and nonergodic
phases transition of the JCH model. With the increase of
the absolute value of atom-photon detuning, the ergodic re-
gion of the system gradually decreases and then disappears.
In the case of a atom-photon detuning, through finite-size
analysis, it is predicted that ergodic breaking also exists un-
der the thermodynamic limit. Then, through the eigenstate
thermalization hypothesis (ETH), we further know that the
nonergodic phase does not satisfy the thermalization be-
havior, which is similar to many-body localization and no
corresponding single-particle similar phenomenon. It is very
meaningful to the system that cannot be thermalized. In a
such case, the information of the initial state can persist,
and the dynamic behavior can be controlled under long-term
evolution [20]. In addition, the positive and negative atom-
photon detuning have different effects on the ground state
ergodicity. Under the exact diagonalization, it is found that
the critical phase transition point of superfluid (SF) to Mott
insulation (MI) can be easily determined in a very small range
of parameters by the derivative of GFDs.

The paper is organized as follows: In Sec. II the theoretical
model is introduced, and we describe the required physical
quantities and analyze the energy spectrum phase in Sec. III.
Section IV is devoted to providing the relationship between
the ground state phase transition and multifractal. The con-
clusions are summarized in Sec. V.

II. THEORETICAL MODEL

We study a one-dimensional JCH model including an
atom-photon interaction term and a photon tunneling term
between nearest neighboring cavities [45–47]. Using the ro-
tating transformation operator U = exp[−i

∑L
j=1 ωc(a†

j a j +
σ+

j σ−
j )t], a generic Hamiltonian of the JCH model

Hgen =
L∑
i

[ωca†
i ai + ωaσ

+
i σ−

i + ga(aiσ
+
i + a†

i σ
−
i )]

− J
L∑
i

(a†
i ai+1 + aia

†
i+1) (2.1)

can be written as

H = Hint + Htun =
L∑
i

[�σ+
i σ−

i + ga(aiσ
+
i + a†

i σ
−
i )]

− J
L∑
i

(a†
i ai+1 + aia

†
i+1), (2.2)

where � = ωa − ωc is the atom-photon detuning, ωa is the
transition energy of the two-level atom in every cavity, and ωc

is the frequency of each cavity field. σ+
i and σ−

i are the atomic
raising and lowering operators, respectively. The second term
of the local interaction Hamiltonian term Hint describes the
on-site coupling between the photons and the atom on each
site, and a†

i (ai ) is the photonic creation (annihilation) operator
in the ith site. We assume that all the atoms couple to cavities
with the same coupling ga. The tunneling Hamiltonian term
Htun is the sum of tunneling of photons and J is the hopping
energy of photons between the nearest neighboring cavities i
and i + 1 for all cavities.

The JCH model is a typical model in the field of
many-body quantum optics, which can be realized in su-
perconducting circuit and traditional optical coupled-cavity
arrays, respectively [48–50]. The relationships between the
physical parameters studied on these two experimental plat-
forms can be the same for the Hamiltonian Eq. (2.2). In
general, atom-photon coupling strength ga ∼ √

ωc and the
tunneling strength between cavity fields is J ∼ ωc [51]. Here,
in order to satisfy the rotating wave approximation, we require
ωa/ga, ωc/ga � |�/ga|. This system includes N excitations
[N = ∑

i(a
†
i ai + σ+

i σ−
i ) = ∑

i(n
c
i + na

i ) is the total number
of atomic and photonic excitations]. The filling factor is ν ≡
N/L = 1, unless expressly specified otherwise. Actually, as
the diagonalization of the generic Hamiltonian Hgen works in
a fixed total number of excitation N with the rotating wave
approximation, the properties of the system are related to the
relative value between the atomic and the photonic frequen-
cies, but not to their absolute value, then the rotating frame
transformation can be used here to discuss the properties
of the system. The JCH model has a reflection symmetry
under the reflection (parity) operation P about the center of
coupled-cavity arrays. Hilbert space can be decomposed into
symmetric p = 1 and antisymmetric p = −1 subspaces. In
the PBC, the JCH model also has translational symmetry and
Hilbert space is further divided into subspaces with different
quasimomentum Q. The general basis of full Hilbert space of
H , with a space dimension

N =
min[N,L]∑

s=1

(
L

(N + L − s − 1)!

(N − s)!(L − s)!s!

)
(2.3)

is shown by the direct product of the cavity field states and
atom states |n〉 ≡ ∏

i |ni, e(g)〉i. We mainly use numerical
calculation in the irreducible Hilbert subspace D ≈ N /2L
with Q = 0 and p = −1 for the PBC. When each on-site
decouples, one only considers the interaction term Hint of
the Hamiltonian and the effective local Jaynes-Cummings
Hamiltonian can be easily diagonalized. One can obtain
the eigenstates known as dressed states, |±, ni〉 = [(�/2 ±
χni )|ni, g〉 + ga

√
ni|ni − 1, e〉]/

√
2χ2

ni
∓ χni� in the ith cav-

ity, and the corresponding eigenenergies are E±
i = �/2 ± χni ,

with χni = √
g2

ani + �2/4. The eigenvectors of the local in-
teraction Hamiltonian Hint are

∏L
i=1 |±, ni〉. The eigenvectors

of the tunneling Hamiltonian Htun are the delocalized plane-
wave (standing-wave) modes with different wave vectors from
the Fock states for PBC (hard-wall boundary condition). The
interaction term and the tunneling term are integrable and
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analytically solvable in the real and momentum spaces, re-
spectively. When the scaled tunneling strength J/ga is around
1, the competition between tunneling and interaction makes
the JCH model be nonintegrable and show spectral chaos and
ergodicity [38]. When J/ga → 0 (∞), the JCH model exhibits
integrability and nonergodicity.

III. ENERGY SPECTRUM PHASE TRANSITION AND
THERMALIZATION BEHAVIOR

For characterizing the ergodicity of the JCH model from
the eigenstates’ structure, the conventional method is based on
the multifractal complexity by using finite-size GFDs [52,53]

D̃q = 1

1 − q
logN Rq, with Rq =

∑
α

|ψα|2q, q ∈ R+,

(3.1)

where ψα is the amplitude of eigenvectors in a given orthonor-
mal basis |n〉 of size N . The scaling of Rq is generically
described by Rq ∼ N−(q−1)Dq with Dq ≡ limN→∞ D̃q (Dq ∈
[0, 1]). When D̃q�1 = 0, the state is localized in the con-
sidered basis. When D̃q = 1 for all q moments, the state is
ergodic. Otherwise, the state is extended nonergodic (multi-
fractal). In this paper we only study the case q = 1, 2, and
∞. By using the L’Hôpital’s rule, we can get the dimension
D̃1 = −∑

α |ψα|2 logN |ψα|2, which is the information di-
mension and governs the scaling of the Shannon information
entropy. D2 is known as a measure of the state’s “volume”
and affects the inverse participation ratio of the eigenstate.
As for D̃∞, it is equal to limq→∞ logN [(

∑
α |ψα|2q)1/(q−1)] ≈

− logN (|ψα|2max[α] ), only the largest term |ψα|2 will contribute
to the summation and q/(q − 1) → 1 in the limit q → ∞,
and determined by the maximum value of the intensities in
a certain basis [54].

In this section we analyze the phase transition of the energy
spectrum for the ergodic and nonergodic regimes for differ-
ent �/ga. Eigenenergy is scaled as ε ≡ (E − Emin)/(Emax −
Emin) ∈ [0, 1], where Emin and Emax are the minimum and
maximum of the eigenenergies, respectively, then the eigen-
states can be chosen around energy targets [55–57]. In the
random matrix theory, the discrimination between ergodic and
nonergodic regimes can depend on spectral statistics [36,58].
We can capture the statistical features of spectrum by the level
spacing ratios [59,60] rn = min(δn+1/δn, δn/δn+1), where
δn = En+1 − En is the nth level spacing and the eigenenergies
are arranged in an ascending order. When the system is er-
godic, which is expressed as a Gaussian-orthogonal ensemble
(GOE), random matrix and the average level spacing ratios
show the Wigner-Dyson distribution (〈r〉WD ≈ 0.5295) [60].
Otherwise, the system is nonergodic, which is just like a
classical integrable system and shows as Poisson distribution
(〈r〉P ≈ 0.386) [4]. Next, combining 〈r〉 and 〈D̃1〉, we can
judge which phase of the system is shown under different
parameters. Due to the facts that the fluctuations of GFDs
are particularly sensitive to the ergodic behavior than the
average GFDs, we also consider its variance var(D̃1) [61].
When the value of var(D̃1) changes with the extreme drop,
the state undergoes a transition from nonergodic to ergodic.
In order to elucidate the asymptotic behavior of the GFDs in

an ergodic region, the numerical results of 〈D̃1〉 and var(D̃1)
are compared against the GOE values for the random matrix
theory (RMT), which provides wonderful analytical approxi-
mation [10,61],

〈D̃1〉GOE = HD/2 − 2 + ln 4

lnD , (3.2)

var(D̃1)GOE = (3π2 − 24)(D + 2) − 8

2(D + 2)2 ln2 D
− ψ (1)

(
2 + D

2

)
ln2 D

,

(3.3)

where Hn = ∑n
k=1

1
k and ψ (1) expresses the first derivative of

the digamma function [62].
We divide the interval [0,1] of ε variation into 100 bins

of equal width. When the eigenvalues and eigenvectors fall
into each bin, mean values (〈r〉, 〈D̃1〉) and variances var(D̃1)
as a function of J/ga can be computed with various atom-
photon detuning in Fig. 1. A quasisquare region of spectral
chaos also can be identified with �/ga = 0, 0.02 � J/ga �
0.2 and 0.1 � ε � 0.9 in Figs. 1(a), 1(d) and 1(g), where
〈r〉 ≈ 0.5295, 〈D̃1〉 closes to 1, and var(D̃1) is a smaller
value with several orders of magnitude. On the other hand,
other regions of eigenenergy spectrum may be nonergodic and
cannot be thermalized in the thermodynamic limit. One can
find that these three physical quantities exhibit a symmetry
about ε = 0.5. The reason is that, under the chiral oper-
ator � =  j∈eveneπ ia†

j a j  j∈oddσ
z
j , the Hamiltonian Eq. (2.2)

has a chiral symmetry (�H�† = −H) in the resonance
�/ga = 0 for an even number of the lattice sites of the
PBC [38]. Chiral symmetric Hamiltonian satisfies H�|ψn〉 =
−�H |ψn〉 = −�En|ψn〉 = −En�|ψn〉, which means the cor-
responding energy spectra are symmetric [63]. It turns out
that the eigenenergies are symmetrical about the zero energy.
Since the eigenenergies are scaled as ε, the level spacing
ratios 〈r〉, which is the function of eigenenergies, is sym-
metrical about the scaled eigenenergies at ε = 0.5. On the
other hand, the eigenstate |�n〉 = �N

i ψi|n〉 meets the condi-
tion 〈�n|�†�|�n〉 = 〈�n|�n〉 = �N

i |ψi|2. In fact, according
to the form of the � operator, the phase difference between
the same basis of these two eigenstates are 0 or π . Those
two eigenstates have the same GFDs D̃1. And because the
eigenenergies of states |�n〉 and �|�n〉 are En and −En, their
GFDs D̃1 are also symmetrical about the scaled eigenenergies
at ε = 0.5. Thus, 〈D̃1〉 and var(D̃1) are also symmetric about
ε = 0.5.

From the energy-resolved density plot of 〈D̃1〉, one can find
that the eigenenergy spectra gradually form several energy
bands with the increase of |�/ga| at small scaled tunneling
strength. The region of ergodic spectra fans out as |�/ga|
increases. The eigenenergy spectra no longer have the ergodic
region for |�/ga| = 10. Moreover, The behaviors of 〈D̃2〉 and
〈D̃∞〉 are similar to that of 〈D̃1〉, thus we do not discuss these
two quantities in this section.

The eigenenergy average level spacings and eigenstate an-
alyzed are required far from the edges of the spectrum for
the applicability of RMT [3]. Therefore, the low-lying excited
states and the states with the highest energies should be ex-
cluded and we only chose (middle one-third) a part of the
intermediate energy spectrum, which can reflect the ergodicity
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FIG. 1. The average level spacing ratios 〈r〉 (top), the average GFDs 〈D̃1〉 (middle), and the variance log[var(D̃1)] (bottom) as functions of
the scaled tunneling strength J/ga and the scaled energy ε with L = 8, D = 9581 for PBC. The first, second, and third column correspond to
|�/ga| equaling to 0, 5, and 10, respectively. Red dashed lines mark ε = 0.5. The white area indicates that it goes beyond the display range of
〈r〉 and var(D̃1).

of the considered system. To clarify the influence of the size of
Hilbert space on the eigenstates’ structure and eigenenergies,
we study the mean of 〈r〉 and 〈D̃1〉 and the var(D̃1) change
with J/ga and L for the detuning |�/ga| = 0, 5, 10 in Fig. 2.
It should be noted that the value of detuning |�/ga| is still
far less than the atomic (photonic) frequency, i.e., |�/ga| 
ωa/ga (ωc/ga) and satisfies the rotating wave approximation
in this paper.

From Fig. 2(a) we can see that 〈r〉 is approximately the
Wigner-Dyson distribution in the middle coupling strength
J/ga and |�/ga| = 0, and this feature is more obvious when
the size L is large. Significantly, the average level spacing
distributions of odd and even number of the lattice sites are
different when the tunneling is large. This is because the
lattice of the even length have chiral symmetry in the PBC,
but the lattice of the odd length does not. For the case of the
lattice of the odd length, both the first and the last sites are
odd in the tunneling term, which prevents the Hamiltonian H
from satisfying the chiral symmetry under the chiral operator
�, and this effect is especially significant for large tunneling
strength. It can be seen from the inset of Fig. 2(a) that under
the hard-wall boundary condition (HWBC), both the odd and
even number of the lattice sites have chiral symmetry, thus 〈r〉
is no difference. For 〈D̃1〉 [see Fig. 2(d)], when J/ga is around
1, it exhibits a wider plateau for increasing size L and shows a
extended nonergodic behavior, but the value of which depends
on the size L. In addition, the corresponding var(D̃1) presents
minimum value at intermediate range of J/ga and rises sharply

FIG. 2. The average level spacing ratios 〈r〉 (top), the average
GFDs 〈D̃1〉 (middle), and the variance var(D̃1) (bottom) versus
J/ga at the middle one-third spectrum for different atom-photon
detuning |�/ga|. Four colors represent four sizes L = 6 (black), 7
(red), 8 (blue), and 9 (yellow). The corresponding irreducible Hilbert
subspaces are DL = 399, 1996, 9581, 47 692. Gray dashed lines
represent 〈r〉 = 0.386 and 0.5295 in (a)–(c). The inset in (a) is 〈r〉
for HWBC with L = 5, 6, 7. Dashed lines indicate the corresponding
GOE value of 〈D̃1〉 and var(D̃1) in (d)–(f) and (g)–(i), respectively.
The first, second, and third column correspond to |�/ga| = 0, 5, and
10, respectively.
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(a) (b) (c)

FIG. 3. (a) The average level spacing ratios 〈r〉, (b) the average
GFDs 〈D̃1〉, and (c) the variance var(D̃1) versus �/ga at the middle
one-third spectrum for the tunneling strength J/ga = 1. Four colors
represent four sizes L = 6 (black), 7 (red), 8 (blue), and 9 (yel-
low). Gray dashed lines represent 〈r〉 = 0.386 and 0.5295 in (a)–(c).
Dashed lines indicate the corresponding GOE value of 〈D̃1〉 and
var(D̃1) in (d)–(f) and (g)–(i), respectively.

on both sides of the valley in Fig. 2(g). It is noteworthy
that the plateau values of 〈D̃1〉 and the valley of var(D̃1)
agree well with those expected value of Eqs. (3.2) and (3.3)
for GOE eigenvectors, shown by dashed lines in Figs. 2(d)
and 2(g). Obviously 〈D̃1〉 → 1, var(D̃1) → 0, and 〈r〉 ap-
proaches 0.5295, when the size L → ∞. At the other regions
of the parameter J/ga, we are not sure whether 〈D̃1〉 (〈r〉) tends
to zero (0.386) in the thermodynamic limit, but they mismatch
the GOE of RMT and these regions are not an ergodic phase,
which is similar to the Bose-Hubbard model [61]. Combining
〈r〉, 〈D̃1〉, and var(D̃1), one knows that the intermediate region
is standard ergodic phases and the regions on both sides are
nonergodic phases with |�/ga| = 0 in the thermodynamic
limit. However, with the increase of |�/ga| (the second and
third columns in Fig. 2), 〈r〉 of the original ergodic region is
close to Poisson distribution with the increase of the size L.
Meanwhile, the results of 〈D̃1〉 and var(D̃1) are more and more
inconsistent with the GOE of RMT and the ergodic region
gradually disappears.

To know the transition from ergodic region to nonergodic
region with the increase of atom-photon detuning more intu-
itively, the change of three physical quantities 〈r〉, 〈D̃1〉, and
var(D̃1) with �/ga is drawn for J/ga = 1 in Fig. 3. It can be
found that when the detuning �/ga is near zero, the standard
ergodic behaviors are shown by three physical quantities.
With the increase of detuning �/ga, the system gradually de-
viates from the ergodic property and changes from the ergodic
to nonergodic phase.

In detail, we also analyze the variation of four physi-
cal quantities 〈r〉, mse(〈r〉), 〈D̃1〉, and var(D̃1) versus size
L for tunneling strength J/ga = 1 and detuning �/ga = 0
(ergodic phase) and 10 (nonergodic phase) in Fig. 4, where
〈r〉 is the mean of 〈r〉 for J/ga ∈ [0.4, 1] and mse(〈r〉) =∑

i(〈r〉i − 〈r〉pre)2 is the corresponding mean squared error of
average level spacing ratios 〈r〉, 〈r〉pre is a predicted value
which approaches 0.5295 for the ergodic phase and 0.386
for the nonergodic phase, respectively. The reason for this
treatment of 〈r〉 is that it fluctuates relatively large in the finite
size. From Fig. 4(a) one can find that 〈r〉 of the ergodic phase
(�/ga = 0) change with size L, which is in good agreement
with the theoretical GOE values. For the nonergodic phase
(�/ga = 10), 〈r〉 has a trend close to the Poisson distribution

FIG. 4. The mean 〈r〉 (a) and the mean squared error mse(〈r〉)
(b) of the average level spacing ratios 〈r〉, the average GFDs 〈D̃1〉 (c),
and the variance var(D̃1) (d) versus 1/L for different atom-photon
detuning |�/ga| = 0 (blue) and 10 (red). Black dashed lines repre-
sent 〈r〉 = 0.368 and 0.5295 in (a). The black dashed lines indicate
the corresponding GOE value of 〈D̃1〉 and var(D̃1) in (c) and (d),
respectively. The tunneling strength J/ga = 1 for (c) and (d). The
selected sizes are L = 6, 7, 8, 9.

with the increase of size L. In addition, the mean square error
mse(〈r〉) of both phases decreases with the increase of size
L in Fig. 4(b). In other words, with the increase of size L,
the ergodic phase tends to Wigner-Dyson distribution, while
the nonergodic phase tends to Poisson distribution. As for the
average GFDs 〈D̃1〉 and the variance var(D̃1) [see Figs. 4(c)
and 4(d)], the physical quantities are in good agreement with
the GOE values for the ergodic phase. The behaviors of 〈D̃1〉
and var(D̃1) are a pronounced difference from the ones of
GOE for the nonergodic phase, especially for var(D̃1). There-
fore, we predict that the phase transition occurs from ergodic
to nonergodic cases with increasing atom-photon detuning
in the thermodynamic limit. We all know that when J/ga

equals 0 or ∞, the eigenstates are massively degenerate. Thus,
the density of states ρ(ε) = �αδ(ε − εα )/DL are shown in
Fig. 5 to judge whether the average level spacing ratios of
Poisson distribution for the large size is caused by energy level
quasidegeneracy [27]. One can see that the density of states
shows a series of spikes at J/ga = 0.01, 100, and |�/ga| = 0
for a small system size L, but the structure gets diluted into
a smooth continuum when increasing the system size. This
tendency is also quite obvious at J/ga = 1 and |�/ga| = 10.

(a) (b) (c) (d)

FIG. 5. Density of states ρ(ε) coarse-grained over the scaled
energy ε for different J/ga and atom-photon detuning |�/ga|. Ac-
cording to the number of eigenstates, ε is divided into 100 equal
bins. The spikes mark the multiplet structure. Four colors and signal
represent four sizes L = 6 (black star), 7 (red plus), 8 (blue circle),
and 9 (yellow cross).
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FIG. 6. The diagonal matrix elements of Htun as a function of the
rescaled energy for |�/ga| = 0 [(a)], 5 [(b)], 10 [(c)] with different
sizes L = 6 (black star), 7 (red plus), 8 (blue circle), and 9 (yellow
cross). The off-diagonal matrix elements of Htun as a function of the
rescaled energy for |�/ga| = 0 [(d)], 5 [(e)], 10 [(f)] for L = 7 (red
plus). The corresponding black line is running averages with a subset
length of 100. (g) The mean statistics of eigenstate-to-eigenstate
fluctuations in Zη vs the system size. (h) The variance σ〈α|Htun|α〉
vs the system size. (i) The average off-diagonal matrix elements
|〈α|Htun|β〉| vs the irreducible Hilbert subspace D. In (g)–(i), the
black star, red plus, and blue circle lines correspond to |�/ga| = 0,
5, 10, respectively.

Moreover, the density of states is almost a smooth curve at
J/ga = 1 and |�/ga| = 0, even in the case of small system
size, which is a Wigner-Dyson distribution and ergodic region.
Therefore, the discussions of the ergodicity breaking in a
small (large) J/ga and |�/ga| are independent of the spectrum
in multiplets. Through analysis we find that one natural reason
of the ergodicity breaking is the eigenenergies separation with
the increase of the detuning |�/ga|.

In order to understand the thermalization properties of the
ergodic and nonergodic phases, we further study whether the
system obeys ETH for different |�/ga|. ETH is often used to
describe the mechanism of the quantum thermalization in a
generic quantum ergodic system [64,65]. When ETH ansatz
is applicable, the diagonal matrix elements’ fluctuation and
the off-diagonal matrix elements of the observables are expo-
nentially small with an increase of the system size [5,38,66–
69]. In the following we focus on the middle one-third of
eigenstates and verify whether the system meets the validity
of the ETH for J/ga = 1. The tunneling term Htun is chosen,
namely the photons kinetic energy, as a selected observable.

First, we study the diagonal part of the observable
〈α|Htun|α〉. Figures 6(a)–6(c) show the diagonal matrix ele-
ments of Htun in the eigenstates |α〉 of the irreducible Hilbert
subspace as functions of εα/εav for different |�/ga|, where

εα is the corresponding scaled energy eigenvalue of the
eigenstate |α〉 and εav = TrD{(H − Emin)/(Emax − Emin)} is
the average energy eigenvalue. The different colored symbols
represent different system sizes. We find that the fluctua-
tions of the eigenstate-expectation values decrease with size
L in Figs. 6(a)–6(c) and eigenstate-expectation values become
smooth functions of the energy density in the thermodynamic
limit L → ∞. However, when |�/ga| = 10, the fluctuation
of the diagonal matrix element is generally invariant with
the size increasing, which is in agreement with the behavior
of the integrable system and dissatisfies the diagonal part of
the ETH ansatz [70]. Furthermore, we quantitatively analyze
the relation between the eigenstate-to-eigenstate fluctuations
and the system’s size L in the middle one-third spectrum. A
measure of eigenstate-to-eigenstate fluctuations of diagonal
expectation values is defined as zα (Htun) = 〈α + 1|Htun|α +
1〉 − 〈α|Htun|α〉 [71]. In the middle one-third energy window,
the mean can be given by

〈Z〉(Htun) = D−1
∑

|α〉∈D
|zα (Htun)|. (3.4)

The diagonal matrix element variance as a function of size
L is also considered for the measure of ETH. The variance of
diagonal expectation value around the microcanonical average
is defined as

σ〈α|Htun|α〉 = �ε′
α
(〈α|Htun|α〉 − 〈Htun〉ME)2

Nstate
, (3.5)

where ε′
α ∈ [εav − δ, εav + δ], Nstate is the number of ε′

α ,
〈Htun〉ME = �ε′

α
〈α|Htun|α〉/Nstate is the microcanonical ensem-

ble average, and δ (we choose δ = 0.05) is a macroscopically
small energy width [70,72]. From Fig. 6(g) one can see that
the statistical average of eigenstate-to-eigenstate fluctuations
〈Z〉α (Htun) change with size L for different detuning |�/ga|.
When |�/ga| = 0, the fluctuations exponentially decrease as
the system size L increases. As the detuning |�/ga| is rela-
tively large, the fluctuations hardly decrease with size L. The
behavior of the variance σ〈α|Htun|α〉 is similar to the that of
〈Z〉α (Htun) [see Fig. 6(h)], but the results in small size are not
as expected for |�/ga| = 10.

We also briefly discuss the off-diagonal matrix elements
〈α|Htun|β〉 of the tunneling operator to prove whether the
off-diagonal part of the ETH ansatz is satisfied for differ-
ent |�/ga|. The eigenstates are limited to a narrow energy
window (1 − δ) < ε̄/εav < (1 + δ) and ε̄ = (εα + εβ )/2. The
running average line becomes rougher with the increase of
detuning and the overall fluctuation is larger in the nonergodic
phase than the ergodic one for 〈α|Htun|β〉 versus ω = εα − εβ

in Figs. 6(d) and 6(e). But the average off-diagonal matrix ele-
ments of the tunneling operator |〈α|Htun|β〉| are exponentially
small with different irreducible Hilbert subspaces D for dif-
ferent �/ga in Fig. 6(i). Thus, the difference between ergodic
and nonergodic phases is not obvious for the off-diagonal
elements.

Therefore, the results in Fig. 6 reveal that the observable in
the middle one-third spectrum obeys ETH for |�/ga| = 0 and
violates of ETH for |�/ga| = 10.
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FIG. 7. The finite-size GFDs D̃q (top) and its derivative dD̃q/d (J/ga) (bottom) as a function of the scaled tunneling strength J/ga. We chose
the basis of the product of the cavity field states and atom states |n〉. From left to right, different subgraphs represent different conditions. Black,
red, and blue lines correspond to the size L from small to large. The solid lines are D̃1, the dashed lines are D̃2, and the dot-dashed lines are
D̃∞ in the first four columns. The dotted (solid) line is the D̃1 for |�/ga| = 5 (10) in the last two columns. The vertical dotted line marks
Jc/ga = 0.2.

IV. THE ERGODICITY AND PHASE TRANSITION OF
GROUND STATE

In this section we verify whether GFDs can determine
the ground state phase transition and whether the SF and
MI phases have a definite many-body multifractality. For
integer filling factor ν and J/ga → 0, the ground state
is given by |�(J/ga = 0)〉 = ∏

i |−, ν〉i. Otherwise, when
J/ga → ∞, we can only consider the tunneling term of
the Hamiltonian H and the ground state is shown by
the Fock basis of photons for PBC, |�(J/ga = ∞)〉 =∑N

i

√
N!

LN ν1!ν2!...νL! (
∏

j |ν, g〉 j )i, which is similar to the results

of the Bose-Hubbard model [53]. One can get GFDs ana-
lytically from the thermodynamic limit for J/ga = ∞ (D1 =
0.941, D2 = 0.907, D∞ ≈ 0.721, for ν = 1) [54,73]. In other
words, the ground state shows multifractality in the Fock
basis of photons, which is in an extended nonergodic phase.
Through numerical analysis one can find that when J/ga is
extremely small, D̃q of the ground state is equal to zero, which
is a localized state. However, when J/ga is extraordinarily
large, the ground state is an extended nonergodic state with
0 < D̃q < 1.

In the following we calculated numerically D̃1, D̃2, and
D̃∞ with J/ga for different conditions. The gradient of D̃q

has its maximal value near the phase transition point in the
finite size for the ground state MI-SF phase transition [53,54].
Therefore, in order to determine the ground state phase tran-
sition point, we also plot the derivative of D̃q with J/ga. In
Fig. 7 we draw D̃q and dD̃q/d (J/ga) with different �/ga.
The vertical dotted line in the subgraphs is the MI-SF phase

transition critical point of the one-dimensional JCH model,
i.e., Jc/ga ≈ 0.2 [74,75]. The value of D̃q gets closer to a small
value with J/ga  1 as the size L increases, which can be
clearly obtained by finite-size analysis. At the large J/ga, the
value of D̃q shows multifractal behavior and increases with the
increasing of size L. On the other hand, through the derivative
dD̃q/d (J/ga), we can better judge the phase transition critical
point. From dD̃q/d (J/ga) versus J/ga in Figs. 7(g)–7(j), one
can find that the absolute value of the maximum derivative of
D̃q approaches the critical point with the increase of size L,
which is independent of the boundary conditions. Under dif-
ferent boundary conditions, a slight distinction appears with
the increase of size L, and |dD̃q/d (J/ga)|max may approach
the phase transition critical point in another direction, espe-
cially for D̃∞. Thus, dD̃q/d (J/ga) is a good quantity to judge
the MI-SF phase transition.

Furthermore, we can determine the range of phase transi-
tion critical point Jc/ga in the case of different filling factor ν

and detuning �/ga by two directions of the maximum value of
|dD̃q/d (J/ga)| approaching the phase transition critical point
under PBC and HWBC. For example, we find that for �/ga =
1, Jc/ga ∈ (0.06, 0.07), for �/ga = −1, Jc/ga ∈ (0.39, 0.45)
in Figs. 7(i) and 7(j). Interestingly, the critical point tc/ga

gradually moves to the right (left) with the increase (decrease)
of �/ga and D̃q tends to zero with J/ga close to zero in the
finite size, as |�/ga| gets bigger and bigger. In detail, we
also found that D̃q changes suddenly in a certain value J/ga

especially for D̃∞, which makes D̃q sometimes unsuitable for
describing MI-SF phase transitions. The result of the mutation
may be that we consider the subspace of the center-of-mass
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quasimomentum Q = 0 in the translational symmetry. How-
ever, we find that, when �/ga = −1 or in HWBC, the change
of D̃∞ is discontinuous even in the whole Hilbert space. The
another result is the inhomogeneous variation of the largest
term |ψα| in the finite size. From Fig. 7 one can draw a
conclusion that D̃∞, as a function of J/ga, is a smooth curve
in the thermodynamic limit. What is particularly interesting
is that the positive and negative signs of detuning have an
opposite effect on the ground state phase transition, which
is different from the results of the excited states. Through
finite-size analysis, a strict ergodic SF phase may not emerge
at any atom-photon detuning in the thermodynamic limit for
the ground state, which should be further verified by an exper-
iment of the 1D JCH system in the future.

V. CONCLUSION

In brief, using exact diagonalization, we have provided
an integral picture of the ergodic and nonergodic phases of
the one-dimensional JCH model for the excited state on the
basis of |n〉. Through the average level spacing ratios, the
average GFDs and the GFDs’ fluctuations, we can distinguish

the ergodic and nonergodic phases. The ergodic phases of
eigenvectors exist in the thermodynamic limit and are well
described by RMT. The phase transition from a nonergodic to
an ergodic phase occurs with the increase of the atom-photon
detuning. We also find that the nonergodic phase closes to
Poisson distribution and violates the ETH. As for the ground
state, we describe the characteristics of many-body multifrac-
tality for different atom-photon detuning. The change rate of
GFD can describe the MI-SF phase transition and the ex-
tended nonergodic MI (SF) phase can be achieved. We also
find that the phase transition critical point can be identified
easily in a very small range of parameters with large size and
different boundary conditions, which reduces the dependence
on complex numerical methods to study the superfluid-Mott-
insulation phase transition.
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