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Atomic stick-slip friction as a two-dimensional thermally activated process
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Widely recognized as a thermally activated process, atomic stick-slip friction has been typically explained
by Prandtl-Tomlinson model with thermal activation. Despite the limited success, theoretical predictions from
the classic model are primarily based on a one-dimensional (1D) assumption, which is generally not compatible
with real experiments that are two-dimensional (2D) in nature. In this letter, a theoretical model based on 2D
transition state theory has been derived and confirmed to be able to capture the 2D slip kinetics in atomic-scale
friction experiments on crystalline surface with a hexagonal energy landscape. Moreover, we propose a reduced
scheme that enables extraction of intrinsic interfacial parameters from 2D experiments approximately using the
traditional 1D model. The 2D model provides a theoretical tool for understanding the rich kinetics of atomic-scale
friction or other phenomena involving higher dimensional transitions.
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Since its first report on graphite [1], atomic stick-slip
has been commonly observed in nanoscale friction experi-
ments [2,3]. Its fundamental mechanism can be understood
by Prandtl-Tomlinson model with thermal activation (PTT)
[4–8], in which an independent oscillator is driven to move
along a periodically corrugated energy landscape under ther-
mal excitation. Although the PTT model can relate stick-slip
behavior to intrinsic characteristics of the sliding interfaces,
the statistical analyses [2,3,9–11] are derived predominantly
based on one-dimensional (1D) assumption in contrast to
the experiments that are essentially two-dimensional (2D) in
nature. This disparity makes correct interpretation of exper-
imental data prohibitively difficult, except in some idealized
situations [3,11,12]. While physical differences between 1D
and 2D models have been clarified by simulation [13], a better
understanding of the 2D stick-slip behavior is imperative. In
this work, we theoretically derive the slip probability in 2D
force space, which is further validated by atomic-scale friction
experiments. Based on the characteristics of the 2D slip force
distribution, we propose a reduced slip force histogram that
can be used to approximately extract the intrinsic interfacial
parameters while still using the traditional 1D analysis.

To produce the 2D atomic stick-slip friction data used for
subsequent theoretical modelling, we first performed numeric
simulations by solving the 2D Langevin equations [14,15]
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where x = (x, y) is the position vector of the tip, V is the total
potential energy including the tip-sample interaction U and
the elastic energy of the spring, and ξ is a random force vec-
tor originating from thermal excitation (see the Supplemental
Material [16] for details).

As schematically shown in Fig. 1(a), the tip scan direction
is assumed to be different from the close-packed direction
of the 2D energy landscape by a rotation angle θ to rep-
resent a generic sliding process. Here the hexagonal energy
landscape is described by the following tip-sample interaction
[11,14]:
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Figures 1(b) and 1(c) show a typical set of in-plane force
images and the corresponding line profiles for a simulation
with θ = 15◦ (more results can be found in Fig. S1 of the
Supplemental Material [16]). Using the modified line scan
reconstruction (LSR) algorithm [11] (see Fig. S2 [16] for
details), we identified the slip events as illustrated by the
circles in Fig. 1(c). By counting the lateral forces of all
slip events included in the data of Fig. 1(b) and Fig. S1
[16], we could plot the histograms of the lateral slip force
fx for the three systems, i.e., θ = 0◦, 15◦, 30◦. As indicated
by Fig. 1(d), the histograms of the lateral slip force differ
notably when the scan direction is varied, despite the fact
that the interfacial parameters are actually identical. Further
comparison demonstrates that none of the statistical distribu-
tions matches the theoretical prediction from the traditional
1D PTT [6,22,23] model (see Fig. S3 [16]). This inconsistency
is primarily caused by the fact that the real effective energy
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FIG. 1. (a) A schematic showing the simulation setup. (b) Lateral force fx (upper panel) and axial force fy (lower panel) images for
θ = 15◦. The gray dots visualize the periodic sites. (c) Lateral force fx (upper panel) and axial force fy (lower panel) traces for the white
dashed lines marked in (b). The red circles indicate the extracted slip forces. (d) 1D histograms of the slip force fx for θ = 0◦ (black), θ = 15◦

(red) and θ = 30◦ (green). (e) 2D histogram of slip force for θ = 0◦ (left), θ = 15◦ (mid) and θ = 30◦ (right). The dotted lines are visual
guidelines to highlight the distribution shapes.

landscape experienced by the tip varies significantly when
it slides along different paths on the 2D energy landscape
[3]. In addition, the 2D zig-zag motion [12] also brings an
extra complication to the slip process. Considering that the
analysis of fx in the traditional PTT model only provides
1D information, we speculate that supplementing it with the
statistics of fy may offer a more comprehensive description of
the 2D slip behavior. Therefore, we plotted the 2D slip force
histograms in Fig. 1(e) by counting the relative frequency of
slip events in ( fx, fy) space. In contrast to the irregular distri-
butions shown in Fig. 1(d), the 2D histograms exhibit patterns
with their shapes close to partial hexagonal annuluses. More-
over, the orientation of these patterns seems to change with
the scan angle θ . This unique feature encourages us to de-
velop a theoretical model to better understand the 2D slip
behavior.

For a particle driven by a linear spring [24] on a 1D energy
landscape without thermal activation, slip would occur [6,25]
when the driving force reaches a critical value fc (with a
corresponding particle position, xc) such that the local energy
barrier vanishes. In the 2D scenario, since the particle can be
driven along arbitrary directions on the 2D plane, the critical
force becomes a vector set {fc} in the force space. Meanwhile,
each element in {fc} has an associated critical slip position,
xc, in the spatial coordinate space and an associated vector,
ns, representing the corresponding direction along which the
local energy barrier vanishes (see the Supplemental Material
[16] for detailed derivations). The dashed curves in Figs. 2(a)
and 2(b) show the sets of {xc} and {fc} in the spatial coordinate

space and the force space, respectively, for the same energy
landscape V (x, s) used in Fig. 1 with θ = 15◦.

At finite temperature T , slip can occur with a transition
rate, κ , even before the driving force f reaches its criticality
due to thermal activation. Sang et al. [6] found that κ could be
described by the Kramers’ rate [20]:

κ = �2

2πγ
exp (−	V /kBT ), (3)

where 	V is the transient energy barrier and � is the effective
oscillation frequency. Since both 	V and � vary as the par-
ticle is driven forward, they are functions of f [6,19,25,26].
Considering a particle that is driven to a nearly slip state, the
transient force f would lie in the neighborhood of the critical
set {fc} in the force space. Because slip would likely occur
along the direction with the smallest energy barrier, i.e., along
the direction of ns, the corresponding energy barrier 	V can
be derived as follows:

	V = 4
√

2

3

[
−nsnsns

... ∇∇∇U (xc)
]−1/2

× [ns · (I + λ) · (fc − f )]3/2, (4)

where ∇∇∇U (xc) is the third-order gradient tensor of U at xc,
and λ is the relative spring stiffness tensor given in the Sup-
plemental Material [16]. Figure 2(b) shows 	V as a function
of f in the 2D force space for the same energy landscape as in
Fig. 2(a). Following the Kramers’ rate theory [20], �2 should
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FIG. 2. (a) Zoom-in view of the energy landscape near a minimum point. The dashed curve represents {xc}. (b) A contour plot showing
the energy barrier V as a function of f calculated by Eq. (1). The dashed curve represents {fc}. (c) A contour plot showing the probability p, at
which a slip does not occur. The dashed curve represents {fc}. (d) 2D histogram of slip forces for θ = 0◦ (left panel), θ = 15◦(middle panel)
and θ = 30◦(right panel). The dashed curves represent {fc} and the dotted lines are guidelines to visually show the trend. (e) 1D histograms of
slip force fx if all slip events in (d) are counted.

take the following form:

�2 =
√

2

m

[
−nsnsns

... ∇∇∇U (xc)
]1/2

× [ns · (I + λ) · (fc − f )]1/2. (5)

Therefore, the probability, p, at which a transition has not
yet occurred, can be determined by the master equation:

d p/dt = −κ p, (6)

whose left-hand side can be rewritten as

d p

dt
= ∂ p

∂ fx

∂ fx

∂sx

dsx

dt
= keffv

∂ p

∂ fx
, (7)

where keff is the composite stiffness in the x direction and v is
the speed of the support (See more details in the Supplemental
Material [16]). It should be noted that in Eq. (5), the backward
slips are neglected, which holds only when the backward
slip energy barrier is much larger than the forward slip one.
From Eqs. (3)–(7), we can obtain the general solution for the
probability p(f ) as follows:

p(f ) = exp

[
− 1

v∗ exp

(
− 	V

kBT

)]
. (8)

In Eq. (8), v∗ is the dimensionless velocity given by

v∗ = cos (n f )
4πmγ vkeff

kBT
[−nsnsns

... ∇∇∇U (xc)]−1

× [ns · (I + λ) · n f ], (9)

where n f is a unit vector defined by

n f 	 f = fc − f . (10)

Theoretically, in the above equation, one needs to find the
critical force vector fc that is “nearest” to f in the 2D force
space, which can be done numerically if the specific shape
of the energy landscape is known (see more details in the
Supplemental Material [16]). However, for energy landscape
(e.g., hexagonal shape) with weak directional anisotropy, one
can simply choose the critical force vector fc that is parallel
to f.

Figure 2(c) shows p as a function of f in the 2D force space
calculated from the same system parameters used for Fig. 1.
Based on the distribution of p, the probability density of
transition (i.e., slip) as a function of f can be readily obtained
by P = −d p/d fx, which are shown by the 2D histograms of
slip forces in Fig. 2(d). Comparing Fig. 2(d) with Fig. 1(e),
one can see that the theoretical predictions show reasonable
consistency with the 2D Langevin simulation results for all
three sliding angles. As visually indicated by the dotted curves
in Fig. 2(d), the contour of the local most-probable slip forces
appears to form a partial hexagonal annulus for all three
cases, which is expected since both the energy corrugation
and its gradients exhibit rotational symmetry with a period
of 60°. Because of the 2D nature of the slip force distribution,
variation of P with fx would depend sensitively on the value
of fy, which also suggested the 2D fluctuations of the tip
apex is providing extra help for the tip to slip forward. If
one blindly counts all the slip events regardless the value of
fy, the resultant distribution will be messed up and exhibits

165429-3



YAO, SUN, ZHUANG, WRIGGERS, FENG, AND LI PHYSICAL REVIEW B 105, 165429 (2022)

FIG. 3. (a) Reduced critical slip force fc as a function of θ

when fy = 0. The lower panel shows an enlarged view between 0
to 60º. (b) Energy corrugation shape factor β as a function of θ

when fy = 0. The lower panel shows an enlarged view between 0
to 60º. (c) Reduced histograms of fx when fy = 0 for θ = 0◦ (black),
θ = 15◦(red) and θ = 30◦(green) from 2D theoretical prediction. (d)
Reduced histograms of fx when slip events with fy in the range
of 0 ± 0.01nN for θ = 0◦(black), θ = 15◦(red) and θ = 30◦(green)
from 2D Langevin simulation.

a complicated dependence on sliding angle θ , as shown in
Figs. 2(e) and 1(d).

Theoretically, Eq. (8) provides a possible means of ex-
tracting the interfacial parameters using the 2D slip force
distribution from experiments. However, direct fitting using

Eq. (8) would be mathematically cumbersome due to the com-
plicated and nonlinear tensor calculation involved. However,
according to our previous derivation, if one only chooses slip
events with a specific value of fy, say fy = 0, then for these
slip events 	V will be reduced to 	V = 1

β
[ fc − fx]3/2, where

β = 3
√

2
8 [−nsnsns

... ∇∇∇U (xc)]1/2[ns · (I + λ) · n f ]−3/2 and
fc is the x component of the corresponding fc whose y compo-
nent is zero (see the Supplemental Material [16] for details).
This reduced form coincides exactly with the 1D expression
originally introduced by Sang et al. [6]; however it should
be noted that the reduced fc and β are dependent on θ . For
the specific system we explored, variations of fc and β are
only about 5% and 15% respectively as shown in Figs. 3(a)
and 3(b). Consequently, the reduced distribution of fx when
fy = 0 should also be insensitive to θ , which is confirmed by
our model calculation [Fig. 3(c)] as well as the 2D Langevin
simulation [Fig. 3(d)]. Although this weak angular depen-
dence of fc and β is numerically demonstrated for the specific
systems we adopted, we expect it to be valid for other systems
with hexagonal energy landscapes (or energy landscapes with
weak anisotropy) and a relatively compliant spring. Based on
the above analysis, we propose that, by identifying the slip
events with fy ∼ 0, one can obtain a reduced slip force dis-
tribution that can be approximately described or fitted using
the traditional 1D PTT model. It should be noted that this
approach does not require scanning along the close-packed
direction as in previous work [3] and it can be applied to
schemes with arbitrary scan angle.

To further validate the 2D theoretical model, we conducted
atomic stick-slip friction measurement on a freshly cleaved
Bi2Se3, a layer-structured crystal with a hexagonal lattice,
in ambient conditions. As schematically shown in Fig. 4(a),

FIG. 4. (a) A schematic showing the experimental setup. (b) 2D slip force histograms for θ = 0◦(left panel), θ = 15◦(middle panel) and
θ = 30◦(right panel). The dashed lines are guidelines to visually highlight the trends. (c) Histograms of slip force fx for θ = 0◦(black),
θ = 15◦(red) and θ = 30◦(green) when all slip events are counted. (d) Reduced histograms of fx when slip events with fy in the range of
0 ± 0.1nN for θ = 0◦(black), θ = 15◦(red) and θ = 30◦(green).
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we adopted constant-height mode and measured the real-time
torsional and bending signals of the cantilever [27], which
were then calibrated to represent fx and fy, respectively (see
the Supplemental Material [16]). We also carefully rotated
the sample to change the angle between the scanning direc-
tion and the close-packed direction of the Bi2Se3 lattice for
θ = 0◦, 15◦, 30◦. Apparently different patterns of stick-slip
motion were observed on the two force channels when the
scan direction was varied (see the Supplemental Material [16]
for more information). Then we extracted the slip force using
the modified LSR method [11] and plotted the 2D slip force
histograms for θ = 0◦, 15◦, 30◦.

As shown in in Fig. 4(b), the hexagonal annulus shape of
the 2D slip force distributions and the rotational character-
istics are qualitatively consistent with the trend predicted by
the 2D theoretical model. As expected, if we blindly counted
all the slip events, the traditional accumulated 1D slip force
distribution would be irregular and differ significantly for
different scan angles, as shown in Fig. 4(c). However, if we
only consider the slip events with fy ∼ 0 (i.e., fy < 1/100 ·
Max(| fc|)), the reduced slip force distributions are almost
overlapping even when the scan angle is varied, as shown in
Fig. 4(d). From the reduced 1D slip force distributions, we

could more consistently extract the interfacial parameters by
fitting the traditional 1D PTT model (see more details in the
Supplemental Material [16]). Therefore, the experiment di-
rectly validates the 2D theoretical model and confirms that the
reduced slip force distribution from 2D experiments indeed
matches well with the 1D PTT model.

To conclude, we have shown both experimentally and
numerically that the slip statistics of the widely observed
atomic stick-slip friction exhibits an intrinsically 2D nature,
which usually cannot be captured by traditional 1D model.
Based on the framework of transition state theory, a 2D slip
model considering thermal activation effect is proposed and
a 2D slip force histogram is obtained theoretically. The the-
oretical predictions have been validated by atomic stick-slip
friction experiment on crystalline surface with a hexagonal
lattice. The rich features revealed by the 2D model high-
light the need to study atomic process of friction with higher
dimensionality.
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