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We study the energy spectra of Dirac fermions confined in the quantum dot formed in the graphene/transition
metal dichalcogenides (TMD) system under a perpendicular magnetic field. The obtained spin-valley polarized
spectra can be classified into three types according to the values of the energy gap, which strongly depends on
the pseudospin potential and the valley-dependent spin-orbit coupling peculiar to the electronic structure of the
graphene/TMD system. For the first case, the electrons for both valleys and both spins possess linear dispersion.
The energy spectra of the quantum dot exhibit sudden jumps of levels due to the Berry phase jumps. For the
second case, the electrons for the K (K ′) valley with up (down) spin have linear dispersion while the electrons
for the K (K ′) valley with down (up) spin have parabolic dispersion. The sudden jumps and the degeneracy-
splitting-recombination behaviors of levels coexist in the energy spectra. The latter behavior is a result of the
continuous change of the Berry phase. For the third case, the electrons for both valleys and both spins have
parabolic dispersion. The degeneracy-splitting-recombination behaviors make the energy spectra both spin and
valley distinguished. In addition, the evolutions of the levels from the sudden jumps to the continuous changes
by adjusting the valley-dependent spin-orbit coupling and the pseudospin potential are also investigated. These
results provide the possibility to control the specific spin-valley freedom of electrons in the graphene/TMD
system using the quantum dot setup.
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I. INTRODUCTION

A graphene quantum dot under a perpendicular magnetic
field has attracted much research interest both for the mono-
layer and bilayer to reveal the behaviors of the confined Dirac
fermions [1–5]. For the graphene monolayer, the projection of
the Berry curvature in the momentum space is point shaped
[6]. The Berry phase jump from 0 to π can be realized
through changing the value of the magnetic field. For the
graphene bilayer, the projection of the Berry curvature is
ring shaped [6]. The Berry phase can be continuously tuned
from 0 to 2π . Theoretical studies showed that the control-
lable Berry phase can lead to peculiar spectroscopic features,
which are the sudden separation of the angular-momentum
sublevels for the monolayer [7] and the degeneracy-splitting-
crossing-splitting-degeneracy process of valley levels for the
bilayer [8]. Soon after, these features were demonstrated
experimentally by the scanning tunneling spectroscopy mea-
surement [9,10], which paved the way for the design of
devices based on the valley degree of freedom in valleytronics.
However, the spin degree of freedom in monolayer and bilayer
graphene quantum dots is still degenerate. How to obtain the
spin-valley-resolved energy spectra in the two-dimensional
hexagonal lattice system is a question to be addressed in
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condensed matter physics, which will establish the foundation
of spin-valley-based electronics.

Similar to graphene, the TMD monolayer is another class
of two-dimensional material with two well-separated inequiv-
alent valleys located at the K point and K ′ point of the
Brillouin zone. Beyond graphene, the TMD monolayer pos-
sesses a strong pseudospin potential and spin-orbit coupling,
which can lead to the coupling of the spin and valley degrees
of freedom absent in graphene [11–13]. In each valley, the
electrons are spin polarized while the electrons from both
valleys satisfy the time-reversal symmetry. The coupling of
spin and valley in the TMD monolayer can bring a lot of
unique physics in the Hall effect [14–16], magnetic response
[17,18], and transport properties [19]. The relevance of the
tunable Berry curvature to the valley/spin Hall effect and the
Nernst effect is also uncovered [20–22].

However, the pseudospin potential and the spin-orbit cou-
pling in the TMD monolayer have the order of magnitude
of hundreds of meV, which hinders the research on the
low-energy physics of the TMD monolayer. Fortunately,
the tunable pseudospin potential and the spin-orbit coupling
can be realized in the proximity system formed by the
graphene on TMDs [23–26]. The proximity system can be
described by the Hamiltonian of the TMD monolayer but
has the pseudospin potential and the spin-orbit coupling of
the meV order. The graphene/TMD system with the tun-
able potential and spin-orbit coupling make it possible to
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investigate the spin-valley-based low-energy physics in two-
dimensional materials [27,28]. Recently, it has been found
that similar electronic properties can also be realized in a
graphene/hexagonal BN (or AIN, GaN, h-VN) system [29,30]
or the TMD/graphene/h − BN system [31].

In this paper, we study the regulation of the Berry
phase and the energy spectra of the quantum dot in the
graphene/TMD system under a perpendicular field, which is
still blank in condensed matter physics. We focus on three
sets of typical parameter values for the pseudospin potential
and valley-dependent spin-orbit coupling to tune the Berry
curvature. For the first situation, the dispersion of electrons
shows the form of the gapless Dirac cone both for two valleys
and two spins. The Berry curvature in the momentum space
is point shaped, which is the same as that for the monolayer
graphene. The sudden jumps and separations of levels emerge
in the energy spectra due to the Berry phase jumps from 0 to
π or π to 0 as the field is increased.

For the second situation, the electrons from valley K with
up spin or from valley K ′ with down spin still have the
sudden jumps of levels in their energy spectra due to the
Dirac cone dispersions and the Berry phase jumps. However,
the energy bands for the electrons from valley K with down
spin or from valley K ′ with up spin are of parabolic dis-
persion, which are similar to those for monolayer graphene
with the staggered potential. The levels exhibit degeneracy-
splitting-recombination behaviors. As a result, the sudden
jumps and the degeneracy-splitting-recombination behaviors
can be simultaneously realized in the graphene/TMD system.
The coexistence of the two distinct behaviors of the levels still
cannot be obtained in the graphene monolayer or bilayer.

For the third situation, the energy bands have parabolic
dispersion both for the two spins and the two valleys. The
energy spectra with the degeneracy-splitting-recombination
behaviors can be obtained for each spin-valley index and
are polarized both for spin and valley. The valley-polarized
energy spectra for K ↑ and K ′ ↓ electrons are symmetric
about the magnetic filed B = 0. The spin-polarized energy
spectra for K ↑ and K ↓ electrons have a relative translation.
These spin-valley-resolved energy spectra may help realize
the manipulation of the electrons with the specific valley and
spin, which cannot be realized in the graphene monolayer or
bilayer with the spin degeneracy. Besides the energy spectra
for the above three situations, we also discuss the realization
of the switches between the sudden jumps and continuous
changes of the levels by tuning the valley-dependent spin-
orbit coupling and the pseudospin potential.

The organization of this paper is as follows. In Sec. II,
we give the model of the graphene/TMD system and show
in detail the derivations of the Berry curvatures, the Berry
phase, and the expression of LDOS. In Sec. III, we present the
numerical results for the energy bands, the Berry phase, and
LDOS for the quantum dot. The features of the energy spectra
are discussed and explained physically. Section IV concludes
this paper.

II. MODEL AND FORMULATION

We consider the graphene/TMD system schematically
shown in Fig. 1. The system is comprised of monolayer

FIG. 1. The schematic diagram of the graphene/TMD sys-
tem formed by graphene (the hexagonal lattice) on the TMD
substrate. The quantum dot (the circular bright area) can be cre-
ated by a STM tip on the system. A perpendicular field is
applied to tune the Berry phase of the fermions confined in the
quantum dot.

graphene and the TMD substrate. The pseudospin potential
and the valley-dependent spin-orbit coupling can be prox-
imity induced in graphene from the TMD substrate. The
tight-binding Hamiltonian for the system can be written as
[27,28]

H = −t
∑
〈i, j〉ρ

c+
iρc jρ +

∑
iρ

�ξβc+
iρciρ

+ i

3
√

3

∑
〈〈i, j〉〉ρμ

λβvi jc
+
iρσ z

ρμc jμ. (1)

Here, c+
iρ (ciρ ) is the creation (annihilation) operator for an

electron on lattice site i with spin ρ. The first term denotes the
nearest-neighbor hopping with its amplitude −t . The second
term represents the on-site staggered potential with ξA = 1 for
sublattice A and ξB = −1 for sublattice B. The third term is the
sublattice-dependent spin-orbit coupling with coupling mag-
nitudes λA and λB. One has vi j = 1 for the counterclockwise
hopping and vi j = −1 for the clockwise hopping between
the next-nearest-neighbor sites. The symbol σ z denotes the
z component of the Pauli matrix σ.

The quantum dot in the graphene/TMD system can be cre-
ated by a scanning tunneling microscope (STM) tip [9,10,32]
as shown in Fig. 1. We will introduce the parabolic potential
U (r) = κr2 to model the circular quantum dot with its center
at r = 0. It is just an extra on-site potential in the tight-binding
Hamiltonian. The perpendicular field B is imposed to control
the Berry phase of the fermions confined in the quantum
dot. We will introduce its vector A satisfying the relation
B = ∇ × A. The effect of the field can be included in the
nearest-neighbor hopping as a phase φi j = e

h̄

∫ j
i A · dl . Next,

we will use the low-energy effective Hamiltonian derived
from Eq. (1) to study the physics of the electrons confined
in the dot. The direct calculations can also be carried out
from the tight-binding Hamiltonian for the nanoribbon of
the graphene/TMD system. The obtained results will show
some derivations from those for the low-energy effective
Hamiltonian. The derivations mainly originate from the finite
size of the nanoribbon and the high-energy levels considered
[8]. However, the fundamental characteristics of the energy
spectra in this paper such as their spin-valley polarization will
not be changed.
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A. Berry curvature

The low-energy effective Hamiltonian describing the
graphene/TMD system with the pseudospin potential and
the valley-dependent spin-orbit coupling can be written in the
pseudospin space (denoted by sublattices 1 and 2) as

H ξsz

0 =
(

� + ξszλ1 h̄vF (ξkx − iky)
h̄vF (ξkx + iky) −� + ξszλ2

)
, (2)

with ξ = ±1 for the K and K ′ valleys and sz = ±1 for the spin
up and spin down. The Fermi velocity vF = − 3at

2h̄ with a the
lattice constant is taken as 5 × 105 m/s for the graphene/TMD
system [14,20,24,33]. Larger values of the Fermi velocity
such as that in Refs. [24,29] will not fundamentally change
our physical results. The pseudospin potential � is indepen-
dent on the spin and valley indices. The valley dependent
spin-orbit couplings are denoted by λ1 = λA and λ2 = −λB

for the two pseudospins (sublattices). As the treatment in
Ref. [34], we take generic values of �, λ1 and λ2 to explore
the peculiar spin-valley energy spectra in the quantum dot.

The eigenvalues of the Hamiltonian in Eq. (2) are given by

Eξsz± = ±
√

h̄2v2
F k2 + �2

ξsz
+ ξsz

λ1 + λ2

2
, (3)

where ± denote the conduction and valence bands, k2 =
k2

x + k2
y , and �ξsz = � + ξsz

λ1−λ2
2 is the gap for the electrons

with the indices ξ and sz. For each valley, the energy bands
are spin split. However, the time-reversal symmetry is still
obeyed. The corresponding normalized eigenvectors can be
written as

ψξsz± =

⎛
⎜⎜⎜⎜⎝

±
√√

h̄2v2
F k2+�2

ξsz
±�ξsz

2
√

h̄2v2
F k2+�ξ sz

ξkx−iky

k√√
h̄2v2

F k2+�2
ξsz

∓�ξsz

2
√

h̄2v2
F k2+�ξ sz

⎞
⎟⎟⎟⎟⎠. (4)

The Berry curvatures, which are defined as Fξsz±(kx, ky) =
∂ay (kx,ky )

∂kx
− ∂ax (kx,ky )

∂ky
with ax(kx, ky) = i〈ψξsz±| ∂

∂kx
|ψξsz±〉 and

ay(kx, ky) = i〈ψξsz±| ∂
∂ky

|ψξsz±〉, can be calculated as

Fξsz±(kx, ky) = ∓ξ
h̄2v2

F �ξsz

2
(
h̄2v2

F k2 + �2
ξsz

)3/2 . (5)

We have Fξsz±(kx, ky) + Fξsz±(kx, ky ) = 0 with ξ = −ξ and
sz = −sz due to the time-reversal symmetry.

B. Berry phase

Now, we introduce the parabolic potential U (r) = κr2 to
model the circular quantum dot. The magnetic field B perpen-
dicular to the system as shown in Fig. 1 is applied. Its vector
potential is chosen as A = (Ax, Ay, Az ) = B(−y, x, 0)/2 with
B = ∇ × A = (0, 0, B). The Hamiltonian under the parabolic
potential and vector potential can be written as

H ξsz =
(

� + ξszλ1 + U (r) vF (ξx − iy)
vF (ξx + iy) −� + ξszλ2 + U (r)

)
, (6)

with the kinetic momentum operators � = (x,y) =
(−ih̄∂x − Ax,−ih̄∂y − Ay). We replace the operators
(−ih̄∂x,−ih̄∂y) by the symbols (px, py) according to the

Weyl correspondence [35]. The Hamiltonian in Eq. (6) will
become its classical edition. The electronic bands can be
solved as

Eξsz =
√

v2
F 2 + �2

ξsz
+ ξsz(λ1 + λ2)

2
+ κr2 (7)

through diagonalizing the classical Hamiltonian.
In the polar coordinate system, we express the kinetic mo-

mentum as

r = pr, θ = pθ

r
− eBr

2
, (8)

where the symbol pθ denotes the conserved angular momen-
tum with its eigenvalues Mh̄ (see Sec. II C). Substituting
2 = 2

r + 2
θ into Eq. (7), we can obtain the motion

equation in the radial direction:

2
r =

(
E − κr2 − ξsz

λ1+λ2
2

)2 − �2
ξsz

v2
F

−
(

Mh̄

r
− eBr

2

)2

.

(9)

The motion characterized by the equation is confined be-
tween the inner and outer turning radii, denoted by r1 and
r2, in the radial direction. The turning radii can be solved
from the condition r = 0. They determine a closed path
in the momentum space spanned by (x,y) through the
coordinates (r,θ ) as functions of r ∈ [r1, r2].

We discretize the closed path into N sites. The correspond-
ing eigenstate |x j,y j〉 for the jth site can be obtained by
solving the equation

H ξsz |x j,y j〉 = Ej |x j,y j〉. (10)

Here, the Hamiltonian H ξsz is the one in Eq. (6) in the absence
of U (r). The Berry phase can be calculated with the following
expression [36]:

γ = i
N−1∑
j=1

log〈x j,y j |x j+1,y j+1〉. (11)

Here, |x j,y j〉 is the eigenstate on an equienergy contour
with a wave vector around the Dirac point. The Berry phase
describes the acquired phase when the wave vector is evolved.

C. Local density of states

In the polar coordinate system, the Hamiltonian in Eq. (6)
can be changed into

H ξsz =
(

� + ξszλ1 + U (r) L1

L2 −� + ξszλ2 + U (r)

)
, (12)

where L1 = vF e−ξ iθ (−ξ ih̄ ∂
∂r

− h̄
r

∂
∂θ

+ i eBr
2 ) and L2 =

vF eξ iθ (−ξ ih̄ ∂
∂r

+ h̄
r

∂
∂θ

− i eBr
2 ) with the polar radius r and

the polar angle θ . We define the angular momentum
operator as

Jξsz
z = Lz + ξ

h̄

2
τz + sz

h̄

2
τ0, (13)

where the orbital angular momentum Lz = −ih̄ ∂
∂θ

and τ0 and
τz are the Pauli matrices in the pseudospin space. It is easy
to prove that the angular momentum operator is commutative

165427-3



QIANG CHENG AND QING-FENG SUN PHYSICAL REVIEW B 105, 165427 (2022)

with the Hamiltonian H ξsz . Their common wave function can
be expressed as

�
ξsz
M = eiMθ

√
r

(
aξsz (r)e−i(ξ+sz )θ/2

ibξsz (r)ei(ξ−sz )θ/2

)
, (14)

where the integer number M is the angular momentum
quantum number.

Substituting the wave function into the eigenequa-
tion H ξsz�

ξsz
M (r) = E�

ξsz
M , we can obtain the equation

H̃ ξsz�ξsz (r) = E�ξsz (r) satisfied by the radial eigenstate
�ξsz (r) = (aξsz (r), bξsz (r))T . The radial Hamiltonian is
given by

H̃ ξsz =
(

� + ξszλ1 + U (r) L̃1

L̃2 −� + ξszλ2 + U (r)

)
, (15)

with L̃1 = ξvF h̄ ∂
∂r

+ (M− sz
2 )h̄

r − eBr
2 and L̃2 = −ξvF h̄ ∂

∂r
+

(M− sz
2 )h̄

r − eBr
2 . For a given quantum number M, the contribu-

tion to the LDOS at r from the valley ξ and the spin sz can be
expressed as

Dξsz
M (B, E ) =

∑
α

〈∣∣�ξsz
α (r)

∣∣2〉
λd

δη(E − Eα ), (16)

with δη(E ) = η/[π (E2 + η2)] and 〈|�ξsz
α (r)|2〉λd =√

2
π

1
λd

∫ ∞
0 dr′|�ξsz

α (r′)|2e−(r′−r)2/2λ2
d . Here α indicates the

radial eigenstates. The symbols λd and η denote the finite
broadenings of the position r and energy E , respectively. The
total LDOS is given by

D(B, E ) =
∑
ξsz

Dξsz (B, E ), (17)

where Dξsz (B, E ) = ∑
M Dξ,sz

M (B, E ) is the LDOS for the val-
ley ξ and the spin sz contributed from all values of M. In our
calculations, we will take κ = 30 eV/μm2, η = 4.4 meV, and
λd = 2.2 nm. The calculation range in the radial direction is
chosen as 0 � r � 333 nm. Equation (15) is solved using the
finite difference method and the calculation range will be di-
vided into 667 points. To highlight the levels, we will calculate
the second partial derivative of the LDOS with respect to E
instead of the LDOS itself.

III. RESULTS AND DISCUSSIONS

If we chose � = 0 and λ1,2 = 0, the Hamiltonian in Eq. (2)
degenerates into the one for the monolayer graphene with both
spin and valley degeneracies. If we chose � �= 0 and λ1,2 =
0, the Hamiltonian for the monolayer graphene with the
staggered potential � will be obtained. The spin and valley de-
generacies still hold. The quantum dot of the graphene/TMD
system here will be very different due to the presence of the
nonzero valley dependent spin-orbit couplings λ1,2.

Before presenting the numerical results, we first give some
basic properties of the LDOS in the quantum dot of the
graphene/TMD system. From the expression of the angular
momentum in Eq. (13), it is found that the main contributions
to the LDOS DK↑(B, E ) at the central position with r = 0 of
the circular quantum dot originate from the M = 1 state for
sublattice 1 and the M = 0 state for sublattice 2 while the

FIG. 2. (a) The energy bands of the graphene/TMD system for
valley K under the parameters � = 0, λ1 = −10 meV and λ2 =
−10 meV. Both spin-up and spin-down electrons have linear disper-
sion. (b) The Berry phase jumps from 0 to π for spin-up electrons
and from π to 0 for spin-down electrons when the field is increased
from −10T to 10T . The quantum number M is taken as 1 for K ↑
and −1 for K ↓. The energy of electrons is taken as E = 120 meV.

main contributions to DK↓(B, E ) originate from the M = 0
state for sublattice 1 and the M = −1 state for sublattice 2.
Due to the time-reversal relation between the two valleys,

we also have T �
ξsz
M (B, E ) = �

ξsz
−M (−B, E ). As a result, the

M-dependent LDOS Dξsz
M (B, E ) and Dξsz

−M (B, E ) are symmet-
ric about B = 0. Next, we present the numerical results for
three situations and then discuss the evolutions of the energy
spectra with the pseudospin potential and spin-orbit coupling.

A. �ξsz = 0 and � = 0

If the conditions of the gap �ξsz = 0 and the pseu-
dospin potential � = 0 are simultaneously satisfied, we will
have λ1 = λ2. For definiteness, we take λ1 = −10 meV and
λ2 = −10 meV here. The Hamiltonian in Eq. (2) becomes
gapless, similar to the graphene monolayer. In this situation,
the dispersions for the electrons in the graphene/TMD system
consist of two spin-split Dirac cones at each valley as shown in
Fig. 2(a). From Eq. (5), one can find that the Berry curvatures
for both valleys become zero in the momentum space except
for k = 0, i.e., the K and K ′ points in the Brillouin zone.
The point-shaped Berry curvatures will cause the Berry phase
jump as shown in Fig. 2(b). As we have discussed, the inner
and outer turning radii r1 and r2 will form the closed path in
the momentum space. For the K ↑ electrons with M = 1, if
the field is smaller than a critical value, the closed path will
not enclose the point k = 0. On the other hand, the k = 0
point will be enclosed by the closed path when the field is
larger than the critical value. The Berry phase γ , as the flux of
the Berry curvature, will experience the jump from 0 to π as
the magnetic field is changed across the positive critical value.
For the K ↓ electrons with M = −1, the Berry phase γ will
experience the jump from π to 0 as the field is changed across
the negative critical value, as shown in Fig. 2(b). According
to the Einstein-Brillouin-Keller quantum rule [7–10,32],

1

h̄

∮
Cr

rdr = 2π (n + δ) − γ , (18)

the jump of the Berry phase γ will lead to the sudden jump of
the energy level. Here, n is an integer number, δ is the Maslov
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FIG. 3. The LDOS for (a) the valley K and spin ↑ elec-
trons with M = 1 and (b) the valley K and spin ↓ electrons
with M = −1. (c) The LDOS DK↑(B, E ) + DK ′↓(B, E ) and (d) the
LDOS DK↓(B, E ) + DK ′↑(B, E ) contributed from −10 � M � 10.
The other parameters are taken as � = 0, λ1 = −10 meV and λ2 =
−10 meV. The LDOSs at the central position with r = 0 of the
circular quantum dot are shown here.

index and Cr is the trajectory loop mapped from the confined
motion in the radial direction to a torus [8,9]. Figure 3 shows
the LDOS at the central position of the quantum dot with
r = 0. There are two characteristics of the energy spectra in
Figs. 3(a) and 3(b). First, the critical field for the K ↑ elec-
trons with M = 1 is positive while it is negative for the K ↓
electrons with M = −1. Second, the jumps of the levels in
Fig. 3(a) are the sudden decreases when the field is increased
from −10T to 10T . However, the sudden rises happens in
Fig. 3(b). The two characteristics are consistent with the Berry
phase jumps in Fig. 2(b).

Due to the time-reversal relation between the two valleys,
the LDOS for the K ′ ↑ (K ′ ↓) electrons and that for the K ↓
(K ↑) electrons are symmetric about B = 0, i.e., DK↑(B, E ) =
DK ′↓(−B, E ) and DK↓(B, E ) = DK ′↑(−B, E ). If we consider
the contributions from different values of the quantum number
M(−10 � M � 10), the LDOS DK↑(B, E ) + DK ′↓(B, E ) and
DK↓(B, E ) + DK ′↑(B, E ) with the sudden level separations
will be obtained as given in Figs. 3(c) and 3(d), respectively.
From Figs. 3(c) and 3(d), we can find the energy spectra are
spin-valley polarized. The LDOS DK↑(B, E ) + DK ′↓(B, E ) is
moved up while DK↓(B, E ) + DK ′↑(B, E ) is moved down. Ac-
tually, one can well distinguish the energy spectra in Fig. 3(c)
and those in Fig. 3(d) by tuning the valley-dependent spin-
orbit couplings λ1 and λ2 under the conditions �ξsz = 0 and
� = 0.

However, one cannot distinguish DK↑(B, E ) and
DK ′↓(B, E ) or DK↓(B, E ) and DK ′↑(B, E ) because they are

FIG. 4. (a) The energy bands for the valley K under the parame-
ters � = 10 meV, λ1 = −10 meV and λ2 = 10 meV. The electrons
with spin ↑ have linear dispersion while those with spin ↓ have
parabolic dispersion. (b) The jump of Berry phase from 0 to π for
the electrons with spin ↑ and the continuous change of Berry phase
from 0 to π for the electrons with spin ↓. Other parameters are taken
as M = 1 and E = 120 meV.

degenerate if � = 0 and λ1 = λ2. We analyze the physical
origin taking DK↑(B, E ) as an example. The unitary matrix
(−τy) with τy the Pauli matrix in the pseudospin space can
change the radial Hamiltonian H̃K↑

M (B) into H̃K↑
−M+1(−B)

in Eq. (15). The LDOS DK↑(B, E ) itself as the sum of the
contributions from different M is symmetric about B = 0,
which will lead to DK↑(B, E ) = DK ′↓(B, E ) = DK↑(−B, E ).
This analysis also applies to DK ′↓(B, E ) and DK↓(B, E ) but
not to the case of � + λ1 �= −� + λ2.

B. �ξsz = 0 and � �= 0

In this situation, the condition �ξsz = 0 will not be simul-
taneously satisfied for K ↑ and K ↓ if � �= 0. In other words,
either the K ↑ electrons or the K ′ ↓ electrons have linear
dispersion. For definiteness, we take � = 10 meV, λ1 = −�

and λ2 = �. For valley K (ξ = 1) and spin ↑ (sz = 1) or val-
ley K ′(ξ = −1) and spin ↓ (sz = −1) in the graphene/TMD
system, the Hamiltonian in Eq. (2) becomes the gapless one
which is similar to the monolayer graphene. The energy bands
for the K ↑ and K ′ ↓ electrons will turn into Dirac cones with
linear dispersion as shown in Fig. 4(a). The energy spectra for
the K ↑ and K ′ ↓ electrons will be similar to those in Fig. 3,
which are not presented here.

For valley K (ξ = 1) and spin ↓ (sz = −1) or valley K ′(ξ =
−1) and spin ↑ (sz = 1) in the graphene/TMD system, the
Hamiltonian in Eq. (2) is similar to the one for monolayer
graphene with the staggered potential �. A gap 2� will open
in the energy bands and the dispersion is of the parabolic form
as shown in Fig. 4(a). The projection of the Berry curvatures
in Eq. (5) will turn into a disk in the momentum space, which
is centered at k = 0. When the field is raised from B = −10T ,
the closed path in the momentum space will enclose more
area of the disk. The Berry phase will gradually increase as
shown in Fig. 4(b). According to Eq. (18), the levels also
alter gradually as given in Figs. 5(a) and 5(b) for M = 0 and
M = −1, respectively.

We can understand the continuously changed levels more
clearly in the following manner. If we keep λ1 = −� and
λ2 = � but raise � from 0 to 10 meV, the Berry phase will
evolve from the jump structure to the structure with the
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FIG. 5. The LDOS for valley K and spin ↓ electrons with (a)
M = 0 and (b) M = −1. (c) The LDOS for K ↓ electrons con-
tributed from M = 0, ±1. (d) The LDOS DK↓(B, E ) + DK ′↑(B, E )
contributed from −10 � M � 10. The parameters are taken as � =
10 meV, λ1 = −10 meV, λ2 = 10 meV, and r = 0.

gradual change. The levels evolve from the sudden jump
to the continuous variation accordingly, which causes the
connections of levels for B < 0 to lower (higher) levels
for B > 0 in Fig. 3(a) [3(b)]. After the connections, the
continuous energy spectra in Figs. 5(a) and 5(b) will be
realized. If we plot the energy spectra for M = 0 and M = ±1
together, the obvious degeneracy-splitting-recombination
behavior will be observed as given in Fig. 5(c). The LDOS
DK↓(B, E ) + DK ′↑(B, E ) contributed from the different
quantum numbers M(−10 � M � 10) are also given in
Fig. 5(d). The energy spectra in Fig. 5(d) are valley polarized.
In other words, the energy spectra for DK↓(B, E ) and those for
DK ′↑(B, E ) can be well distinguished, which are symmetric
about B = 0. Furthermore, the sudden jump and degeneracy-
splitting-recombination behaviors can coexist in the
graphene/TMD system if the K ↑ and K ′ ↓ electrons are
also considered.

C. �ξsz �= 0

We take � = 5 meV and λ1 = λ2 = −�. The energy
bands for both K ↑ and K ↓ electrons open the same gap 2�

as shown in Fig. 6(a). Their Berry phases change continuously
when the field is increased from −10T to 10T , as presented in
Fig. 6(b). The spin-valley dependent LDOS Dξsz (B, E ) exhibit
the degeneracy-splitting-recombination behaviors similar to
those in Fig. 4(c). The LDOS Dξsz (B, E ) are not degenerate.
The LDOS Dξsz (B, E ) and Dξsz (B, E ) are symmetric about
B = 0 since the time-reversal relation is satisfied by the two
valleys. A relative translation of about 2� exists between the

FIG. 6. (a) The energy bands for valley K under the parameters
� = 5 meV, λ1 = −5 meV, and λ2 = −5 meV. The electrons with
spin ↑ and spin ↓ both have parabolic dispersions. (b) The con-
tinuous change of Berry phase from 0 to π for the electrons with
spin ↑ and spin ↓. Other parameters are taken as M = 1 and E =
120 meV.

LDOS Dξsz (B, E ) and Dξsz (B, E ) because of the spin polar-
ization. These spin-valley-resolved features are still visible in
the total LDOS D(B, E ) as the sum of the spin-valley depen-
dent Dξsz (B, E ) (see Fig. 7), which provide the possibility of
designing the spin-valley polarized devices.

Recently, the perfect spin- and valley-polarized trans-
port in the magnetic WSe2 superlattice has been proposed
[37]. There, the regulation of the dispersions (linear ones or
parabolic ones) of electrons can be fulfilled by the nonreso-
nance light. The switch and control of the polarized transport
are implemented by the exchange field and gate voltages.
Here, we shortly discuss the experimental realization of the
spin-valley-polarized electron transport based on the circular
quantum dot and the controllable Berry phase. The device
may be designed as a two-terminal setup which consists of
the nanoribbon of the graphene/TMD system attached by

FIG. 7. The LDOS contributed from the two valleys and the two
spins. The parameters are taken as � = 5 meV, λ1 = −5 meV, λ2 =
−5 meV, and r = 0. The contributions from −10 � M � 10 have
been considered.
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the left and right electrodes [8]. The voltages are applied
to the two electrodes and a circular quantum dot in the
graphene/TMD system can be generated by the STM tip
[10,32]. The Berry curvatures and the Berry phase of the
electrons in the quantum dot can be tuned by a perpendicular
field. When the nonpolarized current from one terminal flows
through the quantum dot, it will be filtered into the spin-valley
polarized one. Alternatively, the nanoribbon can be replaced
by the graphene-based structure, which has been described
by the similar Hamiltonian with the graphene/TMD
system [38,39].

D. Evolutions of the energy spectra with the pseudospin
potential and the spin-orbit coupling

In the above subsections, we have discussed in detail the
evolutions of the energy spectra with the magnetic field for
the different values of the pseudospin potential and the spin-
orbit coupling. The evolutions exhibit the sudden jumps of the
levels or the continues changes for the specific values of the
potential and the coupling. In this subsection, we give the
evolutions of the energy spectra with the potential and the
coupling for the different fields taking the K ↑ electrons as an
example. For B = −1T , the energy spectra vary continuously
with the increase of the coupling λ2 and the potential �

as shown in Figs. 8(a) and 8(d). The Berry phase changes
from γ ≈ 0 to γ ≈ 2π when λ2 is increased across λ2 =
10 meV and from γ ≈ 2π to γ ≈ 0 when � is increased
across � = 0. The change of the Berry phase will cause
the continuous variation of the level from the nth one to
the (n ± 1)th one according to Eq. (18) but will not cause the
sudden jumps. However, for B = 0.2T , the jumps of the levels
at λ2 = 10 meV or � = 0 happen as shown in Figs. 8(b) and
8(e). The Berry phase in this situation has an rapid change of
about π when λ2 is altered across λ2 = 10 meV or � is altered
across � = 0. It is noteworthy that the energy splitting �E is
about half of the energy spacing. This is the representative
effect realized in the quantum dot formed in the isolated
graphene monolayer through tuning the magnetic field [7]. In
the graphene/TMD system, the effect can also be realized by
adjusting the pseudospin potential or the spin-orbit coupling
for a given field, which is absent in the isolated graphene.
If we continue to increase the magnetic field to B = 1T , the
variation of the Berry phase becomes the gradual change and
the energy spectra become continuous accordingly, as shown
in Figs. 8(c) and 8(f).

IV. CONCLUSIONS

We study the features of the energy spectra in the quantum
dot formed in the graphene/TMD system under a perpen-
dicular field. The energy bands and the Berry curvatures
for the electrons in the graphene/TMD system are ana-
lytically presented, which are strongly dependent on the
pseudospin potential and the spin-orbit coupling parameters.
For linear dispersion and point-shaped Berry curvatures, the
Berry phase jumps when the field is altered while for the
parabolic dispersion and the disk-shaped Berry curvatures,
the Berry phase will continuously change. The energy spec-
tra in the quantum dot of the graphene/TMD system can

FIG. 8. The LDOS of the electrons from valley K with up spin in
the (E , λ2) space for � = 10 meV in (a)–(c) or in the (E ,�) space
for λ2 = −10 meV in (d)–(f). The value of the magnetic field is taken
as B = −1T in (a) and (d), B = 0.2T in (b) and (e), and B = 1T in
(c) and (f). Other parameters are taken as M = 1 and λ1 = −10 meV.

be tuned by the field through adjusting the Berry phase.
They exhibit three typical features which are the pure sudden
jumps of levels, the coexistence of the sudden jumps, and
the degeneracy-splitting-recombination behaviors as well as
the pure degeneracy-splitting-recombination behaviors. The
evolutions of the energy spectra with the potential and the
coupling from the sudden jumps to the continuous changes
are investigated, which also originate from the rapid change
and the gradual change of the Berry phase. These features of
the energy spectra are peculiar to the graphene/TMD system
and provide possible applications in spin-valleytronics.
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