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Bound states in the continuum versus material losses: Ge2Sb2Te5 as an example
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Photonic bound states in the continuum (BIСs) were investigated depending on material and radiation losses
on the example of the phase-change chalcogenide Ge2Sb2Te5 and two types of resonators in the form of a
cylinder and a ring which support quasi-BIC according to the Friedrich-Wintgen mechanism. The complex
refractive index for the amorphous and crystalline phases of Ge2Sb2Te5 was measured experimentally. It was
found that as the material losses increase, the quasi-BIC becomes practically a dark mode, while the usual
resonator eigenmodes continue to remain intense. At the same time the strength of the mode coupling has been
not affected, that is, the Rabi splitting remains unchanged in the studied range of losses. Photonic mode switching
during the amorphous-crystalline phase transition was also investigated and two mechanisms were identified,
including an efficient Fano resonance mechanism that can be used in real devices.
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I. INTRODUCTION

Future technologies are targeting a dramatic increase in
subwavelength photonic integration, far exceeding those of
bulk optical components and silicon photonics. An impor-
tant step along this path was the concepts of metamaterials,
metasurfaces, and nanophotonics, based on the structuring
of materials at subwavelength scale [1,2]. In the implemen-
tation of the concept of metamaterials, most of the created
structures with a magnetic response contained metals that
have high Ohmic losses at optical frequencies, which limit
the efficiency and any useful characteristics. Recently, it was
experimentally demonstrated that subwavelength dielectric
nanoparticles have induced magnetic multipoles due to Mie
resonances and, unlike plasmonic metal particles, they do not
suffer from Ohmic losses due to the absence of free charges
[3–5]. Unfortunately, this advantage of dielectric particles
does not solve all material loss problems, since any linear
and causal material necessarily contains losses, as follows
from the Kramers-Kronig relations [6]. In addition to material
losses, the efficiency of the resonator is reduced by radiation
losses, which also include losses associated with defects and
imperfections in the shape of the resonant particle. If material
losses are a characteristic of a defect-free crystal structure,
then radiation losses can be reduced by various methods,
including the implementation of the Anderson localization
regime [7], the use of photonic crystals with a complete pho-
tonic band gap [8], and the regime of bound states in the
continuum (BICs) [9].

BIC is an exclusive light trapping and confinement mecha-
nism, a wave phenomenon that was mathematically proposed
in 1929 by von Neumann and Wigner [10] for electronic
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states. To date, a number of mechanisms of BIC forma-
tion have been theoretically proposed and experimentally
demonstrated [9,11–18] for various types of waves, including
electromagnetic, acoustic, elastic, and water waves. Photonic
BICs coexist with propagating electromagnetic waves in a
continuum, but theoretically remain completely localized in
the structure without any radiation and are characterized by
an infinite Q factor [9]. In real structures, due to finite dimen-
sions, material losses, and a number of other reasons, photonic
BICs (defined as quasi-BICs) have a finite lifetime, finite Q
factor [17]. There are a number of physical mechanisms that
lead to the formation of BICs [9]; in this work, we will be
interested in quasi-BICs, which are achieved by adjusting the
structural parameters of the material. This type of quasi-BIC
arises when two nonorthogonal photonic modes are coupled to
the same radiation channel, and a regime of avoided crossings
arises at the appropriate structural parameters. This regime
is described by the Friedrich-Wintgen model [19] when due
to destructive interference in the far field zone one of the
emitting modes disappears and becomes a quasi-BIC. This
mechanism can be realized in a one-dimensional quantum
potential well, owing to the destructive interference of elec-
tron paths with different spin in tilted magnetic field [20].
The photonic Friedrich-Wintgen quasi-BIC was discovered
in dielectric cylinders and rings, when two eigenmodes with
different polarizations associated with Mie and Fabry-Perot
resonances interact strongly [21,22] near the avoided crossing
regime or weakly, that is, crossing at certain values of the ring
parameters [23]. Considering that cylindrical and especially
ring resonators are basic elements of modern nanophotonics
[24–28], we have chosen these structures to study the effect of
losses on photonic resonance properties. Note that in Ref. [23]
we analyzed the Friedrich-Wintgen model [19] for a cylinder
and a ring by considering a non-Hermitian Hamiltonian with-
out taking into account the nonradiative damping terms.
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Another important choice for our work is material with
noticeable optical and infrared loss. We settled on the chalco-
genide Ge2Sb2Te5 (hereinafter GST) which has the additional
advantage that it can exist in an amorphous or crystalline
phase and makes it possible to study photonic effects during
the phase transition [29–33]. Reversible switching between
phase states is nonvolatile [31] and can be achieved on the
femtosecond time scale [32]. Owing to these flexibilities, GST
can be used as an active material in storage devices and to tune
many properties; applications include control of radiation,
resonance characteristics of a nanoantenna, and wave-front
switching, among other applications [33].

The importance of reducing material losses in structures
with quasi-BICs was noted in a number of works [34–40]. In
particular, for a number of materials this problem was dis-
cussed in Ref. [34]. All-dielectric photonic crystal structures
that are able to sustain effective near-zero refractive index
modes coupled to quasi-BIC have been investigated [35,36].
Unfortunately, materials with such extreme refractive indices
for optical frequencies have not yet been realized and re-
searchers have to deal with conventional materials with finite
losses.

As far as we know, the fundamental questions of the for-
mation of quasi-BICs in resonators with significant material
losses have never been studied before. In particular, these
questions directly relate to the choice of both the shape of the
resonator and its material and the division of total losses into
partial contributions to optimize resonant photonic regimes.
This work is devoted to a detailed study of these key questions
for modern photonics.

II. EXPERIMENT: COMPLEX REFRACTIVE INDEX

To numerically investigate the optical properties of GST
and, in particular quasi-BICs, it is necessary to know the com-
plex permittivity ε = ε′ + iε′′ (where ε′ = Reε, ε′′ = Imε)
for the crystalline and amorphous phases. These parameters
can be determined on the basis of the experimentally mea-
sured complex refractive index N = n + ik, where n is the –
refractive index and k is the extinction coefficient. These
measurements were carried out on two GST films prepared
by laser electrodispersion technique [41], which were amor-
phous GST films with a thickness of ∼50 nm on a quartz
substrate, ground from the back side. To obtain the GST film
in the crystalline state, one of the samples was annealed at
170 °C for 1 h. The ellipsometric spectra were collected at
room temperature at different angles of incidence using a
J.A. Woollam M-2000 ellipsometer. The processing of the
obtained ellipsometric data was carried out using the supplied
COMPLETEEASE software. To determine the complex refractive
index [Figs. 1(a) and 1(b)], the standard model of an absorbing
film on a semi-infinite quartz substrate was used. It can be
seen that the crystalline phase has higher values of n and k
than the amorphous phase, which corresponds to the differ-
ences in the chemical bond in GST before and after the phase
transition [42,43]. Note that the spectral dependencies of the
optical constants n and k for the GST films obtained under
our technological conditions are in reasonable agreement with
the literature data [44]. Based on these data, the spectral
dependencies of the complex dielectric permittivity of GST

FIG. 1. Experimentally measured by the method of ellipsometry
complex refractive index N = n + ik, n is refractive index, k is ex-
tinction coefficient) of the GST film in crystalline (a) and amorphous
(b) phases. Calculated complex permittivity ε = ε′ + iε′′ of the GST
film in crystalline (c) and amorphous (d) phases.

in the crystalline and amorphous phases were calculated as
ε = N2, thus Reε = n2 − k2 and Imε = 2nk, Figs. 1(c) and
1(d). Here, we will analyze the photonic properties of GST
at the telecommunication wavelength 1.5 μm, at which the
dielectric constant of the crystalline phase is 41.6 + i17.5,
and that of the amorphous phase is 19.0 + i0.42.

III. CALCULATION METHOD

We present the results of a study of photonic peculiarities
in the region of quasi-BIC in GST taking into account material
losses. To study the transformation of quasi-BIC when the
imaginary part of the permittivity changes from 0 (in the
case of no material losses) to the experimentally obtained
value, we used numerical calculations, which provide key
information about the optical spectrum with resonant frequen-
cies of eigenmodes and mode Q factors. For the amorphous
phase, we performed systematic calculations for a large set of
ideal dielectric cylindrical and ring resonators with a uniform
dielectric permittivity ε = ε′ + iε′′, where ε′ = 19.0, and ε′′
varies from 0 to 0.42 with a step of 0.02. For the crystalline
phase, we consider resonators with a uniform dielectric con-
stant 41.6 + i17.5. The environment was vacuum εvac = 1.

We have performed systematic calculations of the scatter-
ing cross section (SCS) of cylinders with an outer radius r
and a length l , Fig. 2. In the rings, the ratio of the radii was
constant and amounted to rin/r = 0.4. The r/l aspect ratio
was varied in such a range to observe a certain quasi-BIC
formed by the anticrossing of the two resonant modes TE0,1,2

and TE0,2,0. The results of the study of such a quasi-BIC in a
cylinder with ε = 80 + i0 are presented in Ref. [21], where
the standard nomenclature [45] of modes of a cylindrical
resonator TEm,s,p and TMm,s,p is used. In these notations,
m, s, p are the indices denoting the azimuthal, radial, and
axial indices, respectively. Only the modes with the same
azimuthal index m could interact and we consider the case
m = 0. We consider a scenario in which the structures are
illuminated by a linearly polarized plane wave, the electric
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FIG. 2. TE-polarized waves incident on a dielectric cylindrical
resonator (a) and ring resonator (b) with complex dielectric permit-
tivity ε = ε′ + iε′′. The structures are placed in the vacuum, ε2 = 1.
Parameters of dielectric resonators: outer radius r, inner radius rin,
and length l .

field is linearly polarized in the plane perpendicular to the
axes of the cylinder and ring (TE polarization). For generality,
when demonstrating the results, we use the normalized size
parameter x = kr = rω/c = 2πr/λ being a product of the
wave number k and outer radius r.

All the computations of SCS were performed in the fre-
quency domain using the commercial software COMSOL. In
order to obtain sufficiently accurate solutions by numerical
methods a physics-controlled mesh with the “extremely fine”
option was used to capture the geometric details and to resolve
the curvature of resonators boundaries.

IV. SCATTERING CROSS SECTION FOR CYLINDRICAL
AND RING RESONATORS OF Ge2Sb2Te5 IN AMORPHOUS

PHASE

As demonstrated earlier in the cylinder as well as in the
ring [21–23], there are two types of modes with different
behavior depending on the aspect ratio r/l . The modes of
the first type are formed mainly due to reflection from the
side wall, and they are associated with the Mie resonances
of an infinite cylinder. Accordingly, Mie-type modes exhibit
a small frequency shift with a change in the length of the
structure. The modes of the second type are formed mainly
due to reflection from two parallel faces of the cylinder or ring,
and they could be associated with the Fabry-Perot modes. The

FIG. 3. Calculated spectra of the normalized SCS (for harmonic m = 0) for cylindrical (a)–(c) and ring (d)–(f) GST resonators in
amorphous phase as a function of aspect ratio r/l in the regions of avoided crossing regime between the Mie-type TE0,2,0 and Fabry-Perot-type
TE0,1,2 modes. The spectra marked in blue correspond to quasi-BIC. For the lower and upper spectra, the modes corresponding to the Mie
and Fabry-Perot resonances are marked, with the modes corresponding to the low-frequency branch marked in green, and those corresponding
to the high-frequency branch in red. For a cylinder, SCS spectra are given in the range 0.58 � r/l � 0.82 with a step of 0.02, for a ring in
the range 0.79 � r/l � 0.91 with a step of 0.01. Curves are shifted vertically by 2 a.u. The two left panels correspond to the permittivity
19 + i0, the two central panels correspond to 19 + i0.20, and the two right panels correspond to 19 + i0.42. Normalized size parameter
x = kr = rω/c = 2πr/λ. TE-polarized incident wave. The dielectric permittivity of each of the structures is indicated above the corresponding
panel. The structures are placed in the vacuum, ε2 = 1.
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FIG. 4. Calculated SCS spectra of the cylinder and ring for the aspect ratios r/l corresponding to quasi-BIC (blue line) (Fig. 3), and their
decomposition into two contours corresponding to the low-frequency (green line) and high-frequency (red line) branches. The two left panels
correspond to the permittivity 19 + i0, the two central panels correspond to 19 + i0.20, and the two right panels correspond to 19 + i0.42.
Normalized size parameter x = rω/c. TE-polarized incident wave.

Fabry-Perot-type modes demonstrate a strong shift to higher
frequencies with increasing aspect ratio. Due to the different
spectral shift of Mie and Fabry-Perot modes depending on the
length of the structure l , for a fixed outer radius r, they should
intersect at certain points in the parameter space (r/l, x).
The modes with the same azimuthal index m interact and
demonstrate strong coupling the avoided crossing regime at
special values of the r/l parameter. Coupling creates a point
of avoided crossing behavior, with the high-frequency line
nearly disappearing in the scattering spectra. The dramatic
decrease in line intensity is the result of interference outside
the resonator in accord with the Friedrich-Wintgen theory
of BIC states. In addition, a complex interference between
narrow lines and a wide background should be noted, which
leads to Fano resonances [46] with asymmetric profiles of all
quasi-Mie and quasi-Fabry-Perot lines.

Figure 3 shows the SCS spectra of cylinders and rings in
the avoided crossing regions of the TE0,2,0 and TE0,1,2 modes
at three values of the dielectric permittivity 19.0 + i0, 19.0
+ i0.20, and 19.0 + i0.42. The latter value corresponds to
amorphous GST. The spectra for the case of zero material
losses [Figs. 3(a) and 2(d)] clearly demonstrate that the dis-
tance of closest approach of the two lines occurs in the region
r/l = 0.70 for a cylinder and 0.85 for a ring. This is the region
of origin of the quasi-BIC and it practically does not change
with the addition of material losses for both the cylinder and
the ring. It is clearly seen that with an increase in material
losses, the intensity of both lines significantly decreases, while
the half-width of the lines does not undergo dramatic changes.

V. EFFECT OF MATERIAL LOSS

Earlier, in a series of works, the Fano resonance in the
scattering spectra of individual dielectric particles of various
shapes was theoretically analyzed and experimentally demon-
strated [46,47]. In particular, this concerns cylinders and rings,
in the spectra of which a series of Fano resonances were
observed, caused by the interference of two waves—the emit-
ted resonant mode and nonresonant scattering on the whole
object [48–50]. Fano resonance is observed as a result of the
interference of two states, one of which is spectrally narrow
and the other is wide when both states are excited by some ex-
ternal source. Note that there is a direct relationship between
the Friedrich-Wintgen quasi-BIC and Fano resonances, since
these two phenomena are associated with the same physical
effect of wave interference. To analyze precisely the quasi-
BIC, we examine in detail the calculated SCS spectra from
Fig. 4 by decomposing them into two Fano profiles:

SCS(ω) = A1
(q1 + �1)2

1 + �1
2 + A2

(q2 + �2)2

1 + �2
2 , (1)

where q1,2 is the Fano parameter, �1,2 = 2[ω − (ω0)1,2]/�1,2,
where �1,2 and (ω0)1,2 are the resonance width and frequency
respectively for the two resonant modes. The Fano profile
is generally asymmetric and determined by the parameter q,
which is the only new feature in the Fano profile in compari-
son with the Lorentzian profile. The position of the quasi-BIC
is determined by the maximum Q factor of the line and corre-
sponds to the Fano parameter q → ∞ [21,22]. At this value,
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FIG. 5. (a), (e) Calculated frequencies of the TE0,1,2 and TE0,2,0

modes in the avoided crossing regions for the cylinder and the ring as
a function of its aspect ratio. Dependencies of the total quality factor
Qtot of the high-frequency branch (red) and low-frequency branch
(green) on the aspect ratio for the cylinder (b)–(d) and ring (f)–(h)
for three values of the dielectric permittivity. TE-polarized incident
wave, normalized size parameter x = rω/c.

the Fano line shape becomes a symmetric Lorentzian function
and the resonance does not couple to the continuum of states.

The results of the decomposition of the spectra are shown
in Fig. 4 for a cylinder and a ring at three values of the
dielectric permittivity. If one looks at the SCS spectra corre-
sponding to the material loss in amorphous GST [Figs. 4(c)
and 4(f)], then it seems that the high-frequency mode has
become completely invisible. Although it does indeed re-
semble a dark state, the accurate decomposition of the SCS
spectrum into two Fano contours allows one to observe a clear
symmetric Lorentzian line corresponding to the quasi-BIC.
From Fig. 4, we obtain an important result: with an increase in
material losses from 0 to 0.42, the low-frequency peak almost
does not change in amplitude, while the high-frequency peak
corresponding to the quasi-BIC decreases in amplitude by ap-
proximately two orders of magnitude. Moreover, the decrease
in the quasi-BIC amplitude in the spectrum of the cylinder is
stronger than in the spectrum of the ring.

Figure 5 demonstrates further results of processing the SCS
spectra. Outside the avoided crossing regime the frequency

FIG. 6. Calculated dependencies of the total quality factor Qtot

of the high-frequency branch (red) and low-frequency branch (green)
on the material losses for the cylinder (a) and ring (b).

shifts of both Mie and Fabry-Perot modes are well described
by a linear law. As the frequencies approach each other, a
classical resonance picture of the formation of quasi-BIC
according to the Friedrich-Wintgen mechanism is observed.
It should be noted that the position of both peaks practically
did not change and the value of the minimum splitting (Rabi
splitting) did not change when the imaginary part of the per-
mittivity ε′′ changed from 0 to 0.42. Therefore, in Fig. 5, we
present the frequency dependencies only for ε′′ = 0.

In the avoided crossing region [Figs. 5(a) and 5(e)], the
total quality factor Qtot of the high-frequency branch increases
sharply, reaching in the quasi-BIC regime a value of 608 for
a cylinder and 332 for a ring in the absence of losses in
both resonators. As a result of the interaction of two modes,
the low-frequency branch demonstrates the opposite behavior,
namely, its Qtot factor has a minimum in the quasi-BIC aspect
ratio region. Note that the quasi-BIC regions of the cylinder
and the ring are observed at different values of the aspect ratio.

The obtained results enable us to analyze the influence of
material losses on the total quality factor Qtot of the quasi-BIC
in the strong coupling regime. Figure 6 shows the dependence
of the factor Qtot of the high-frequency and low-frequency
modes at the frequency corresponding to the quasi-BIC, de-
pending on material losses, the level of which is determined
by the value of the imaginary part of the dielectric permittivity.
It can be seen that the Q factor of the high-frequency mode
strongly depends on material losses, while the Q factor of the
low-frequency mode in the scales shown in Fig. 6 does not
practically change. The total Q factor is determined by both
radiation and material losses and is expressed as [22]

Q−1
tot = Q−1

rad + Q−1
mat (2)

Here Qrad and Qmat are responsible for the radiation and
material losses, respectively. In the limit of vanishing material
losses, we have Q−1

tot = Q−1
rad, so we can determine the Qmat

for amorphous GSTs, assuming Qrad to be independent of
the losses in each of the resonators. Moreover, the material
losses Qmat do not depend on the shape of the resonator;
therefore, determining the value of Qmat for a cylinder and
a ring and comparing them is a good test for the validity of
our calculations. We use the values of quality factors obtained
from numerical calculations for both resonators, namely for
the cylinder Qrad = 608 and Qε′′=0.42

tot = 43 and for the ring
Qrad = 332 and Qε′′=0.42

tot = 41. Finally, we get an impressive
result that in both cases for an amorphous GST Qmat = 46.
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FIG. 7. Calculated distribution of the electric field amplitude |E | in the (x, z) cross sections (resonator side view) for the cylinder (a)–(f)
and ring (g)–(l) for the low-frequency (a)–(c) and (g)–(i) and high-frequency (d)–(f) and (j)–(l) branches at quasi-BIC aspect ratios for three
values of losses shown in the picture on the left. The horizontal direction in the plane of the figure corresponds to the x axis, and the vertical
direction corresponds to the z axis, indicated in Fig. 2.

To provide a complete picture of the quasi-BIC transforma-
tion with a change in material losses in amorphous GST, we
performed calculations of the distribution of the electric field
amplitude |E | in the (x, z) cross sections of the cylinder and
ring. From Fig. 7 it is clearly seen that the distribution of the
electric field amplitude in the cylinder and ring has a similar
form with the difference that in the case of a ring, the field
predominantly remains in the material with a high dielectric
constant, shifting from the central cylindrical air region. Note
that the field distribution of the low-frequency mode at a
frequency corresponding to the quasi-BIC practically does not
change its shape when the losses change from 0 to 0.42, but
only slightly decreases in amplitude both in the cylinder and
in the ring. This behavior fully correlates with changes in the
intensity of the spectra shown in Fig. 4. In contrast to the
low-frequency mode, the high-frequency mode corresponding
to the quasi-BIC changes significantly both in the amplitude
and the field distribution. In the absence of losses, the field
distribution contains six almost identical lobes and, in the
case of a cylinder, is well described by the C6 symmetry,
Fig. 7(d). This distribution is the result of the interaction of
the Mie-type TE0,2,0 mode with a transverse field distribution
and the Fabry-Perot TE0,1,2 mode with a longitudinal (along
the vertical axis) distribution of the field. It is important to
note that the intensities of the lines of both modes in the SCS
spectra are approximately equal, Figs. 4(a) and 4(d). This
distribution was previously presented in Ref. [21]. With the
appearance and increase of losses, the field pattern changes
qualitatively, and the C6 symmetry is broken. At an interme-
diate loss value (ε′′ = 0.20), the symmetry of the field pattern
becomes C2 with a uniform field distribution both along the
horizontal axis with two maxima and along the vertical axis
with three maxima, Figs. 7(e) and 7(k). Finally, at losses cor-
responding to amorphous GST, the C2 symmetry is retained,
but the field along the horizontal and vertical axes ceases to be
uniform. Moreover, it is clearly seen that the field distribution
corresponding to the quasi-BIC copies the field distribution
in the low-frequency branch. This is not surprising when one
looks at Fig. 4. In SCS spectra, the mode of the low-frequency
branch is two orders of magnitude more intense than the

quasi-BIC mode, its field in the cavity is decisive, and the
quasi-BIC mode only slightly changes this distribution due to
the interaction between them.

VI. TWO MECHANISMS FOR SWITCHING OPTICAL
SPECTRA

Finally, we describe the effect of switching the SCS spectra
upon the GST transition from the amorphous to the crystalline
phase, taking into account real losses. Figure 8 shows the
spectroscopic result of GST switching from the state with a
complex permittivity 19.0 + i0.42 to a state with a complex
permittivity 41.6 + i17.5. Huge changes in the permittivity
of the cylinder and ring from crystalline GST with respect
to amorphous lead to a complete change in the SCS spectra,
and as a result, in the discussed spectral region, we see only a
monotonically varying background without any spectral fea-
tures (brown line).

Thanks to Fig. 8, we can describe two different mech-
anisms for switching the SCS spectra as a result of the
amorphous-crystalline phase transition. The first mechanism,
marked with red arrows in Fig. 8, is associated with the
disappearance of the resonant mode structure in the SCS
spectra of the crystalline phase. More interesting is the second

FIG. 8. Calculated SCS spectra of the cylinder (a) and ring (b) in
the amorphous (blue line) and crystalline (brown line) GST phases in
the avoided crossing spectral region of the TE0,2,0 and TE0,1,2 modes.
The lilac dotted line indicates zero scattering intensity. Normalized
size parameter x = rω/c. TE-polarized incident wave.
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mechanism, marked in Fig. 8 with green arrows. As noted
above, the resonant mode structure of both the cylinder and
the ring is described by Fano resonances and in the avoided
crossing region by two Fano contours according to formula
(1). When material losses in the amorphous phase are taken
into account, ε′′ = 0.42, the band of the high-frequency quasi-
BIC component is two orders of magnitude weaker than the
low-frequency band, and to describe the SCS spectrum it is
sufficient to use one Fano contour in formula (1). A character-
istic feature of the Fano contour is that its amplitude vanishes
exactly at the frequency corresponding to the condition that
the numerator of the Fano formula vanishes, q1 + �1 = 0. In
the spectrum of amorphous GST, vanishing is observed at a
normalized frequency of 1.22 for a cylinder and 1.43 for a
ring. This second mechanism is more contrasting, since one
of the states is close to zero.

VII. SUMMARY AND OUTLOOK

In this paper, we present a general picture of the trans-
formation of BIC in the Friedrich-Wintgen mechanism,
depending on material losses. We succeeded in separation
of the contributions of radiation and material losses in the
scattering spectra, bringing the results to specific values.
The value of the material quality factor for the amorphous
GST was obtained, which is Qmat = 46. In addition, we
have determined the radiation quality factors for the cylinder
(Qrad = 608) and ring (Qrad = 332) in the quasi-BIC regime
of avoided crossing between the Mie-type TE0,2,0 and Fabry-
Perot-type TE0,1,2 modes. Thus, the total quality factor is
determined by material losses in the amorphous GST and does
not differ significantly for the cylinder (Qε′′=0.42

tot = 43) and the
ring (Qε′′=0.42

tot = 41).
As a result of calculations, we received a number of un-

expected results. The biggest surprise turned out to be the
behavior of two interacting modes, shown in Figs. 3 and 4.
With an increase in losses far from the quasi-BIC region, both
modes decrease in intensity in approximately the same way.
However, for the aspect ratio corresponding to the minimum

difference between the low-frequency and high-frequency
branches, the quasi-BIC becomes practically a dark mode
while the low-frequency band continues to be intense. In this
case, the main effect is not associated with broadening, as one
might expect, but with a decrease in the amplitude. It turned
out to be possible to separate the line contours and isolate the
quasi-BIC only as a result of the precision processing of the
explosive spectrum according to the Fano formula (1). Our
calculations have shown that material losses, which signifi-
cantly reduce the Q factor, in the investigated range from 0 to
0.42 have practically no effect on the mode coupling strength.
Indeed, the calculated dependencies of the low-frequency and
high-frequency branches [green and red dependences shown
in Figs. 4(a) and 4(e)] practically do not change with the
change in losses, that is, the Rabi splitting [47] remains un-
changed. That is why in Fig. 5 we present these dependencies
only for zero losses.

In addition, in the scattering spectra, we have demonstrated
the effects of the phase transition from the amorphous GST
phase to the crystalline phase and identified two mechanisms
that can be used in practice. Particularly interesting is the
mechanism due to the Fano resonance, when switching occurs
between two signals, one of which is close to zero (green
arrows in Fig. 8).

In conclusion, our results demonstrate a simple and clear
way to analyze losses in creating efficient resonant devices
as a result of optimal combinations of three factors: material,
resonator geometry, and resonant photonic regime, one of
which can be a BIC. As a result of a detailed analysis, we
found unexpected behavior of the quasi-BIC in the presence
of significant material losses; these photonic states turned out
to be more sensitive to losses compared to ordinary resonator
eigenmodes.
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