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In bilayers of semiconducting transition metal dichalcogenides, the twist angle between layers can be used to
introduce a highly regular periodic potential modulation on a length scale that is large compared to the unit cell.
In such structures, correlated states can emerge, in which excitons in the heterostructure are strongly localized to
the potential minima due to exciton-exciton interactions. We explore the transition between Mott and extended
exciton phases in terms of a moiré-Bose-Hubbard Hamiltonian. Hopping and on-site interaction parameters are
obtained from a Wannier representation of the interlayer-exciton wave functions, and a nonlocal Rytova-Keldysh
model is used to attribute for the dielectric screening of excitons in the two-dimensional material. For sufficiently
small exciton concentrations and substrate screening our model predicts the emergence of Mott-insulating states,
establishing twisted transition metal dichalcogenide heterostructures as possible quantum simulators for bosonic
many-body systems.

DOI: 10.1103/PhysRevB.105.165419

I. INTRODUCTION

Twisted heterobilayers of transition metal dichalcogenides
(TMDs) offer unique opportunities to study many-body and
quantum phenomena, such as strongly correlated states of
matter and unusual topological phases [1,2]. The twist angle
between two adjacent layers of a heterostructure gives rise to
periodically changing stacking order, a so-called moiré pattern
[Fig. 1(a)], resulting in a regular variation of the band gap due
to different interlayer hybridization strengths [3–6]. Charge
carriers and excitonic complexes confined to the bilayer ma-
terial experience an effective potential with a periodicity of
the arising superlattice, which, for small twist angles, is much
larger than the unit-cell size of the individual monolayers.
Crucially, the moiré superlattice defines a periodic array of
potential minima, in which charge carriers can be trapped and
interact with each other, a behavior reminiscent of Hubbard
systems [7,8]. Only recently, studies on gated van der Waals
heterostructures have demonstrated the extent of this analogy
by revealing correlated hole Mott phases at integer and frac-
tional filling factors of charge carriers, i.e., a realization of an
effective Fermi-Hubbard system [9,10]. Theoretical models
have also predicted topological phases, charge density waves,
and generalized Wigner crystals [11–14].

While the Fermi-Hubbard physics of twisted moiré het-
erostructures is still in its infancy, even less studied is the
Bose-Hubbard physics of moiré excitons and other bosonic
complexes. In TMD heterobilayers with type-II band align-
ment, intralayer and interlayer excitons can exist [15,16]. We
focus on interlayer excitons (IXs), which are energetically
favorable and dominate the emission properties. They exhibit
strong dipole alignment due to the separation of electrons and
holes in the two constituting planes of the bilayer material.
The strong Coulomb interaction in atomically thin materials

gives reason to treat IXs as composite bosonic particles, so
that their mutual interaction in the presence of the regular
moiré potential realizes a generalized Bose-Hubbard (BH)
system. On the one hand, TMD moiré systems may thus serve

FIG. 1. (a) Real-space lattices of top and bottom monolayers.
The periodic variation of the stacking registry defines the moiré
lattice vectors aM

i that span the moiré unit cell. (b) Illustration
of the moiré heterostructure. The two constituting TMD mono-
layers are embedded between top and bottom dielectric materials.
(c) Schematic arrangement of the monolayer band gaps to form a
type-II band alignment. Generation of electron-hole pairs, fast inter-
layer charge transfer, and IX formation are indicated. (d) A relative
twist of the monolayer Brillouin zones allows the construction of
a subordinate moiré lattice and corresponding unit cell. The moiré
lattice vectors GM

i = bb,i − bt,i are generated from differences of
lattice vectors of the top and bottom layers.
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as a promising semiconductor platform for simulating many-
body effects and quantum phase transitions in addition to
dilute ultracold atomic gases in optical lattices [17,18]. On the
other hand, predictions of the moiré-Bose-Hubbard model can
provide insight into the widely unexplored phase boundaries
of IX. First studies have already investigated the possibility
of superfluid phase formation in TMD heterobilayers [19,20],
exploring the transition between superfluid and Mott state.
Realizations of BH systems have also been studied with IX
in gated double quantum-well structures [21,22], where the
lattice potential was realized by patterned, externally applied
electric fields. In comparison, in twisted TMD heterobilayers
the moiré potential emerges naturally from the varying stack-
ing order in the twisted material layers, where the degree of
localization can be altered via the twist angle.

In this work, we start from an effective description of IXs in
twisted heterobilayers and calculate the characteristic on-site
and hopping parameters directly from the IX wave functions
in a localized Wannier basis. It is well known that excitons
in atomically thin van der Waals layers are highly suscepti-
ble to screening by the dielectric environment [23–26]. We
account for dielectric screening by using a nonlocal Rytova-
Keldysh potential [27–30] and explore the effect of different
dielectric environments on the phase boundary between the
Mott and superfluid states of IXs in twisted TMD hetero-
bilayers for the typical material combinations MoS2/WS2
and MoSe2/WSe2 [3,4,15,16,31]. We begin by discussing the
emergence of the moiré potential and its influence on the en-
ergy structure of IXs in Sec. II, while in Sec. III we introduce a
single-band Wannier basis to map the IX’s dynamics and their
dipolar interaction onto a generalized BH model, extracting
hopping amplitudes as well as on-site and nearest-neighbor
interaction parameters. Section IV lays out the model used
to account for screening of the dipolar interaction due to the
dielectric environment. Finally, in Sec. V we discuss implica-
tions for IX phases that arise in MoS2/WS2 and MoSe2/WSe2
moiré-Bose-Hubbard systems.

II. INTERLAYER EXCITONS IN A MOIRÉ SUPERLATTICE

We first focus on twisted heterobilayers of MoS2/WS2,
embedded in a dielectric environment, as depicted in Fig. 1(b).
For negligible mismatch in lattice constants, the emerging
moiré lattice is only determined by the twist angle. The moiré
lattice constant can be approximated by |aM| ≈ a0/θ , with
a0 the lattice constant of the TMD monolayers. The spatial
twist of the constituent monolayers translates to an offset
of the K points in reciprocal space. It shifts the K-valley
extrema of each respective monolayer relative to each other
to form a type-II band alignment that is indirect in momen-
tum space with the conduction-band minimum in the MoS2

and the valence-band maximum in the WS2 layer as seen
in Fig. 1(c). As illustrated in Fig. 1(d) (black), an effective
smaller moiré Brillouin zone (MBZ) emerges that is due to
the long-range periodicity of the real lattice. Outer corners of
the MBZ are denoted by κ . The resulting moiré lattice vectors
are given by the differences of the reciprocal lattice vectors
of the top (t) and bottom (b) monolayers GM

i = bb,i − bt,i

with (bt/b,1, bt/b,2) = 2π ((at/b,1, at/b,2)ᵀ)−1 and at/b,i the real-
space lattice vectors.

TABLE I. Parameters of two material systems for the calculation
of the IX dispersion and wave functions. Total IX mass MIX = me +
mh is the sum of electron and hole masses given in units of the free-
electron mass m0. Lattice constants a0 of the respective monolayers
(assumed equal for top and bottom layers) and interlayer distance d
are in units of nm. For stacking configurations AA the parameters are
given for the moiré potential according to V = |V |eiψ with V in units
of meV and ψ in degrees. Parameters are taken from [4].

Material combination MIX a0 d Stacking |V | ψ

MoS2/WS2 0.76 0.319 0.615 AA 12.4 81.5
MoSe2/WSe2 0.84 0.332 0.647 AA 11.8 79.5

Electron-hole pairs generated in the heterostructure
quickly separate due to the type-II band alignment and fast
carrier scattering [32–34], leaving electrons residing in the
conduction band of the MoS2 layer and holes in the valence
band of the WS2 layer. In the presence of the strong Coulomb
interaction, momentum-indirect IXs form that possess long
radiative lifetimes [35], allowing them to thermalize before
recombining. Furthermore, with charge carriers separated to
different layers, the IX dipole moments align perpendicular to
the in-plane direction, an arrangement that is in close analogy
to spatially indirect excitons in coupled quantum wells, and
which results in a pronounced dipolar repulsion [36–38].

For small twist angles, the periodic, continuous spatial
variation of the interlayer band gap acts as an effective poten-
tial landscape V M(r) for the IXs. Although also the binding
energy varies with the moiré periodicity, this variation is
small, and we neglect it here [4]. The effective potential
generally modifies the movement of IXs and can give rise to
states localized at the potential minima when the potential is
sufficiently strong. In a first-order plane-wave expansion, the
potential can be written as [4]

V M(r) =
6∑

j=1

Vj eiGM
j r, (1)

where G j are the first-shell moiré reciprocal lattice vectors.
Because of the threefold rotational symmetry of the hetero-
bilayer V1 = V3 = V5, V2 = V4 = V6, and V1 = V ∗

2 . Using the
Bohr radius of intralayer excitons as a rough estimate, we
note that for twist angles <4◦, the moiré periodicity is suf-
ficiently large in comparison to the in-plane extent of IXs [4].
Therefore, in the limit of small densities, we regard the IX as
composite bosonic particles that move in the moiré potential
landscape, neglecting their inner structure. Considering only
the center-of-mass (c.o.m.) kinetic energy of an IX and the
influence of the moiré potential, the Hamiltonian reads as

H0 = − h̄2

2M
�r + V M(r), (2)

where M = me + mh is the total mass of the IX which we
solve in a plane-wave basis of the IX Bloch states. The re-
sulting IX dispersion for twist angles 1° and 4° is shown in
Figs. 2(a) and 2(b) and parameters used are listed in Table I.
The strong localization of the IX is reflected in the vanishing
curvature of the lowest IX energy bands. The resulting IX
Bloch functions for states with in-plane quasimomentum Q
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FIG. 2. (a), (b) IX dispersion at twist angles θ = 1◦ and 4◦ along
a linear cut through the MBZ (κ, γ , κ ′). Smaller twist angles lead
to stronger localization of the IX wave functions at lowest energies
(flat dispersion). (c), (d) IX Bloch wave functions (colors). The wave
function’s localization is reflected in the spatial extent relative to the
moiré potential (contours). (e), (f) Single-band IX Wannier functions
are localized at individual potential minima. (g) First absolute mo-
ment 〈|r|〉wR and relative extent as a function of moiré lattice length
and twist angle θ .

in the branch α of the dispersion are given by

χ
(α)
Q (r) = 1√

V

∑
GM

c(α)
Q−GM ei(Q−GM )r. (3)

In Figs. 2(c) and 2(d) we show the moiré potential
(contours) superimposed over the IX Bloch wave functions
(colors) corresponding to the lowest-energy states at the κ

point of the moiré BZ. While still periodic in real space, the

wave functions become more localized around the potential
minima as the dispersion flattens with decreasing twist angle.

The IXs feel an interaction potential [39,40] that can be
obtained from a point-charge treatment [37] of two spatially
indirect excitons. The resulting repulsive dipole-dipole inter-
action is given by

U (r) = e2

4πεrε0

(
2

r
− 2√

d2 + r2

)
, (4)

where d is the mean distance between the layers (i.e., the
length of the dipole). Due to its 2D nature, in the heterobilayer
the effect of dielectric screening is particularly important as it
strongly modifies the Coulomb interaction between particles
in the layers [23–26]. The simplest method to treat this effect
is to account for the constant relative permittivity εr as the
(equally) weighted average of the relative permittivities (see
Table II) of the two constituting monolayers and the top and
bottom substrates and superstrates. An improved model of the
of dielectric screening by the heterobilayer and its environ-
ment is discussed in Sec. IV.

Given the dipolar repulsion, we estimate under which con-
ditions one can regard the IXs as composite bosonic particles.
We assume that this assumption holds as long as the mean IX
distance r̄ = n−1/2 is much larger than the interlayer distance
d , given an IX density n. The distance d defines the charac-
teristic length scale of the potential, beyond which the IXs see
each other as pointlike dipoles. This results in the condition
nd2 	 1, which in our case amounts to n 	 2 × 1014 cm−2

for the MoS2/WS2 heterostructure, and smaller densities if
additional dielectric screening layers are placed between the
TMD monolayers. In the limit of freely moving particles,
we need sufficiently low temperatures, such that the minimal
distance that IXs can have due mean kinetic energy is large,
and they do not witness each other’s internal structure. This
is provided if the characteristic length scale d of the dipolar
potential is small in comparison to the minimal distance rE

of two IXs with thermal energy E = kBT , where rE is de-
termined by U (rE ) = E . From this we obtain kBT 	 e2

4πεrε0d ,
which is met for all experimental conditions. In the case of
IXs confined to minima of the moiré potential, we consider
a density regime that results in at most one IX per potential
minimum. This leads to densities n < 2√

3|aM| as a function of
the length of the moiré lattice vector (see also Appendix A for
more details).

III. MOIRÉ BOSE-HUBBARD MODEL

The localization of lowest-energy moiré IXs in the effec-
tive potential minima allows to map the system to an extended
Bose-Hubbard model on a triangular lattice. We use a basis
of Wannier functions, constructed from the moiré IX wave
functions in the lowest band

wR(r) = 1√
N

∑
Q

e−iQRχQ(r), (5)

where χQ(r) are the IX c.o.m. wave functions for in-plane
momenta Q in the two-dimensional MBZ, and from here
on we suppress the band index α. Note that the R do not
correspond to the moiré lattice vectors but to the array of

165419-3



GÖTTING, LOHOF, AND GIES PHYSICAL REVIEW B 105, 165419 (2022)

TABLE II. Parameters for the dielectric screening. Relative permittivities εr taken from [41] are given by the geometric mean of in-plane
and out-of-plane dielectric constants. Values of the 2D polarizability χ2D are in units of nm.

Material MoS2 WS2 MoSe2 WSe2 hBN SiO2 Air

εr 9.69a 9.24a 11a 10.64 a 5.1a 3.9 1
χ2D 0.711b 0.639b 0.846b 0.757b

aReference [41].
bReference [25].

moiré potential minima around which the Wannier functions
wR(r) are centered. The applicability of single-band Wannier
functions relies on the energetic separation of the lowest IX
state as seen in Figs. 2(a) and 2(b). This can be assumed to be
a good approximation for sufficiently low exciton densities,
where higher-energy bands are largely empty. The wR(r) are
centered around individual minima R of the moiré potential
as shown in Figs. 2(e) and 2(f). The ability to map the system
dynamics to that of a Bose-Hubbard model relies on choos-
ing the wR(r) as basis functions that are strongly localized
at discrete lattice sites. For an intuitive way to quantify the
localization of the IXs, we calculate the first absolute moment
of the distribution defined by wR(r) centered around its mean:

〈|r|〉wR =
∫

|r − R||wR(r)|2d2r. (6)

As seen in Fig. 2(g), 〈|r|〉wR actually increases with decreasing
twist angle. Therefore, we note that localization of IX states at
lattice sites occurs only relative to the extent of the moiré unit
cell, which can be inferred from the same panel, in which also
the relative extent 〈|r|〉wR/|aM| is shown, |aM| being the moiré
lattice vector defining the length scale of the moiré lattice.

Having established the c.o.m. Hamiltonian of the IXs and
their dipolar interaction in the previous sections, we now seek
a description of IX states in the TMD moiré heterostructure in
terms of a generalized Bose-Hubbard model, which includes
nearest-neighbor IX repulsion to account for the long-range
interaction mediated by the dipolar potential U (r). In general,
we write the BH Hamiltonian

H =
∑
R,R′

t (R − R′)c†
RcR′ + 1

2

∑
R,R′

U (R − R′)c†
Rc†

R′cR′cR

(7)
with c†

R and cR the creation and annihilation operators for
IXs at lattice position R. The hopping amplitudes tn =
−t (R − R′) and the interaction strengths Un = U (R − R′)
are obtained by projecting the free IX Hamiltonian and the po-
tential U (r) onto the first-band Wannier basis states in Eq. (5).
Here, a two-center approximation was applied that relies on
the spatially fast decaying basis functions wR(r). With this
notation, U0 corresponds to on-site interaction with R = R′,
while U1 denotes nearest-neighbor interaction. Generally, Un

is the nth-nearest-neighbor interaction, and similarly for tn.
We define the hopping parameters tn with a negative sign
in accordance with the literature on BH systems. A sketch
illustrating the relevant processes is shown in Fig. 3. To obtain
tn we use the projection of H0 onto the Wannier basis

tn = −
∫
R2

w∗
R(r)H0wR′ (r)d2r = − 1

N

∑
Q

ei(R−R′ )QEQ, (8)

where EQ are the eigenvalues of H0 for the lowest dispersion
branch. We note that t0 establishes a constant energy offset
given by the mean energy of the band EQ that we neglect in
the following. The algebraic form of the tn parameter gives in-
teresting insight: Effectively, tn is a Fourier decomposition of
the lowest-energy band with respect to the lattice site distance
R − R′. Information about the parameter can be directly read
off of the band structure, i.e., flat bands result in small hopping
terms, while curved bands result in larger hopping terms. We
show tn in Fig. 4(a) as a function of twist angle. Indeed, for
small twist angles the localization of IXs becomes stronger,
effectively inhibiting hopping from one lattice site to another.

Similarly to tn, the coefficients of the two-particle interac-
tion Un can be calculated using the Wannier basis in second
quantization using Eq. (4) as

Un =
∫∫

R2
|wR(r)|2|wR′ (r′)|2U (|r − r′|) d2r d2r′. (9)

More details on the derivation are given in Appendix B. Fig-
ures 4(b) and 4(c) show the on-site interaction U0 (orange
circles) and nearest-neighbor interaction U1 (orange squares)
as function of twist angle for two different dielectric environ-
ments, i.e., freestanding and encapsulated in hexagonal boron
nitride (hBN). The on-site interaction U0 clearly dominates
over the (next-) nearest-neighbor interactions. However, while
hopping of IXs between lattice sites is quenched for small
twist angles as expected due to increasing localization, we
also find the on-site interaction U0 to decrease with the twist
angle, which might seem counterintuitive. This is because
only the relative extent gets smaller for small twists, meaning
stronger localization. At the same time, the absolute spatial

FIG. 3. Schematic view of the interaction processes represented
by the Hubbard parameters. On-Site and nearest-neighbor interaction
strengths U0 and U1 are indicated as well as hopping to nearest (t1)
and next-nearest (t2) lattice sites.
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FIG. 4. Moiré Bose-Hubbard parameters. (a) The (next-) nearest-neighbor hopping amplitudes t1, t2. Increasing localization of the IX
wave functions with decreasing twist angle θ result in suppressed hopping. (b), (c) On-Site and nearest-neighbor interaction U0 (circles) and
U1 (squares). Constant screening (orange) is compared with screening given by the nonlocal Keldysh potential (purple). For both dielectric
embeddings (freestanding, hBN/hBN) the Keldysh model predicts weaker on-site interactions U0 (except in the freestanding case for larger
angles) and an increased role of nearest-neighbor interactions U1. With decreasing twist angles, the dipolar interaction weakens as the moiré
unit cell becomes large and IXs occupy a larger area in absolute terms.

extent of the IX wave function, as given by 〈|r|〉wR in Eq. (6),
actually increases, thereby weakening the on-site interaction.

IV. DIELECTRIC SCREENING

In Eq. (4) the dipolar interaction potential contains the
dielectric environment of IXs solely as a constant relative
permittivity εr that is obtained by averaging the permit-
tivities of the two constituent layers and superstrates and
substrates [11,19]. However, a constant permittivity is better
suited to capture effects in homogeneous media, while in
heterostructures of atomically thin materials, the dielectric
environment changes on small length scales, and in many
situations, a more detailed modeling of screening effects is
required [23,24,42–44]. To improve on the constant-screening
approach, we take into account nonlocal screening effects
via a nonlocal Rytova-Keldysh potential. This approach
was successfully used to model the Coulomb interaction
of excitons, trions, and other complexes in TMD monolay-
ers and heterostructures [25,26,29,30,45–47]. We apply this
description by modifying U (r) in momentum space. The
Fourier-transformed dipolar potential that determines the IX’s
interaction is given by

U (q) =
∫
R2

U (r)e−ir·q d2r = e2

εrε0

1

q
(1 − e−dq). (10)

Equation (10) enables us to replace the constant permittivity
εrε0 by the nonlocal ε(q) = ε0κ (1 + r0q), where κ = (εt

r +
εb

r )/2 is the mean relative permittivity of the dielectric envi-
ronment around the heterostructure, r0 = 2πχ2D/κ defines a
length scale on which the potential is modified, and χ2D is the
2D polarizability of the heterostructure [25,30]. We average
the 2D polarizabilities of the two materials constituting the
bilayer to find an effective description of the system. In real

space, the modified dipolar potential becomes

Ũ (r) = e2

2πκε0

∫ ∞

0

1 − e−dq

1 + r0q
J0(rq) dq (11)

with the Bessel function of the first kind of order zero, J0.
The integral is evaluated numerically and the nonlocal dipolar
potential is shown in Fig. 5 (purple). A comparison with the
potential based on the constant screening (orange) reveals
that the nonlocal screening results in lower dipolar potential
strengths at small distances, changing the 1/r dependence to
a logarithmic divergence (see inset in Fig. 5) from which we

FIG. 5. Dipolar potential as a function of IX distance r, com-
paring the effect of screening by a constant permittivity εrε0 and
nonlocal screening according to Eqs. (4) and (11). For small dis-
tances the potential is reduced, changing from a 1/r dependence to
a log(1/r) dependence (illustrated in the inset on a semilogarithmic
scale). For larger distances the 1/r3 dependence remains.
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expect reduced on-site interactions. For larger distances the
modified potential retains the long-range 1/r3 dependence.

Figures 4(b) and 4(c) (purple lines) show calculations
of Un with the modified dipolar potential for two different
dielectric environments. In general, the modified potential
predicts smaller on-site interaction strengths. The amount of
the reduction obtained from the nonlocal screening model
depends on the actual dielectric environment as well as on
the twist angle. For freestanding monolayers, the modified
potential even predicts a stronger on-site repulsion than the
local case, while for larger twist angles the effect of dielectric
screening becomes more prominent. Furthermore, while the
influence of on-site interaction U0 clearly remains dominant,
with the nonlocal screening model we find the strength of
nearest-neighbor interactions U1 strongly increased relative
to on-site repulsion. This has implications for the occurrence
of correlated IX phases as will be discussed in the following
section.

V. PHASES OF INTERLAYER EXCITONS

Having established a connection between the moiré IX
system and the generalized BH model, we now discuss the
emergence of correlated states of IXs and possible signatures
of these phases in experimental setups. The on-site interaction
U0 and the nearest-neighbor hopping t1 dominate the behav-
ior, and we consider as a first approximation the standard
BH Hamiltonian

H0 = −t1
∑
〈i, j〉

c†
i c j + U0

2

∑
i

ni(ni − 1), (12)

where 〈i, j〉 denotes summation only over nearest neigh-
bors, and ni is the boson-number operator at site i. This
Bose-Hubbard model in two dimensions is often treated in
a mean-field approximation and predicts two distinct phases:
For dominating on-site interactions (t1/U0 	 1) the system
is found to be in a Mott-insulating phase at densities that
corres pond to commensurate fillings of the lattice with zero
compressibility and suppressed particle movement [8,11,19].
If hopping dominates, a superfluid phase is found, which is a
coherent IX state delocalized over the lattice. The superfluid
phase is also found in the Mott regime at incommensurate
fillings, where an excess of particles moves freely over a
commensurate, insulating background. A variety of other
methods have been employed to treat the BH model beyond
the mean-field level including Monte Carlo [48–50] and path-
integral methods [51] as well as matrix-product-state [52,53]
and density-matrix renormalization-group approaches [54] in
order to extract finite-temperature properties of the system.

We first discuss results for the MoS2/WS2 material combi-
nation. In Fig. 6(a) we show the ratio t1/U0 obtained from
our calculations as a function of twist angle for different
commonly encountered combinations of substrates and su-
perstrates. The shaded areas (violet/green) indicate the phase
transition from the Mott insulating to the superfluid state for a
filling factor of n = 1 that we obtain from numerically solving
the mean-field BH model. We would like to emphasize that
most theoretical analyses treat the BH model in a grand-
canonical ensemble description that allows for fluctuations in
the particle number with an effective Hamiltonian H0 − μN .

FIG. 6. (a) Bose-Hubbard parameters t1/U0 for MoS2/WS2 as
a function of twist angle and for different combinations of dielec-
tric environment. The shaded areas indicate Mott and superfluid IX
phases as predicted by a mean-field treatment of the BH system for a
unit filling factor (n = 1). Inset: parametric plot of U1/U0 and t1/U0

as function of twist angle. The values for intermediate to large angles
indicate the possibility of density-wave phases at fractional fillings.
(b) Parameters t1/U0 for MoSe2/WeS2 as a function of twist angle. In
comparison to (a), for all dielectric environments the system remains
in the Mott phase for all examined twist angles.

Here, we consider situations in which a fixed density of IXs
is excited in the TMD heterobilayers that is allowed to equi-
librate before radiative recombination, which corresponds to
the experimental situation following optical excitation. In this
spirit, we evaluate the mean-field model for a fixed filling
factor of n = 1, which corresponds to a canonical ensem-
ble picture [55,56]. The results in Fig. 6(a) suggest that the
MoS2/WS2 heterobilayer system will be deeply in the Mott
regime for most considered twist angles and dielectric envi-
ronments. The signature of this regime is a strongly reduced
IX diffusion whenever excitation powers create IX densities
that correspond to a filling of n = 1, a change of system
behavior that has only recently been observed experimen-
tally in [20] for a MoSe2/WSe2 system. Numerical results
for MoSe2/WSe2 are shown in Fig. 6(b) and indicate that
the selenide bilayer system remains in the Mott phase for
all examined twist angles owing to a reduced mobility of
the IXs caused by a larger lattice constant. For larger twist
angles and substantial dielectric screening, as realized by hBN
encapsulation or capping on a silicon substrate, also the super-
fluid regime is accessible for the MoS2/WS2 heterostructure.
Potentially, as the initially excited IX density decays due to
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radiative recombination, transient commensurate fillings can
be revealed in the coherence of emitted light that allows to
detect the presence or absence of an excess coherent su-
perfluid phase on top of the commensurate, Mott-insulating
background. As recently demonstrated, in more complex ex-
perimental configurations the presence of insulating IX phases
can be detected by altered reflectivity and a blueshift of
the IX photoluminescence due to changes in the dielectric
screening in the heterobilayer system depending on the IX
phase [57,58]. We point out that the trapping of IXs in the
energetic minima of the moiré potential as discussed in Sec. II
is distinct from the localization of IXs in the Mott phase,
which relies on the mutual repulsion of IXs and can arise also
for weak moiré potentials.

For the hBN-encapsulated bilayer, we have added the local
screening result as discussed in Sec. II as a gray curve to
Fig. 6(a) for comparison. It becomes clear that the increased
screening provided by the nonlocal potential has a significant
impact on the phase boundaries. In our case, the associated
underestimation of the dielectric screening would predict a
Mott phase even at the highest considered twist angles. Lagoin
et al. [19] have discussed the possibility to insert layers of
insulating hBN between the monolayers of the heterostructure
to reduce the Coulomb interaction between IXs, making the
superfluid regime more accessible. While it is an interesting
avenue for further investigations, this approach also changes
the strength of the moiré potential itself that is the prerequisite
for a Bose-Hubbard description of the system. We refrain from
considering filling factors with more than one IX per moiré
unit cell, as the role of many-particle effects, such as biexciton
formation, may play an important role that is not captured in
our current approach. Further details on the validity regime
are discussed in Appendix A.

Our approach to calculate the two-particle interaction
beyond the on-site interaction matrix element U0 allows
drawing conclusions towards more exotic correlated bosonic
states. Previous studies have reported density-wave phases
for particular fractional fillings (n = 1/3, 1/2, 2/3, . . .) in
the presence of non-negligible U1 [1,10,56,59,60]. In the
inset of Fig. 6 we show a parametric plot of U1/U0 over
t1/U0 for varying twist angle, where values close to the ori-
gin correspond to smaller angles. We see, especially in the
case of weaker dielectric screening, that the nearest-neighbor
interaction can indeed become comparable to the on-site in-
teraction U0 and the hopping amplitude t1, opening up the
possibility for the formation of more complex phases beyond
the superfluid and Mott-insulating phases. While this work
is mainly directed at establishing a connection between the
moiré physics of IXs and the Bose-Hubbard model, we do
not delve further into the phase diagram at fractional fillings.
We have, however, verified on a mean-field level that the
results shown in Fig. 6 remain valid even in the presence
of next-nearest-neighbor hopping. Our first results indicate
that interlayer excitons in the tunable potential landscape of
moiré TMD heterostructures provide a fascinating gateway
to study phase transitions in flat-band systems [61,62], and
more complex correlated phases like density wave and super-
solids. We are convinced that the underlying physics will be
addressed both in theoretical and experimental work in the
near future.

VI. CONCLUSION

In conclusion, we have examined the moiré-Bose-Hubbard
physics of IXs in MoS2/WS2 and MoSe2/WSe2 heterobilay-
ers. A connection between the properties of IXs traversing
the long-range potential landscape created by the moiré pat-
tern and the Bose-Hubbard model is established by explicitly
calculating the two-particle interaction and hopping parame-
ters from a Wannier representation of the IX wave functions.
Screening from the dielectric environment is treated within
a Rytova-Keldysh–model approach, from which we find a
significant reduction of the repulsive dipolar potential in
comparison to the approach with constant permittivity that
considers averages of dielectric constants of the different
layers. Mean-field treatment of the Bose-Hubbard Hamilto-
nian predicts the existence of a Mott phase at unit fill factor
and small twist angles due to dominating on-site interaction
strength U0. However, a transition to the superfluid state ap-
pears possible in the sulfur-based system for the relevant cases
of hBN-encapsulated bilayers, and hBN capped bilayers on
a silicon substrate, in which case the screening sufficiently
lowers the dipolar interaction strength.

While our model approach offers first glimpses into the ex-
citing correlated-state properties of excitons in van der Waals
heterostructures, in which the twist angle can be used as a
tuning knob for the Bose-Hubbard parameters, it also reveals
limitations that are inherent to current models, such as multi-
band and biexcitonic effects that will likely alter the physics
at larger filling factors. A particularly promising platform to
further explore correlated phases in moiré-Bose Hubbard sys-
tems are cavity-embedded bilayers, in which IXs and photons
form IX polaritons with even greater control over the ratio
between dipolar interaction and hopping. Furthermore, it will
be interesting to study effects of local reconstructions, which
have been shown to strongly impact the moiré physics at
low-twist angles [63].
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APPENDIX A: ESTIMATES OF IX DENSITIES

We provide estimates under which conditions the assump-
tion that the IXs can be treated as composite particles is valid.
For bosons not confined to individual lattice sites, we note that
particles with average thermal energy E = kBT can approach
each other due to their mutual dipolar repulsion up to a dis-
tance rE that is determined by U (rE ) = E . We aim at densities
and temperatures such that IXs only see each other’s dipole
field (∼1/r3) and not their inner structure. This is satisfied if
we require d < rE from which we find (with c = e2/4πεrε0)

U (rE ) = c

⎛
⎝ 2

rE
− 2√

d2 + r2
E

⎞
⎠ ≈ cd2

r3
E

. (A1)
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FIG. 7. Maximal density as function of moiré lattice constant to
have maximal one IX per potential minimum.

From U (rE ) = kBT follows

kBT d

c
= d3

r3
E

	 1

�⇒ kBT 	 e2

4πεrε0d
. (A2)

With exemplary values d = 0.647 nm and εr = 10 this results
in a temperature limit of T 	 2500 K, which is met for all
experimental conditions.

In the case of IXs confined to the potential minima in
each moiré unit cell, Fig. 7 shows an upper density limit that
corresponds to a maximum number of one IX per unit cell as
a function of the moiré lattice constant |aM|. The estimate can
easily be determined from the unit cell geometry and is given
by n � 2√

3|aM| .

APPENDIX B: CALCULATION OF THE HUBBARD
PARAMETERS

The Hubbard parameters are the coefficients of the second
quantization operators derived from H0 and H1. For the one-
particle operator H0, these coefficients are

tR,R′ = 〈R|H0|R′〉 . (B1)

Using the localized Wannier functions from Eq. (5) as the
basis, this expression becomes

tR,R′ =
∫
R2

w∗
R(r)H0wR′ (r)d2r

= 1

N

∑
Q,Q′

∫
R2

eiQRχ∗
Q(r)H0e−iQ′R′

χQ′ (r)d2r. (B2)

As the Bloch functions χQ(r) by definition are eigenfunctions
of H0 with eigenvalues EQ, we obtain

tR,R′ = 1

N

∑
Q,Q′

ei(QR−Q′R′ )EQ′

∫
R2

χ∗
Q(r)χQ′ (r)d2r

= 1

N

∑
Q,Q′

ei(QR−Q′R′ )EQ′δQ,Q′

= 1

N

∑
Q

ei(R−R′ )QEQ =: t (R − R′), (B3)

which is the result used in Eq. (8). The coefficients of the two-
particle operator H1 are

UR1,R2,R3,R4 = 〈R1|(i) 〈R2|( j) H1 |R3〉( j) |R4〉(i) . (B4)

With the Wannier functions as the basis and the vectors r and
r′ being the positions of particles (i) and ( j), respectively, the
coefficients become

UR1,R2,R3,R4 =
∫∫

R2
w∗

R1
(r)w∗

R2
(r′)U (|r − r′|)

× wR3 (r′)wR4 (r) d2r d2r′. (B5)

Due to the strong localization of the Wannier functions,
the product wR(r)wR′ (r) is non-negligible only if R = R′.
This justifies the approximation R1 = R4 =: R, R2 = R3 =: R′
and results in the two-particle coefficient

UR,R′ =
∫∫

R2
w∗

R(r)w∗
R′ (r′)U (|r − r′|)

× wR′ (r′)wR(r) d2r d2r′

=
∫∫

R2
|wR(r)|2|wR′ (r′)|2U (|r − r′|) d2r d2r′, (B6)

which is the result used in Eq. (9). Finally, we note that care
must be taken during the numerical evaluation of Eq. (B6)
as the term U (|r − r′|) features singularities. However, as the
integration area is the two-dimensional plane, and the singu-
larities are of the type 1/r the singularities can be lifted via a
transformation to polar coordinates. For that it is useful to first
express r in Eq. (B6) in terms of a new variable r̃ = r − r′.
By furthermore shifting the Wannier functions so that R′ lies
in the origin and the distance between the functions’ centers
remains the same, the following expression for U is obtained:

UR,R′ =
∫∫

R2
|wR−R′ (r̃ + r′)|2|w0(r′)|2U (r̃) d2r̃ d2r′

=: U (R − R′). (B7)

Finally, the transformation to polar coordinates can be ap-
plied, yielding

U (R − R′) = e2

4πεrε0

∫∫
R2

|wR−R′ (r̃ + r′)|2|w0(r′)|2

×
(

r′ − r′r̃√
r̃2 + d2

)
dr̃ dϕ̃ dr′ dϕ′, (B8)

which is free of singularities and can be readily evaluated.
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