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Nonlinear topological phase transitions in the dimerized sine-Gordon model
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The nonlinear system is a frontier of topological physics. As a prototype, we propose the dimerized sine-
Gordon model by combining the sine-Gordon model and the Su-Schrieffer-Heeger model. It has rich varieties of
phases depending on the nonlinearity and the dimerization. This system is realized by a simple system of coupled
pendulums, which is an ideal playground to explore associated intriguing phenomena. They are observable by
the quench dynamics starting from the left-end pendulum. The topological and trivial phases are well defined
for the weak nonlinear regime, where a pendulum motion is well approximated by a harmonic oscillator. The
emergence of the topological edge state is detected by the standing waves whose amplitude exponentially decays
with stationary even-numbered pendulums. In addition, we find nonlinearity-induced phases, i.e., the trap phase
with a strictly localized standing wave and the dimer phase with a few coupled standing waves trapped to the left
end. We also study a nonlinear dimerized Duffing model, which is obtained by the third-order Taylor expansion
of the dimerized sine-Gordon model.
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I. INTRODUCTION

Topological physics is extensively studied in condensed-
matter physics [1,2]. The topological phase is signaled by
the emergence of topological edge states. Now, the target of
topological physics has expanded to artificial topological sys-
tems such as acoustic [3–12], mechanical [13–29], photonic
[30–37], and electric circuit [38–48] systems. The merit of
artificial topological systems is that system parameters can be
finely controlled. In addition, it is possible to make a small
sample with clean edges.

Topological physics has been mainly studied in linear sys-
tems. Recently, the frontier of the study of topological phases
has reached nonlinear systems. Nonlinear effects are naturally
introduced in artificial topological systems. In this context,
topological physics in nonlinear systems is studied in me-
chanical [49–52], photonic [53–61], electric circuit [62,63],
and resonator [64] systems. It is an interesting problem how
the topological phases are modified in the presence of the
nonlinear term. Furthermore, it is fascinating if there is a
phase transition induced by the nonlinear term.

In this paper, we study topological physics in nonlinear
systems analytically and numerically. As a simplest sys-
tem, we propose the dimerized sine-Gordon model, which is
defined by dimerizing the sine-Gordon model with the alter-
native coupling strengths κA = κ (1 + λ) and κB = κ (1 − λ)
with |λ| � 1. It is reduced to the sine-Gordon model as λ →
0. It is intriguing that the model contains the Su-Schrieffer-
Heeger (SSH) model in its parts, and hence we expect the
emergence of topological and trivial phases. We explore a
phase diagram by studying quench dynamics, where we im-
pose an initial condition φn(t ) = ξπδn,1 and φ̇n(t ) = 0 on
the sine-Gordon fields φn with the index n = 1 representing
the left-end site. We may use ξ as a nonlinearity parameter.

Indeed, it is possible to define the topological number in the
weak nonlinear regime |ξ | � 1 by the first-order perturbation
theory with respect to ξ . The system is topological with the
emergence of the topological edge states for λ < 0, while it
is trivial for λ > 0. Beyond the weak nonlinear regime we
determine phases by studying the quench dynamics numeri-
cally. It is found that the phase boundary is quite insensitive
to the initial condition for |ξ | � 1/2. The nonlinearity effect
becomes dominant for |ξ | � 1/2, and eventually the system
turns into the nonlinearity-induced trap phase.

The dimerized sine-Gordon model is realized physically
by a coupled pendulum system with alternating torsion as
illustrated in Fig. 1. We give an oscillation only to the left-
end pendulum initially and investigate a quench dynamics of
how the oscillation propagates to other pendulums. We set
the initial swing angle ξπ at the left-end pendulum, where
|ξ | � 1. The pendulum motion is well approximated by a
harmonic oscillator for |ξ | � 1. This system possesses topo-
logical and trivial phases. The topological phase is signaled
by the characteristic oscillation with parity, where the ampli-
tude exponentially decays along the chain direction but with
the even-numbered pendulums kept almost stationary as in
Fig. 1(b).

We have found four phases, which we explain with the use
of a coupled pendulum system. First, we have the topological
phase, where a few left-end, odd-numbered pendulums show
simple standing waves, representing the topological edge
state. Second, we have the trivial phase, where the oscillation
propagates into the bulk. Third, the system turns into the trap
phase in the strong nonlinear regime, where the oscillation
occurs as a perfectly localized standing wave at the left-end
pendulum. This is because the interaction between adjacent
pendulum is negligible with respect to the nonlinear local-
ization effect. Forth, we find the dimer phase, where coupled
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FIG. 1. Illustration of coupled pendulums. Adjacent pendulums
are connected by a wire which has a restoring force depending on
the angle difference. The torsion is alternating as κA = κ (1 + λ)
and κB = κ (1 − λ). The system is described by the dimerized sine-
Gordon equation. (a) Horizontal view of the initial condition (11).
(b) Bird’s eye’s view of a chain of pendulums in the topological
phase, where g/κ = 1, λ = −0.5 and ξ = 0.5. The pendulum at
n = 2 is stationary. (c) Illustration of the isolated edge limit and the
dimer limit.

standing waves are trapped to a few pendulums at the left end.
Its dynamical origin is the cooperation of the dimerization and
the nonlinear term.

We have also made a similar analysis of a nonlinear dimer-
ized Duffing model, which is obtained by the third-order
Taylor expansion of the dimerized sine-Gordon model. The
phase diagram is found to be quite similar to the one in the
dimerized sine-Gordon model.

II. DISCRETE SINE-GORDON MODEL

A typical nonlinear system is the sine-Gordon model de-
scribed by

m
d2φ

dt2
= κ

∂2φ

∂x2
− g sin φ. (1)

By discretizing it on a one-dimensional chain, we obtain a
discrete sine-Gordon model [65,66], where the equation of
motion is given by

m
d2φn

dt2
= κ[φn+1 + φn−1 − 2φn] − g sin φn. (2)

It is rewritten in the form of

m
d2φn

dt2
+ g sin φn −

∑
nm

Mnmφm = 0, (3)

where Mnm is the hopping matrix with the coupling κ ,

Mnm = κ (δn,m+1 + δn,m−1 − 2δn,m). (4)

Equation (3) is derived from the Lagrangian

L =
∑

n

[
m

(
dφn

dt

)2

+ gcos φn

]
+

∑
nm

Mnmφnφm. (5)

The corresponding Hamiltonian is

H =
∑

n

[
m

(
dφn

dt

)2

− gcos φn

]
−

∑
nm

Mnmφnφm, (6)

which is a conserved energy.

III. DIMERIZED SINE-GORDON MODEL

We generalize the system by making the matrix Mnm

equipped with a nontrivial topological structure. As a sim-
plest example, we propose the dimerized sine-Gordon model,
where the matrix is given by the SSH model. The equation of
motion is given by Eq. (3) together with the hopping matrix

Mnm = −(κA + κB)δn,m + κA(δ2n,2m−1 + δ2m,2n−1)

+ κB(δ2n,2m+1 + δ2m,2n+1). (7)

The Lagrangian of the system is given by Eqs. (5) with (7),
which we refer to as the dimerized sine-Gordon model.

The explicit equations are given by

m
d2φ2n−1

dt2
= κA(φ2n − φ2n−1) + κB(φ2n−2 − φ2n−1)

− g sin φ2n−1, (8)

m
d2φ2n

dt2
= κB(φ2n+1 − φ2n) + κA(φ2n−1 − φ2n) − g sin φ2n.

(9)

It is convenient to introduce the coupling strength κ and the
dimerization parameter λ by

κA = κ (1 + λ), κB = κ (1 − λ), (10)

with |λ| � 1.

A. Mechanical system realization

We discuss how to realize the dimerized sine-Gordon
model experimentally. It is realized by a mechanical system
shown in Fig. 1, where coupled pendulums are connected
by wires. Each pendulum rotates perpendicular to the wire
direction. Here m is an inertia moment of the pendulum and
g is the gravitational acceleration constant. The alternating
hopping coefficients κA and κB are introduced by the torsion
of the wire connecting two pendulums. Then, Mnm given by
Eq. (7) is a matrix representing the couplings between the
n-th and the m-th pendulums. A wire has a restoring force
against the force induced by the angle difference between the
two adjacent pendulums.

B. Quench dynamics

Quench dynamics starting from a localized state is a good
signal to detect whether the system is topological or trivial
[67]. We analyze a quench dynamics in the present system,
where we solve the dimerized sine-Gordon equation under the
initial condition,

φn(t ) = ξπδn,1 and φ̇n(t ) = 0 at t = 0, (11)
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FIG. 2. Time evolution of the amplitude φn of the n-th pendulum.
(a) The topological phase with λ = −0.25 and ξ = 0.1, where there
are simple standing waves for odd numbered pendulums. (b) The
trivial phase with λ = 0.25 and ξ = 0.1, where the oscillation propa-
gates along the chain. (c) The trap phase with λ = 0.5 and ξ = 0.75,
where the standing wave is present only at the left-end pendulum.
(d) The dimer phase with λ = 0.75 and ξ = 0.5, where coupled
standing waves are trapped to a few pendulums at the left end. We
have set g/κ = 10.

where |ξ | � 1. Namely, we set the initial angle of the left-end
pendulum to be ξπ and all the others to be zero in a chain
of pendulums as illustrated in Fig. 1(a). Then, allowing it
to move with the zero initial velocity under the gravitational
force, we study how the motion propagates along the chain as
in Fig. 1(b).

We treat the coupling strength κ , the dimerization param-
eter λ, and the initial condition ξ as the system parameters.
We have studied the quench dynamics for a variety of these
parameters. We have found there are four types of solutions
numerically, whose typical structures are given in Fig. 2.

In Fig. 2(a), there are standing waves mainly at the left-
end pendulum and weakly at a few adjacent odd-number
pendulums, and furthermore there are propagating waves
into the bulk with a constant velocity. In Fig. 2(b), there
are only propagating waves into the bulk with a constant
velocity. In Fig. 2(c), the standing wave is trapped strictly
at the left-end pendulum. In Fig. 2(d), the coupled stand-
ing waves are trapped to a few pendulums at the left
end.

In general, it is impossible to solve the dimerized sine-
Gordon equation analytically. Nevertheless, it is possible to
obtain analytical results locally to explain these behaviors.

C. Topological and trivial phases

First, we make a change of variable, φn = ξφ′
n, and rewrite

Eq. (3) as

m
d2φ′

n

dt2
=

∑
m

Mnmφ′
m − g

ξ
sin ξφ′

n, (12)

with the initial condition

φ′
1(0) = π. (13)

By taking the limit ξ → 0, Eq. (12) is reduced to a linear
equation,

m
d2φ′

n

dt2
=

∑
m

Mnmφ′
m, (14)

where we have redefined the hopping matrix as

Mnm ≡ Mnm − gδn,m. (15)

Actually, it is a very good approximation to set sin ξφ′
n � ξφ′

n
in the vicinity of ξ = 0. We call such a parameter region the
weak nonlinear regime, where the nonlinear equation (3) is
well approximated by Eq. (14). Physically, this corresponds to
the case where the pendulum is approximated by a harmonic
oscillator.

Equation (14) is the SSH model with a modified matrix
Mnm. As described in the Appendix, the present model (14)
has the same phases as the SSH model. The system is topo-
logical for λ < 0 and trivial for λ > 0 in the weak nonlinear
regime.

The topological phase is characterized by the emergence
of zero-mode edge states for a finite chain. In the linearized
equation (14), the zero-mode edge state is solved as

φ2n+1 =
(

−κA

κB

)n

φ1, φ2n = 0. (16)

It has the major component in the left-end pendulum but also
has components in a few adjacent odd-numbered pendulums.
Now, the initial motion is given only to the left-end pendu-
lum, which is only a part of the zero-mode edge state. This
mismatch allows some parts to propagate into the bulk with
the velocity ∼√

κ/m, while those within the zero-mode edge
state stay as they are, exhibiting standing waves. Thus this
analytic solution well describes the structure made of standing
waves and propagating waves, as shown in Fig. 2(a), where
λ = −0.25 and ξ = 0.1.

On the other hand, there is no zero-mode edge state in the
trivial phase. Hence the left-end pendulum motion propagates
entirely into the bulk, which well explains the structure made
of propagating waves with the velocity ∼ √

κ/m in Fig. 2(b),
where λ = 0.25 and ξ = 0.1.

D. Trap phase

We next study the limit where the nonlinear term is
dominant over the hopping term in Eq. (3), where we may
approximate it as

m
d2φn

dt2
= −g sin φn. (17)
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FIG. 3. Time evolution of the angle φ1 and φ2 in the dimer phase
(λ = 1) under the initial condition φ1 = π/2 and φ2 = 0. We have
set g/κ = 10.

We call such a parameter region the strong nonlinear regime,
where the nonlinear equation (3) is well approximated by
Eq. (17).

The prominent feature of the strong nonlinear regime is
that all equations are perfectly decoupled. Each is a simple
pendulum equation, whose exact solution is given by

φn = 2 sin−1[αnsn(ωt, αn)], (18)

where sn is the Jacobi elliptic function, ω ≡ √
g/m and αn

is determined as αn = sin[φn(0)/2] in terms of the initial
condition φn(0). Under the initial condition (11), the left-end
pendulum makes a motion described by Eq. (18) with n = 1
while all other pendulums remain stationary. The pendulum
motion is perfectly trapped to the left end of the chain, as
explains the structure made of a single standing wave in
Fig. 2(c), where λ = 0.5 and ξ = 0.75.

E. Dimer phase

We consider the limit λ = 1, where the system is perfectly
dimerized. In this case, the equations of motion are given by

m
d2φ1

dt2
= κA(φ2 − φ1) − g sin φ1, (19)

m
d2φ2

dt2
= κA(φ1 − φ2) − g sin φ2. (20)

Solving this set of equations numerically under the initial
condition φ1 = ξπ and φ2 = 0, we show the results in Fig. 3,
where the set of oscillatory waves with long and short periods
appears for φ1 and φ2.

The above analysis is correct only in the limit λ = 1.
In general, a coupling is present between the dimer and
the adjacent pendulum. Numerical calculation shows coupled
standing waves trapped to a few pendulums at the left end as in
Fig. 2(d), where λ = 0.75 and ξ = 0.5. Taking this coupling
into account, the above set of beat oscillatory waves accounts
for the pendulum motion near the limit λ = 1.

F. Phase diagram

We have performed a numerical calculation of the quench
dynamics for the left-end pendulum in a wide range of system
parameters, where we have used the parameter ξ to control
the nonlinearity. We show the value of the amplitude φ1 of
the left-end pendulum after enough time as a function of the
dimerization λ and the initial phase ξ in Fig. 4. We have set
g/κ = 10 so that the system belongs to the strong nonlinear
regime around ξ = 1.

Figure 4(b) presents a rough picture of the phase diagram.
The phase boundary is determined by the characteristic be-
haviors of the phase indicator, which is the normalized swing
angle φ1/ξπ . We calculate it as a function of ξ for a fixed
value λ or as a function of λ for a fixed value ξ , whose results
are shown for some typical values of λ and ξ in Fig. 5. In gen-
eral, the phase transition point is given by the position of a gap
in the the phase indicator as in Fig. 5. On the other hand, the
typical behavior separating the topological and trivial phases
is given in Fig. 5(c), where the phase indicator is finite in the
topological phase and decreases smoothly to zero in the trivial
phase [52,60,63]. Note that φ1 = 0 in the trivial phase of the
semi-infinite system. We have constructed the phase diagram
in Fig. 4(c) by determining the phase boundaries according to
these criteria.

We find four distinct phases: (1) The topological phase, (2)
the trivial phase, (3) the trap phase, and (4) the dimer phase.
The distinction between the topological and the trivial phases
is clear analytically in the weak nonlinear regime (ξ � 0). We
have found numerically that this topological phase boundary
does not change in spite of the increase of the nonlinear term
up to ξ � 0.5. On the other hand, there is a nonlinearity-
induced trap phase in the strong nonlinear regime (ξ � 1).
We have found numerically that the trap phase appears even
for ξ � 0.6. There is another phase in the vicinity of λ = 1,
which is the dimer phase.

FIG. 4. Normalized swing angle φ1/ξπ of the left-end pendulum after enough time as a function of the dimerization λ and the initial
condition ξ . (a) Bird’s eye’s view. (b) Top view. (c) Phase diagram of the dimerized sine-Gordon model. We have set g/κ = 10.

165418-4



NONLINEAR TOPOLOGICAL PHASE TRANSITIONS IN … PHYSICAL REVIEW B 105, 165418 (2022)

FIG. 5. Normalized swing angle φ1/ξπ as a function of ξ at
(a) λ = −0.2 and (b) λ = 0.5 and that as a function of λ at (c) ξ =
0.25 and (b) ξ = 0.5. We have set g/κ = 10. A gap indicates a
phase transition point in general. The trivial phase is characterized
by φ1 = 0 in the semi-infinite system. Various phases are indicated
in figures.

IV. NONLINEARITY PARAMETERS

We have constructed the phase diagram in the (λ, ξ ) plane
by fixing g/κ = 10 in Fig. 4. This is because the system does
not reach the strong nonlinear regime when g/κ is small. It
is necessary to investigate the condition imposed on ξ and
g/κ for the strong nonlinear regime to be realized. Exam-
ining the quench dynamics, we construct the phase diagram
in the (ξ, g/κ ) plane by fixing λ = 0.1. The result is shown
in Fig. 6(a), which shows that both ξ and g/κ should be
appropriately large.

It is actually possible to construct the phase diagram in
the (λ, g/κ ) plane by fixing ξ appropriately. We show such
a phase diagram in Fig. 6(b), where we have chosen ξ = 1.
The overall structure is identical to the phase diagram in the
(λ, ξ ) plane in Fig. 4.

Hence, both ξ and g/κ characterize the nonlinear term.
However, it is easier to change the initial condition ξ than the

FIG. 6. (a) Normalized swing angle φ1/ξπ in the (g/κ, ξ ) plane
at fixed λ = 0.01. (b) Bird’s eye’s view of the normalized swing
angle φ1/ξπ in the (λ, g/κ ) plane at fixed ξ = 1.

FIG. 7. Normalized swing angle φ1/ξπ of the left-end pendulum
after enough time as a function of the dimerization λ and the initial
condition ξ in the Duffing model. (a) Bird’s eye’s view. (b) Top view,
representing the phase diagram of the dimerized Duffing model. We
have set g/κ = 10.

parameter g/κ , where κ represents the hopping constant and g
the gravitational constant in the case of coupled pendulums.

V. DIMERIZED DUFFING OSCILLATOR

In this work, as a simplest nonlinear system, we studied
the dimerized sine-Gordon model. One might consider the
simplest one would be given by the dimerized Duffing model.
A special case is given by

m
d2φn

dt2
+ g

(
φn − φ3

n

6

)
−

∑
nm

Mnmφm = 0, (21)

which is obtained by making the Taylor expansion of the sine
term up to the third order.

Equation (21) is derived from the Lagrangian

L =
∑

n

[
m

(
dφn

dt

)2

+ g

(
1 − φ2

n

2
+ φ4

n

24

)]
+

∑
nm

Mnmφnφm.

(22)
The corresponding Hamiltonian is

H =
∑

n

[
m

(
dφn

dt

)2

− g

(
1 − φ2

n

2
+ φ4

n

24

)]
−

∑
nm

Mnmφnφm,

(23)
which is a conserved energy.

The key observation is that the potential energy becomes a
negative infinity as φn becomes a positive infinity due to the
φ4

n term. The system is shown to be stable provided φn <
√

6.
which is identical to ξ <

√
6/π with the initial condition (11).

We show the phase diagram in Fig. 7 by choosing ξ <√
6/π . In this case, the overall phase diagram is almost identi-

cal to that of the dimerized sine-Gordon model for ξ <
√

6/π .
This is physically reasonable because the oscillation is re-
stricted to be small.

VI. DISCUSSION

To explore a frontier of the topological physics in non-
linear systems, we have proposed the dimerized sine-Gordon
model and constructed a phase diagram as a function of the
nonlinearity and the dimerization. The phase diagram is very
similar to that of the nonlinear Schrödinger systems [60] al-
though the models are very different. Indeed, the former is the
second-order differential equation with real variables, while
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the latter is the first-order differential equation with complex
variables.

The similarity reveals a universal feature of nonlinear topo-
logical systems. The similarity between these models is that
there are two competing terms. One is the hopping term gov-
erning the topological physics in the weak nonlinear regime,
and the other is the nonlinear term governing nontopological
physics in the strong nonlinear regime. In the weak nonlinear
regime, the system is well described by the hopping term and
the topological phase boundary remains as it is. On the other
hand, in the strong nonlinear limit, the system turns into a
nonlinearity-induced trap phase irrespective of the dimeriza-
tion parameter λ, because the hopping term does not play a
significant role. In addition, there is a dimer phase, where the
quench dynamics is trapped to a few pendulums at the left end.

Our results show that the quench dynamics starting from
the edge is a good signal to determine a phase diagram. It is
an interesting problem to study various nonlinear systems in
the context of topology.
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APPENDIX: TOPOLOGICAL NUMBER

We discuss the topological number in the system (14),
where the hopping matrix (15) is represented in the momen-
tum space as

M(k) = −(κA + κB + g)I2 + M0(k), (A1)

with

q(k) = κA + κBe−ik, (A2)

and

M0(k) =
(

0 q(k)
q∗(k) 0

)
. (A3)

We note that the system (14) is the SSH model with the use of
Eq. (A3) rather than Eq. (A1).

In the SSH model, the topological number is the Berry
phase defined by

� = 1

2π

∫ 2π

0
A(k)dk, (A4)

where A(k) = −i〈ψ (k)|∂k|ψ (k)〉 is the Berry connection with
ψ (k) the eigenfunction of M0(k). Because the wave function
ψ (k) does not depend on the diagonal term, the topological
charge is given by Eq. (A4) also in the present system with
M(k).

Consequently, the dimerized sine-Gordon model is topo-
logical (� = 1) for κB > κA and trivial (� = 0) for κB < κA in
the weak nonlinear regime.
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