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Floquet engineering of excitons in semiconductor quantum dots
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Within the Floquet theory of periodically driven quantum systems, we demonstrate that a high-frequency
electromagnetic field can be used as an effective tool to control excitonic properties of semiconductor quantum
dots (QDs). It is shown, particularly, that the field both decreases the exciton binding energy and dynamically
stabilizes the exciton, increasing its radiative lifetime. The developed theory can serve as a basis for the ultrafast
method to tune spectral characteristics of the QD-based photon emitters by a high-frequency field.
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I. INTRODUCTION

Controlling electronic properties of quantum materials by
an off-resonant high-frequency electromagnetic field, which
is based on the Floquet theory of periodically driven quantum
systems (Floquet engineering), has become an established
research area of modern physics [1–7]. Since frequency of
the off-resonant field is assumed to be far from characteris-
tic resonant frequencies of the electronic system, it cannot
be absorbed by electrons and only dresses them (the dress-
ing field). Therefore, the effect of such a dressing field is
purely in renormalizing parameters of the electronic Hamil-
tonian. As a result, the dressing field can crucially modify
physical properties of various condensed-matter nanostruc-
tures, including semiconductor quantum wells [8–10], quan-
tum rings [11–14], topological insulators [15–20], carbon
nanotubes [21], graphene, and related two-dimensional ma-
terials [22–36], etc.

Among the most actively studied nanostructures, semi-
conductor quantum dots (QDs) take a deserved place since
they are the only stable source of single photons required for
quantum communications and quantum metrology [37–41].
As a consequence, the QDs are considered as indispensable
building blocks of modern quantum technology. A common
problem in QD-based single-photon emitters is the control
over their spectral characteristics. While the central frequency
and linewidth of the photon emission are defined by the
QD material and geometry and thus are fixed by the QD
fabrication protocol, it is required for many applications in
optical networks to tune the QD spectral characteristics dy-
namically. Since the photon emission in QDs originates from
the recombination of electron-hole pairs (excitons), the op-
tical properties of the QDs are totally dominated by the
excitonic response. It should be noted that this response
is clearly pronounced in QDs due to the large excitonic
binding energies and oscillator strengths rising from the
strong quantum confinement of excitons [42]. Currently, the
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conventional way to achieve the spectral tunability of QDs is
the gate voltage, which allows us to tune the exciton energy
and oscillator strength by the electrostatic potential via the
Stark effect [43,44]. In the present paper, we will theoretically
develop the alternative way to tune the exciton parameters by
a dressing electromagnetic field.

The paper is organized as follows. In Sec. II, we con-
struct the effective Hamiltonian describing an exciton in a
semiconductor QD driven by a high-frequency off-resonant
electromagnetic field. In Sec. III, the Floquet problem with
the effective Hamiltonian is solved and the found solutions
of the problem are analyzed. The two last sections contain
conclusion and acknowledgments.

II. MODEL

Let us consider a QD with the parabolic potential confining
motion of electrons and holes in the x, y plane (parabolic QD),
assuming that its in-plane size, L, much exceeds its size along
the z axis (see Fig. 1). Then the exciton Hamiltonian is [45]

ĤX0 =
∑
j=e,h

p̂2
j

2mj
+ U�(re, rh) + UC (re, rh), (1)

where p̂e(h) is the electron (hole) momentum operator, me(h) is
the electron (hole) effective mass, re(h) is the in-plane radius-
vector of the electron (hole),

U�(re, rh) =
∑
j=e,h

mj�
2r2

j

2
(2)

is the potential energy of the electron and hole in the parabolic
confining potential, � is the frequency of electron and hole
oscillations in this potential,

UC (re, rh) = − e2

ε|re − rh| (3)

is the potential energy of the Coulomb interaction between the
electron and hole, and ε is the permittivity. Let us irradiate the
QD by a circularly polarized electromagnetic wave (EMW)
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FIG. 1. Sketch of the system under consideration. (a) The quan-
tum dot (QD) with parabolic confinement potential irradiated by
the circularly polarized electromagnetic wave (EMW) with the fre-
quency ω0 and the electric field amplitude E0. (b) The energy band
structure of the parabolic QD containing the electron-hole pair (ex-
citon), where εc(v) is the band edge of the conduction (valence) band
of the semiconductor.

with the frequency ω0 and the electric field amplitude E0,
which propagates along the z axis [see Fig. 1(a)]. Describing
the interaction between the exciton and the EMW field in
the Gaussian system of units within the conventional mini-
mal coupling scheme, the exciton Hamiltonian Eq. (1) in the
presence of the EMW reads

ĤX =
∑
j=e,h

[p̂ j − eξ jA(t )/c]2

2mj
+ U�(re, rh) + UC (re, rh),

(4)
where e = −|e| is the elementary electron charge defined as a
negative quantity, ξe = 1, ξh = −1, and

A(t ) = (Ax, Ay) = [cE0/ω0](sin ω0t, cos ω0t ) (5)

is the vector potential of the EMW (the Weyl gauge with
the zero scalar potential is used). The Schrödinger equa-
tion with the periodically time-dependent Hamiltonian Eq. (4)
describes the Floquet problem for the exciton dressed by the
field Eq. (5), which will be under consideration in the follow-
ing. To simplify the problem, let us transform the Hamiltonian
Eq. (4) with the unitary transformation

Û (t ) = exp

⎡
⎣ i

h̄c

∑
j=e,h

e

mj

∫ t

dt ′
(

A(t ′)ξ j p̂ j − eA2(t ′)
2c

)⎤
⎦,

(6)
which is the Kramers-Henneberger transformation [46,47]
generalized to the considered case of the electron-hole pair.
Then the transformed Hamiltonian Eq. (4) reads

Ĥ = Û†(t )ĤX Û (t ) − ih̄Û†(t )∂t Û (t )

=
∑
j=e,h

p̂2
j

2mj
+ U�(re − r′

e(t ), rh − r′
h(t ))

+ UC (re − r′
e(t ), rh − r′

h(t )), (7)

where

r′
e(h)(t ) = ξe(h)r̄e(h)(cos ω0t,− sin ω0t ) (8)

is the radius-vector describing the classical circular trajec-
tory of electron (hole) in the field Eq. (5), and r̄e(h) =
|e|E0/me(h)ω

2
0 is the radius of the trajectory. It follows from

Eq. (7) that the unitary transformation Eq. (6) removes the
coupling of the momentums p̂e,h to the vector potential A(t )
in the Hamiltonian and transfers the time dependence from
the kinetic energy of electron and hole to their potential

energiesEq. (2) and (3), shifting the electron and hole coor-
dinates re,h by the radius vectors Eq. (8).

The Hamiltonian Eq. (7) is still physically equal to the
exact Hamiltonian of irradiated exciton Eq. (4). To proceed
within the conventional Floquet theory, one can apply the
1/ω0 expansion (the Floquet-Magnus expansion [3–6]) to turn
the periodically time-dependent Hamiltonian Eq. (7) into the
effective stationary Hamiltonian with the main term

Ĥeff = Ĥ0, (9)

where Ĥ0 is the zero harmonic of the Fourier expansion of the
Hamiltonian Eq. (7), Ĥ = ∑∞

n=−∞ Ĥneinω0t (see Appendix for
details). Omitting the coordinate-independent term

V0 = (eE0�)2

2μω4
0

,

the effective Hamiltonian Eq. (9) reads

Ĥeff =
∑
j=e,h

⎡
⎣ p̂2

j

2mj
+

∑
j=e,h

mj�
2r2

j

2

⎤
⎦ + U0(re, rh), (10)

where the potential

U0(re, rh) = 1

2π

∫ π

−π

UC (re − r′
e(t ), rh − r′

h(t ))d (ωt ) (11)

should be treated as the Coulomb potential renormalized by
the dressing field Eq. (5) (the dressed Coulomb potential)
which turns into the bare Coulomb potential Eq. (3) in the
absence of the dressing field (E0 = 0). Substituting Eqs. (3)
and (8) into Eq. (11), the effective Hamiltonian Eq. (10) can
be rewritten as

Ĥeff = P̂2

2M
+ M�2R2

2
+ p̂2

2μ
+ μ�2r2

2
+ U0(r), (12)

where R = (mere + mhrh)/(me + mh) is the radius vector of
the exciton center of mass, r = re − rh is the radius-vector
of relative position of electron and hole, M = me + mh is
the total exciton effective mass, μ = memh/(me + mh) is the
reduced exciton mass, P̂ = −ih̄∇R is the operator of center
mass momentum, p̂ = −ih̄∇r is the operator of momentum
of relative motion of electron-hole pair,

U0(r) =
{−(2e2/πr0ε)K (r/r0), r/r0 � 1

−(2e2/πrε)K (r0/r), r/r0 � 1
(13)

is the dressed Coulomb potential Eq. (11) written explicitly,
the function K (ζ ) is the elliptic integral of the first kind, and

r0 = |e|E0

μω2
0

(14)

is the sum of the radiuses of the electron and hole circular tra-
jectories Eq. (8). Thus, the exact time-dependent Hamiltonian
Eq. (4) in the high-frequency limit reduces to the approximate
stationary Hamiltonian Eq. (12) with the dressed potential
Eq. (13). As expected, the effective Hamiltonian Eq. (12) turns
into the exact exciton Hamiltonian Eq. (1) if the dressing field
Eq. (5) is absent (E0 = 0).
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III. RESULTS AND DISCUSSION

Since the Hamiltonian Eq. (12) allows for the separation
of the variables R and r, its eigenfunctions 
 can be fac-
torized, 
 = 
1(R)
2(r). It follows from the Hamiltonian
that 
1(R) is the well-known eigenfunction of the quantum
harmonic oscillator with the eigenfrequency � and the mass
M. Since the R-dependent part of the Hamiltonian is unaf-
fected by the dressing field Eq. (5), in what follows we assume
that an irradiated exciton remains in the ground state of the
oscillator with the energy h̄�/2. Since the dressed Coulomb
potential Eq. (13) keeps the axial symmetry of the exciton,
the z component of the angular momentum of relative exciton
motion, m, is the conserved quantum number. Therefore, the
r-dependent part of the wave function is 
2(r) = ψX (r)eimϕ ,
where ϕ is the polar angle in the x, y plane. In what follows,
we will only consider the exciton states with m = 0 since they
can be directly optically probed (bright states). As a result, we
arrive from the Hamiltonian Eq. (12) at the one-dimensional
Schrödinger equation,

[
− h̄2

2μ

1

r

∂

∂r

(
r

∂

∂r

)
+ μ�2r2

2
+ U0(r)

]
ψX (r) = EψX (r),

(15)
which defines both the exciton binding energy, εX = −E , and
the corresponding wave function, ψX (r), for the exciton states
with the zero angular momentum.

For definiteness, let us consider a GaAs-based QD with the
permittivity ε ≈ 12 and the effective masses of electrons and
holes me = 0.067m0 and mh = 0.47m0, respectively, where
m0 is the mass of electron in vacuum. The typical size of such
a QD ranges from several nanometers to few tens of nanome-
ters. Therefore, we will restrict the consideration by the two
limiting cases: A small QD with the effective size L = 3 nm
and a large QD with L = 15 nm. Taking into account the
relationship between the confining potential frequency, �, and
the effective QD size [45]

L =
√

h̄

μ�
,

one can solve Eq. (15) numerically for the above-mentioned
QD with using the standard numerical shooting method [48].
The calculation results are presented below in Figs. 2 and 3
for the ground exciton state and different irradiation intensities
I = cE2

0 /4π . The spatial profile of both the dressed Coulomb
potential Eq. (13) and the bare Coulomb potential Eq. (3) are
plotted in Fig. 2(a). Comparing the dressed Coulomb potential
(the solid line) and the bare Coulomb potential (the dashed
line), one can conclude that the dressing field Eq. (5) induces
the repulsive area near r = 0, whereas the attractive Coulomb
well is shifted by the field from the point r = 0 to the ring of
the radius r = r0. This repulsive area increases the effective
distance between electron and hole and, correspondingly, de-
creases localization of the exciton wave function ψX (r) [see
Fig. 2(b)]. As a consequence, the exciton binding energy εX

also decreases [see Fig. 3(a)].
The dependence of the exciton oscillator strength, fX , on

the irradiation intensity, I , is plotted in Fig. 3(b). In semicon-

(a)

(b)

FIG. 2. (a) Coordinate dependence of the dressed Coulomb po-
tential U0(r) (solid line) and the bare Coulomb potential UC (r)
(dashed line). (b) Coordinate dependence of the exciton wave func-
tion ψX (r) of the ground exciton state for QDs with the effective
size L = 3 nm and L = 15 nm in the presence of the irradiation with
the photon energy h̄ω0 = 1 meV and the intensity I = 20 mW/cm2

(solid lines) and in the absence of the irradiation (dashed lines),
where aX = h̄2ε/μe2 is the exciton Bohr radius.

ductor QDs, the exciton oscillator strength reads [45]

fX = 2|pcv|2
m0(εg + ε̄X )

|ψX (0)|2
∣∣∣∣
∫

S

1(R)d2R

∣∣∣∣
2

, (16)

where ε̄X = V0 + h̄�/2 − εX is the total exciton energy, pcv is
the interband momentum matrix element in the semiconduc-
tor, εg is the semiconductor band gap, and the integration area
S is the x, y plane as a whole. The oscillator strength Eq. (16)
defines the radiative broadening of the exciton linewidth [49],

X = h̄e2

m0L2c
√

ε
fX , (17)

and the corresponding exciton lifetime, τX = h̄/2X . It fol-
lows from Eq. (16) that the oscillator strength depends on the
wave function ψX (r) at r = 0. Since the irradiation induces
the repulsive area near r = 0 [see Fig. 2(a)], it decreases
the wave function |ψX (0)| [see Fig. 2(b)]. As a conse-
quence, the irradiation also decreases the oscillator strength
fX [see Fig. 3(b)] and, correspondingly, increases the exciton
lifetime τX . Thus, the stabilization of the exciton by the high-
frequency field (dynamical stabilization) appears. It follows
from Fig. 3 that the exciton binding energy εX , the oscillator
strength Eq. (16), and the radiative broadening Eq. (17) can be
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(b)

(a)

FIG. 3. (a) Dependence of the field-induced shift of the exciton
binding energy, �εX = εX − εX 0, for the ground exciton state on the
irradiation with the photon energy h̄ω0 = 1 meV and intensity I for
QDs with the effective size L = 3 nm and L = 15 nm, where εX 0 is
the exciton binding energy in the absence of irradiation. (b) Depen-
dence of the exciton oscillator strength, fX , on the irradiation with
the photon energy h̄ω0 = 1 meV and intensity I for the same exciton
state and QDs, where fX 0 is the oscillator strength in the absence of
irradiation.

substantially decreased by the relatively weak irradiation. This
opens the way for the all-optical control of both the exciton
binding energy and the exciton radiative lifetime of the QD-
based single photon emitters, which could find its applications
in the quantum optical communication setups. Since the onset
of field-induced effects happens at the timescale of the field
period, the discussed method to control excitonic properties
of QDs by a high-frequency electromagnetic field is very fast
as compared to the relatively slow electrostatic control of them
by the gate voltage [43,44].

The effects discussed above –the decreasing of exciton
binding energy and oscillator strength with increasing field
– are originated physically from the field-induced repulsive
area in the electron-hole interaction potential near r = 0 [see
Fig. 2(a)]. Therefore, these effects depend mainly on the
electron-hole interaction and remain the same qualitatively for
any realistic confinement. It should be noted that the consid-
ered parabolic confinement potential Eq. (2) with the same
frequency � for both the electron and hole is the model which
was introduced into the QD theory to separate the center-of-
mass coordinate of the electron-hole pair R and its relative
coordinate r in the exciton Hamiltonian [45]. Since such a
separation of variables substantially simplifies the analysis of
excitonic effects, this conventional model was applied above

to describe the field-induced effects in the simplest way. It
should also be noted that an oscillating field does not change
the distance between identical charged particles and, there-
fore, does not modify interaction of them [50]. Thus, only
the electron-hole interaction is altered by the electromagnetic
field, whereas the electron-electron and hole-hole interactions
remain unaffected. As a consequence, the discussed field-
induced effects are expected to be the same qualitatively for
trions [51] in charged QDs and biexcitons [52]. Concerning
applicability limits of the developed theory, the present anal-
ysis is correct if the exciton lifetime, τX , is far larger than
the dressing field period, T = 2π/ω0. As a consequence, the
condition

ω0τX � 1 (18)

should be satisfied. In state-of-the-art semiconductor QDs,
the lifetime τX is of the nanosecond scale and, therefore, the
developed theory is applicable for dressing field frequencies
ω0 starting from the microwave range.

It follows from the aforesaid that the above-discussed ex-
citonic effects appear due to the crucial change of the dressed
Coulomb potential Eq. (13) for small distances r, where the
dressing field Eq. (5) induces the repulsive area [see the solid
line in Fig. 2(a)]. It should be noted that the inverse physical
situation takes place for the repulsive Coulomb interaction.
In this case, the circularly polarized field Eq. (5) induces the
attractive area in the core of the repulsive Coulomb potential,
which can lead to the electron states bound at various repul-
sive potentials and, particularly, to the light-induced electron
pairing [50,53–56].

IV. CONCLUSION

We have demonstrated that the electromagnetic irradiation
of relatively weak intensity allows for the dynamical control
over the binding energy and radiative lifetime of excitons in
semiconductor QDs. The effect originates from the renormal-
ization of the electron-hole attractive Coulomb potential by
the field which induces the repulsive area in the core of the
attractive potential. This method allows for ultrafast control
over the exciton spectral characteristics, which can find its
application in QD-based platforms for optical quantum com-
munications and quantum metrology.
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APPENDIX: THE FLOQUET PROBLEM

In the most general form, the nonstationary Schrödinger
equation for an electron (a hole) in a periodically time-
dependent field with the frequency ω0 can be written as
ih̄∂tψ (t ) = Ĥ(t )ψ (t ), where Ĥ(t + T ) = Ĥ(t ) is the peri-
odically time-dependent Hamiltonian and T = 2π/ω0 is the
field period. It follows from the well-known Floquet theorem
that the solution of the Schrödinger equation is the Floquet
function, ψ (t ) = e−iεt/h̄ϕ(t ), where ϕ(t + T ) = ϕ(t ) is the
periodically time-dependent function and ε is the electron
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(quasi)energy describing the behavior of the electron in the
periodical field. The Floquet problem is aimed to find the
electron energy spectrum, ε. To solve the problem, let us
introduce the unitary transformation, Û = eiS , which transfers
the time dependence from the Hamiltonian Ĥ(t ) to its basis
states. Then we arrive from the time-dependent Hamiltonian
Ĥ(t ) to the effective time-independent Hamiltonian:

Ĥeff = Û†ĤÛ − ih̄Û†∂t Û . (A1)

Solving the stationary Schrödinger problem with the Hamilto-
nian Eq. (A1), Ĥeff
 = ε
, one can find the sought electron
energy spectrum, ε.

There is the regular method to find the transformation
matrix S as the 1/ω0 expansion (the Floquet-Magnus expan-
sion) [3–6]. Keeping the first three terms in the expansion, the
effective stationary Hamiltonian Eq. (A1) reads

Ĥeff = Ĥ0 +
∞∑

n=1

[Ĥn, Ĥ−n]

nh̄ω0

+ 1

2(h̄ω0)2

∞∑
n=1

1

n2
([[Ĥn, Ĥ0], Ĥ−n] + H.c.), (A2)

where Ĥn are the harmonics of the Fourier expansion Ĥ =∑∞
n=−∞ Ĥneinω0t . Since the second term of the Floquet-

Magnus expansion Eq. (A2) for the Hamiltonian Eq. (7) is
zero, the addition to the main Hamiltonian Eq. (9) is defined
by the last term of the Hamiltonian Eq. (A2). To describe
the harmonics arisen from the Coulomb potential UC (re −
r′

e(t ), rh − r′
h(t )) in the Hamiltonian Eq. (7), let us use the

course-of-value function,
∞∑

m=0

Pm(z)xm = 1√
1 − 2xz + x2

, (A3)

where

Pm(z) = 1

2mm!

dm

xm
(z2 − 1)m

is the Legendre polynomial [57]. Applying Eq. (A3) and
omitting the coordinate-independent terms, the effective
Hamiltonian Eq. (A2) can be written as

Ĥeff = P̂2

2M
+ M�2R2

2
+ p̂2

2μ
+ μ�2r2

2
+ U0(r) + V (r),

(A4)
where

V (r) = 2

μω2
0

∞∑
n=1

(
∂Vn

∂r

)2

(A5)

is the potential arisen from the last term of the Floquet-
Magnus expansion Eq. (A2), and

Vn(r) = −
(

e2

2πε

)

×
{

1
r0

∑∞
m=0

(
r
r0

)m ∫ 2π

0 Pm(cos θ )einθ dθ, r
r0

< 1
1
r

∑∞
m=0

( r0
r

)m ∫ 2π

0 Pm(cos θ )einθ dθ, r
r0

> 1
(A6)

are the Fourier harmonics of the Coulomb potential UC (re −
r′

e(t ), rh − r′
h(t )). Remember that the effects discussed in the

present paper appear due to the field-induced local maximum
of the potential U0(r) near r = 0 [see Fig. 2(a)]. Comparing
Eq. (12) and Eq. (A4), one can conclude that the approxima-
tion of the effective Hamiltonian Eq. (A2) by the main term
Eq. (9) is correct to describe these effects if the contribution
of the potential U0(r) to the Hamiltonian Eq. (A4) much
exceeds the contribution of the potential V (r) for r � r0. As a
result, we arrive at the applicability condition of the developed
Floquet theory,

e2

εμr3
0ω

2
0

� 1, (A7)

which can be satisfied for varied irradiation intensities within
the broad frequency range defined by Eq. (18).
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