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Identification of a state of persistent spin helix in a parallel magnetic field,
and exploration of its transport properties
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The tensors of conductivity and spin susceptibility of a two-dimensional electron gas (2DEG) with equal
Rashba and Dresselhaus spin-orbit interaction constants [the persistent spin helix (PSH) state] in a parallel
magnetic field are calculated. Applying a parallel magnetic field to the PSH state leads to the appearance of
a saddle point in the spectrum and, accordingly, to a Van Hove singularity (VHS), whose amplitude increases
indefinitely as the magnetic field strength (b) approaches to some critical value bcr . The presence of a VHS in
the density of states is an important factor determining the conductivity and spin susceptibility tensors. When
only the lower spin subband is filled, the off-diagonal elements of the conductivity tensor are nonzero; that is,
a Hall voltage arises due to the anisotropy of the Fermi surface and scattering. In the region where two spin
subbands are filled, the diagonal and off-diagonal components of the spin susceptibility tensor are equal, and the
off-diagonal terms of the conductivity tensor vanish. A sharp decrease in the conductivity and spin susceptibility
at the beginning of the filling of the second spin subband, the ratio of the diagonal component of the spin
susceptibility to the off-diagonal one, and also the number of critical points in the spectrum make it possible to
establish the PSH 2DEG state.

DOI: 10.1103/PhysRevB.105.165409

I. INTRODUCTION

The state of persistent spin helix (PSH) in a two-
dimensional electron gas (2DEG), although not very easy
to obtain [1] has been attracting attention for a long time
[2,3]. This is due to the understanding that the spin lifetime
increases sharply when the Rashba and Dresselhaus constants
coincide, as well as the stability of this state to a spin-
independent potential, in particular, to the electron-electron
Coulomb interaction [4]. The long spin lifetime gives reason
to believe that a spin transistor in the spirit of Dutta and Das
[5], as well as sources of polarized and spin current, can be
created on the basis of the PSH state. Reviews of modern
theoretical and experimental studies of the state of the PSH
are given in the reviews [5,6].

It was shown [7] that when only the lower spin subband
is filled in 2DEG with Rashba and Dresselhaus spin-orbit in-
teractions (SOIs), logarithmic Van Hove singularities (VHSs)
[8] (saddle points) appear in the one-particle density of states
(DOS), the energy position of which can be controlled by
a parallel magnetic field. At zero magnetic field, the sin-
gularity in the PSH state disappears [9]. The “amplitude”
of VHS is determined by the curvature of the saddle point.
The smaller the curvature, the more significant is the peak
of the one-particle DOS, as well as the more significant are
the measurable features in the conductivity and spin suscep-
tibility in the Aronov-Lyand-Geller-Edelstein (ALGE) effect
[10,11]. Here we can say that at a critical magnetic field, the
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VHS becomes a higher-order singularity, which increases the
possibility of their manifestations. Such singularities are cur-
rently being intensively studied [12,13]. A further increase in
the magnetic field leads to the disappearance of this minimum
and the saddle point. The DOS undergoes a jump at the be-
ginning of the filling of the second spin subband. Usually, a
jump in the DOS leads to a slight increase in the slope in
the dependence of the conductivity on the Fermi level [14].
However, in the case of the PSH state, it is shown that this
leads to a significant drop in the longitudinal conductivity and
spin susceptibility.

The mutual influence of the SOI and a parallel magnetic
field in a 2DEG system is of considerable interest, since a
magnetic field allows one to manipulate the Fermi contour in
a controllable manner, which is an effective tool for studying
electron states and scattering processes. In the general case,
when the magnetic field is oriented at an arbitrary angle with
respect to the 2DEG plane, the spectrum and orbital motion of
electrons undergoes a significant change [15]. The magnetic
field in the plane is attractive, because a change in its intensity
does not perturb the orbital wave functions, but changes the
contour of the Fermi surface. This makes it possible to study
the influence of the Fermi surface topology on an electron
transport.

It was shown [16,17] that in a 2DEG with Rashba SOI and
a parallel magnetic field the VHS leads to sharp dips in longi-
tudinal conductivity and spin polarization during current flow,
which is the ALGE effect. For elastic scattering of electrons
by impurities with a short-range potential a method [16] was
developed that allows one to solve this problem for arbitrary
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Fermi contours at low temperatures in semiclassical approx-
imation. It was shown that in this case the integral kinetic
equation is a Fredholm integral equation with a degenerate
kernel, therefore it reduces to an algebraic one and can be
exactly solved. Due to the anisotropy of the Fermi surface,
usually this is a difficult task [18].

When both the Rashba and Dresselhaus SOIs and a par-
allel magnetic field act simultaneously, there are four critical
points in the energy spectrum: two minima and two saddle
points, which in some directions can coincide or disappear
with an increase in the magnetic field. The dispersion law
for such a system was investigated in detail in Ref. [19]. In
Ref. [9] the features of the conductivity tensor dependence
on the magnetic field strength and the position of the Fermi
level were studied. A technique allowing one to determine the
constants of Rashba and Dresselhaus SOIs and the g factor
from the position of VHS was also developed [9]. However,
the PSH state in a parallel magnetic field has hardly been
investigated. We will show that this state has a number of
significant features, which enable one to identify this state
measuring the conductivity tensor or spin susceptibility during
the current flow (the ALGE effect).

II. HAMILTONIAN AND ELECTRONIC STATES

In this section, we present the Hamiltonian and wave func-
tions that will be used to calculate transport properties. The
spectrum of 2DEG in a magnetic field oriented in a plane
and with the spin-orbit interaction of Rashba and Dressel-
haus was previously considered in [7,20]; the spectrum was
studied in particular in the recent work [19]. We consider
a two-dimensional electron gas without inversion symmetry,
allowing a SOI that is linear in the electron wave vector. The
most general form of linear coupling including both Rashba
and Dresselhaus contributions has the following form [21,22]:

H = p2

2m
σ0 + α

h̄
(pxσy − pyσx ) + β

h̄
(pxσx − pyσy)

− g∗

2
μBBσ, (1)

where p = (px, py) is the electron momentum, px and py

being its components along the [100] and [010] directions of
a zinc-blende crystal, respectively, m is the effective mass, α

and β are the constants of Rashba and Dresselhouse SOIs, σx

and σy are Pauli matrices, B = B(cos ζ , sin ζ , 0) is a magnetic
field strength, and μB is the Bohr magneton. g∗ is the effective
Landé factor, which is assumed to be isotropic and indepen-
dent of B. The vector potential A is written in the gauge
A = (0, 0, yB cos ζ − xB sin ζ ), at which the momentum in
the plane (x, y) coincides with the generalized momentum.
For the PSH state, the ratio of the Rashba and Dresselhaus
SOI constants is equal to 1 (α/β = 1).

There are two types of eigenstates, which we will mark
by the index λ = ±. Their energies and wave functions
have the form

ελ(q) = q2 + 2λw(q′
y, b) (2)

FIG. 1. Dependence of the coordinates qy′ of critical points on
the magnetic field for its orientation ζ ′ = π/4. Recall that for all
critical points qx′ = 0.

and

ψqλ(r′) = 1√
2S∗

(
1

iλeiϕ

)
ei(qx′ x′+qy′ y′ ). (3)

Here and below, we used dimensionless quantities
and passed to new variables: ε energy normalized to the
characteristic energy of the Rashba SOI Eso = mα2/(2h̄2);
q—wave vector normalized to kso = αm/h̄2; qx′ = (kx +
ky)/(

√
2kso); qy′ = (ky − kx )/(

√
2kso); x′ = (x + y)kso/

√
2;

y′ = (y − x)kso/
√

2; b = gμBBh̄2/(2mα2)—dimensionless

magnetic field, w(qy′ , b) =
√

q2
y′ + 4bqy′Cos[ζ ′] + b2,

b = |b|, ζ ′ = ζ − π/4, S∗—sample area. This change of
variables simplifies the study of the spectrum and leads to the
fact that w(qy′ , b) does not depend on qx′ .

The phase ϕ(q) is defined by the following relations:

sin ϕ = (qy′ + bx′ )

w(qy′ , b)
, (4)

cos ϕ = (−qy′ − by′ )

w(qy′ , b)
. (5)

Equating the derivatives of ελ(q) to zero, we obtain a
system of two equations that determines the critical points of
the spectrum:

qx′ = 0,

qy′w(qy′ , b) = −2λ(2qy′ + b cos[ζ ′]). (6)

It can be seen from this system that the critical points are
located on the qy′ axis and, according to the second equa-
tion, which must be squared to solve it, are the roots of an
algebraic equation of the fourth degree. It is not difficult to
solve it analytically, but the expressions for the roots are quite
cumbersome, so we present a typical solution in Fig. 1 for
a magnetic field with the direction ζ ′ = π/4. Moreover, the
squaring of this equation relieves our solution of dependence
on λ, so it is easy to understand (see Fig. 2) that the critical
points in the PSH state are two minima and a saddle point
corresponding to the lower spin subband ε−m1,2(q−m1,2) and
ε−s(q−s), as well as the minimum corresponding to the ap-
pearance of the second spin subband εm(qm). An exception is
the direction of the magnetic field corresponding to the angle
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FIG. 2. A section of the energy landscape defined by Eq. (2) in
the q space. Here the blue and yellow surfaces correspond to λ = +
and λ = −, respectively, with ζ ′ = π/4 and b = 1.8.

ζ ′ = 0. There is no manifestation of the saddle point for it
because of the coincidence of energies ε−s = εm. Also for
the angle ζ ′ = π/2 both minima for the lower spin subband
coincide in energy ε−m1 = ε−m2, that is, for this orientation of
the magnetic field in the density of states in the lower subband,
we see one minimum and one saddle point, which merge at a
critical magnetic field. For π � ζ ′ � π/2, the graph of the
roots differs from Fig. 1 by mirror reflection about the b axis,
that is, the roots for ζ ′ and for ζ ′ + π/2 for fixed b differ by
mirror reflection about the axis b. For the coordinates of the
critical points (qcr ), it suffices to understand their location in
the range of angles 0 � ζ ′ � π/2, since the following relation
is additionally fulfilled: qcr (π − ζ ′) = qcr (π + ζ ′).

For the direction of the magnetic field ζ ′ = π/2, it is easy
to obtain an analytical solution:

ε−m1,−m2(±
√

4 − b2/4) = −4 − b2/4,

ε−s,m(0) = ∓2b. (7)

An important point is the appearance of a critical magnetic
field (bcr ), at which the minimum point and the saddle point
merge. In this case, the amplitude of the VHS increases in-
definitely (see Fig. 3). A further increase in the magnetic field
leads to their disappearance (see Figs. 1 and 2).

To calculate the density of states Ns(ε), the standard ex-
pression was used:

Ns(ε) = 1

π2
lim

�ε→0

∑
λ

Sλ(ε + �ε) − Sλ(ε)

�ε
. (8)

Here Sλ(ε) is the area in q space that satisfies the inequality
ελ(q) � ε.

The dependence of the critical magnetic field, as well as the
energy of critical points at this value of the field, on the angle
of its orientation is shown in Fig. 4. Note that the dependence
ε−m2(ζ ′) on it coincides with the dependence ε−s(ζ ′). In fact,
their equality is the equation that determines (bcr ).

FIG. 3. Energy dependence of the density of states Ns(ε) for a set
of magnetic fields oriented at an angle ζ ′ = π/4. Ns is normalized to
No = m/(π h̄2).

III. BOLTZMANN KINETIC EQUATION AND TRANSPORT
PROPERTIES

Let us discuss the transport properties that arise when an
electric field is applied. The electron current will be stud-
ied using the semiclassical Boltzmann equation. For a small
uniform electric field E , the distribution function f (k) is given
by the Boltzmann equation [23]. Here and below, it is more
convenient for us to return from the coordinates q and r′ to the
coordinates k and r, making them dimensionless in the same
way as q and r′. The anisotropy of the dispersion law leads to

FIG. 4. Dependence of the critical magnetic field (bcr ) and the
energy of critical points at this value of the field on the angle of its
orientation. (Recall that here all quantities are dimensionless.)
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scattering anisotropy, therefore, the collision integral cannot
be simplified by introducing the relaxation time. This problem
has been discussed in detail in [18,24–27]. We managed to
solve this rather complicated problem in [16] and additionally
test it in [9,14]. As a test, in [9] we reproduced the results
of [28,29], and in [28] the results coincide for the nonstan-
dard dependence of the conductivity on the position of the
Fermi level [G = εF + (εF )2] were obtained using both the
Boltzmann kinetic equation and quantum computation using
the Kubo formula.

We consider scattering by impurities with a short-range
potential V (r) = V0δ(r). The impurity concentration N is as-
sumed to be low enough so that their potentials do not overlap
and the process of scattering from different impurities is not
correlated. Using the wave functions (3) and calculating the
scattering probability in the Born approximation, we obtain
the following equation for the nonequilibrium part of the
distribution function � fλ(k):

∑
λ′

∫
d2k′

π

(
1 + λλ′ cos[ϕ(k) − ϕ(k′)]

)
δ[ελ(k) − ελ′ (k′)]

× [� fλ(k) − � fλ′ (k′)] = eEvλ(k)

R

∂ f0

∂ε
, (9)

where dimensionless quantities are used. The electric
field E is normalized to Esokso/e, the group velocity is
vλ = ∇kελ(k), f0 is the equilibrium distribution function, and
R is the only numerical parameter that appears in this system:
R = V 2

0 N/α2.
The solution of this equation is described in detail in [9,16].

Let us recall the key moments of obtaining the solution and
the basic formulas for calculating the conductivity and spin
susceptibility tensors for the ALGE effect.

Let us rewrite the nonequilibrium function in the following
form � fλ(k):

� fλ(k) = eE
R
Fλ(k)

∂ f0

∂ε
. (10)

The function Fλ(k) introduced by us is determined by
an equation that can be easily obtained in the case of zero
temperature by integrating modulo k in Eq. (9). In this case,
integration is performed over Fermi contours. Since in some
cases the contours have complex shapes, k(φ) is a multivalued
function of φ, so we are forced to divide the contours into
parts for which k(φ) becomes a single-valued function. Each
part can be marked with an index r, which can vary from 1 to
4 depending on the shape of the Fermi contour. With this in
mind, we will add this index to the notation for the function
of the integrals that define the Fermi contours. The function
Fλ,r (k) defined on the Fermi part of the contour k = kλ,r (φ)
is defined by the following equation:

∑
λ′,r′

∫
dφ′

π
(1 + λλ′ cos[ϕλ,r (φ) − ϕλ′,r′ (φ′)])Mλ′,r′ (φ′)

× [Fλ,r (φ, θ ) − Fλ′,r′ (φ′, θ )] = Gλ,r (φ, θ ), (11)

where

Mλ,r (φ) =
[

k
/ ∂ελ(k)

∂k

]
k=kλ,r (φ)

, (12)

ϕλ,r (φ) = ϕ(k)|k=kλ,r (φ), (13)

Gλ,r (φ, θ ) = vλ(k) cos[ξ (k) − θ ]

R

∣∣∣∣∣
k=kλ,r (φ)

. (14)

Here ξ (k) is the angle between vλ,r (φ) and the x axis, and
θ is the angle between E and the x axis. Quantities Mλ,r (φ),
ϕλ,r (φ), and Gλ,r (φ, θ ) are defined on the corresponding Fermi
contours. They are easy to calculate using Eq. (11).

Equation (11) is solved analytically, since it is a linear
Fredholm equation with a degenerate kernel. Representing its
kernel as the sum of the products of the functions φ and φ′
(these functions are actually just sines and cosines), we arrive
at the following form of the function:

Fλ,r (φ, θ ) = Gλ,r (φ, θ ) + A(θ ) + λB(θ ) cos[ϕλ,r (φ)] + λC(θ ) sin[ϕλ,r (φ)]

A + λB cos[ϕλ,r (φ)] + λC sin[ϕλ,r (φ)]
. (15)

The coefficients A, B, and C can be directly calculated,
since the electron dispersion law is known (2). However, the
coefficients A, B, and C are determined by integrals contain-
ing the unknown functions Fλ,r (φ, θ ). To obtain a system of
equations that will allow us to find the coefficients A, B, and
C, we will substitute the expression (15) into Eq. (11).

As a result, we obtain a system of linear algebraic equa-
tions for these coefficients. To find the conductivity and spin
susceptibility tensors, it suffices to calculate with the electric
field oriented in the x and y directions (θ = 0 and θ = π/2).
It should be taken into account that the determinants of the
obtained systems are equal to zero, however, as well as ad-
ditional determinants. This indicates the compatibility of the
obtained systems and the lack of equations for determining
the required coefficients (A, B, and C). Therefore, one of
the equations in each resulting system is replaced by the
electrical neutrality equation. Now we make sure that the
determinant of the obtained systems for the orientations of

the electric field θ = 0 and θ = π/2 is not equal to zero and
solve them. We find the corresponding coefficients A, B, and
C, which we substitute into Eq. (15), thereby determining the
nonequilibrium distribution of electrons for these orientations
of the electric fields in the form (15). For more details on the
procedure for solving the kinetic equation, see [9,16].

Using the expression for the distribution function (15), we
find the dimensionless components of the conductivity tensor:

Gxx =
∑
λ,r

∫
dφ

2π
Mλ,r (φ)vλ,r (φ) cos[ξλ,r (φ)]Fλ,r (φ, 0),

(16)

Gyx =
∑
λ,r

∫
dφ

2π
Mλ,r (φ)vλ,r (φ) sin[ξλ,r (φ)]Fλ,r (φ, 0),

(17)

normalized to e2/(hR). The conductivity tensor components
Gxy and Gyy differ from Gxx and Gyx by replacing Fλ,r (φ, 0)
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FIG. 5. Characteristic dependencies of the conductivity tensor on
the position of the Fermi level for the orientation of the magnetic field
ζ = π/2 or ζ ′ = π/4.

with Fλ,r (φ, π/2), respectively. In Fig. 5 we have pre-
sented the characteristic dependencies of the conductivity
tensor on the position of the Fermi level for the orien-
tation of the magnetic field ζ ′ = π/4 and b = 0.1; 0.5; 2,
respectively.

In addition to the usual sharp decrease in conductivity
near the VHS with increasing amplitude as the magnetic field
approaches the critical (bcr = 2) [9,16], we unexpectedly see
a sharp drop in conductivity when the Fermi level reaches
the second spin subzones. This is due to a sharp decrease in
the lifetime when the second recombination channel appears
(Fig. 3). As the magnetic field increases, the off-diagonal term
of the conductivity tensor and the amplitude of the peak Gxy =

Gyx, which arises when the second spin subband εF = εm

appears, also increase.
The spin density induced by the electric field is given by

the following expression:

Si = h̄

2

∑
λ

∫
d2k

4π2
〈ψ†

λ,k|σi|ψλ,k〉� fλ(k), (18)

where Si is the projection of the spin density vector, i =
(x, y, z), and σi are the Pauli matrices. We define the spin
susceptibility (often referred to as the Edelstein conductivity)
as follows:

Si =
∑

j

χi jE j . (19)

Using Eqs. (3), (10), and (15), we find for the spin suscep-
tibility,

χyx =
∑
λ,r

λ

∫
dφ

2π
Mλ,r (φ) cos[ξλ,r (φ)]Fλ,r (φ, 0), (20)

χxx = −
∑
λ,r

λ

∫
dφ

2π
Mλ,r (φ) sin[ξλ,r (φ)]Fλ,r (φ, 0). (21)

Here the Edelstein conductivity is normalized to eh̄/(2παR).
The components of the spin susceptibility tensor χyy and
χxy differ from χyx and χxx by replacing Fλ,r (φ, 0) with
Fλ,r (φ, π/2), respectively. There is no spin polarization in the
z direction (Sz = 0).

Characteristic dependencies of the components of the spin
susceptibility tensor on the Fermi energy for the magnetic
field orientation ζ = π/2 and b = 0.1; 0.5; 2 are shown in
Fig. 6. Similar to the conductivity tensor, the main fea-
tures for the spin susceptibility arise when the Fermi level
crosses the VHS and reaches the second spin subband. For
the PSH state with a parallel magnetic field at εF > εm,
the relations χyy = −χxx = 0.5 and χxy = −χyx = 0.5, sim-
ilar to the found relations for 2D electron gas without
magnetic field [9].

IV. CONCLUSIONS

The inclusion of a parallel magnetic field for the PSH state
leads to the appearance of a saddle point in the spectrum and,
accordingly, to the Van Hove singularity, the amplitude of
which increases indefinitely as the magnetic field approaches
the critical bcr (see Fig. 3). For almost all orientations of
the magnetic field, there are three minima in the dispersion
law (one of them when the second spin subband is reached)
and one saddle point. All this is true for b < bcr . The only
exception is the direction of the magnetic field corresponding
to the angle ζ ′ = 0. There is no manifestation of a saddle point
for it due to the coincidence of energies ε−s = εm. Also, for
the angle ζ ′ = π/2, both minima for the lower spin subband
coincide in energy ε−m1 = ε−m2, i.e., for such an orientation
of the magnetic field, we see one minimum and one saddle
point in the density of states in the lower subband, which
merge at a critical magnetic field. For π � ζ ′ � π/2 the graph
of the roots differs from Fig. 1 by mirror reflection about the b
axis, i.e., the roots for ζ ′ and for ζ ′ + π/2 for a fixed b differ
in mirror reflection about the b axis. For the coordinates of
the critical points (qcr ), it suffices to understand their location
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FIG. 6. Dependence of the components of the spin susceptibility
tensor on the Fermi energy for the magnetic field orientation ζ =
π/2 and b = 0.1; 0.5; 2, respectively.

in the range of angles 0 � ζ ′ � π/2, since the following re-
lation is additionally fulfilled: qcr (π − ζ ′) = qcr (π + ζ ′). For
b > bcr , the saddle point merges with the second minimum
and disappears, that is, two minima remain in the dispersion
law, one of which corresponds to the beginning of the spec-
trum, and the second to the appearance of the second spin
subband (see Fig. 1).

The method developed to study anisotropic electron trans-
port in 2DEG within the framework of the Boltzmann kinetic
equation [16] is used to calculate the 2DEG conductivity and
spin susceptibility tensors with equal Rashba and Dresselhaus
SOIs in a wide range of parallel magnetic fields. This method
makes it possible to accurately determine the nonequilib-
rium distribution function for scattering by impurities with a
short-range potential at zero temperature, taking into account
transitions both in one and in two different Fermi contours.
An important factor determining the conductivity and spin
susceptibility tensors is the presence of the VHS in the density
of states, which arises due to the combined action of the
SOIs and the parallel magnetic field. An unexpected thing is
a sharp decrease in the components of the conductivity and
spin susceptibility tensors upon reaching the Fermi level of
the second spin subband (see Figs. 5 and 6).

All predicted effects can be observed. Difficulties can be
associated with taking into account the many-particle effects
[12,30], the insufficiently low temperature at which details are
erased, and the influence of the fluctuation potential that arises
with an increase in the concentration of scattering impurities.
All these pitfalls for real observations are well known, and
most of them are discussed in detail in [28]. One can agree
with the statement in [28] that it is sufficient to use 2D struc-
tures with large SOI to observe the predicted features. In the
same work, there are numerous references to experimental 2D
systems that meet the required conditions. Note also that the
inclusion of a parallel magnetic field due to the Zeeman effect
makes it easier to observe the predicted features in transport
phenomena.
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