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A plasmon is a collective excitation of electrons due to the Coulomb interaction. Both plasmons and single-
particle excitations (SPEs) are eigenstates of bulk metallic systems and they are orthogonal to each other. In
nontranslationally symmetric systems such as nanostructures, plasmons and SPEs coherently interact. It has
been well discussed that the plasmons and SPEs, respectively, can couple with transverse (T) electric fields
in such systems, and also that they are coupled with each other via longitudinal (L) field. However, there has
been a missing link in the previous studies: the coherent coupling between the plasmons and SPEs mediated by
the T field. Herein, we develop a theoretical framework to describe the self-consistent relationship between the
plasmons and SPEs through both the L and T fields. The excitations are described in terms of the charge and
current densities in a constitutive equation with a nonlocal susceptibility, where the densities include the L and T
components. The electromagnetic fields originating from the densities are described in terms of Green’s function
in Maxwell’s equations. The T field is generated from both densities, whereas the L component is attributed to
the charge density only. We introduce a four-vector representation incorporating the vector and scalar potentials
in the Coulomb gauge, in which the T and L fields are separated explicitly. The eigenvalues of the matrix for
the self-consistent equations appear as the poles of the system excitations. A numerical demonstration of the
excitation spectrum is performed for a rectangular nanorod. It indicates a non-negligible shift of the collective
excitation and an enhancement of the energy transfer between the excitations by the T-field-mediated interaction.
The developed formulation enables to approach unknown mechanisms for the enhancement of the coherent
coupling between the plasmons and the hot carriers generated by radiative fields.
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I. INTRODUCTION

Elucidation of the light-matter interaction is one of the
core research topics of contemporary physics. Recently, the
behaviors of light-induced plasmons in metals have attracted
considerable interest [1]. A plasmon is a quantum of collec-
tive electron motion due to the electron-electron interaction,
and has been clearly observed in experiment by Powell and
Swan [2]. In bulk metals, a plasmon has a longitudinal (L)
component only and, hence, cannot be excited by transverse
(T) electromagnetic (EM) fields. To induce a plasmon using
light, the L component of the EM field, e.g., the evanescent
mode on a surface, is required [3]. Cardinal methods to excite
surface plasmon-polaritons (SPPs) on a 2D metal surface have
been developed by Otto [4] and Kretschmann [5]. The induced
SPPs cause a charge-density spatial distribution on the sur-
face, which in turn generates L fields. Therefore the EM fields
and induced plasmons must be determined self-consistently
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[6,7]. In metal nanostructures, the SPPs are localized and
enhance the L fields significantly. Thus SPPs are sensitive to
surface states and are, therefore, applied in sensors for gases,
molecules, and biological matter [8–10].

One of the fascinating applications of light-induced plas-
mons is hot-carrier generation [11,12] and injection to
combined materials [13–15], which can be utilized for pho-
tocatalysis [16], photodetection [17], photocarrier injection
[18], and photovoltaics [19]. The hot-carrier generation pro-
cesses involving localized SPPs are categorized into two
types: those achieved through plasmon relaxation or through
coherent coupling between plasmons and individual single-
particle excitations (SPEs). Some theoretical studies have
elucidated the relevant mechanisms of the plasmon relaxation
approach. The first-principles calculation has been examined
for hot-carrier generation on 2D metal surfaces [20,21], where
the interband and intraband excitations make dominant and
tunable contributions to the generation, respectively. Hot-
carrier generation for metallic nanostructures has also been
investigated based on a phenomenological model with sev-
eral relaxation times [22–24] and using density functional
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theory [25]. It was found that the nanostructure sizes and
shapes influence the plasmon via the electronic wave func-
tion and the enhanced electric field due to the hot spots.
In those studies, a unidirectional energy transfer from the
plasmonlike state to the hot carriers by the electron SPEs
was discussed [22–26]. As noted above, the second type of
hot-carrier generation is due to coherent coupling between the
plasmons and individual SPEs. Recently, Ma et al. explicitly
discussed the interplay between the plasmons and SPEs in a
nanocluster of Ag atoms using a real-time simulation based
on time-dependent density functional theory [27]. The on-
and off-resonant conditions between the plasmon and SPE
were found to change the energy transfer processes. For the
off-resonant condition, a coherent Rabi oscillation between
the plasmon and SPE was found. You et al. also elucidated the
bidirectional energy transfer between the plasmon and SPE
based on a model Hamiltonian with the Coulomb interaction
[28], considering excited, injected, and extracted electrons.

In the present work, we focus on the fact that the cou-
pling between the plasmons and SPEs via the T field, as
well as the treatment of the microscopic nonlocal response
involving the T field, has been missed in the previous frame-
works, which is particularly related with the latter case in the
above discussion. Recent ab initio calculations successfully
implemented coherent coupling or hybridization between
plasmonlike and single-particlelike excitations [26–32]. In
those studies, the Coulomb interaction corresponding to part
of the induced L field was considered. However, the T field
was not precisely considered despite the light-induced exci-
tations. As a phenomenological and semi-classical treatment
of the microscopic nonlocal response involving the T field,
the hydrodynamic model considering the “pressure” on the
conduction electrons was applied to the relation between the
polarization (or current) and the electric field [33–40]. In such
studies, aspects such as the plasmon peak shift, the presence
of additional resonance above the plasma frequency, and the
size effect were well discussed [35,36,39,40]. The importance
of the nonlocal effect for a dimer nanostructure with a gap
much narrower than the light wavelength was noted [36,39].
However, depending on the sample structure or the situation,
the hydrodynamic model requires an additional boundary con-
dition or additional treatments from outside the microscopic
model [41]. Importantly, coherent coupling between the plas-
mons and SPEs has not yet been fully discussed with this
phenomenological model as a basis. For a small nanostruc-
ture, the plasmon spectrum becomes indistinguishable from
the SPE spectrum [42]. Therefore for the nonlocal effect in
nanostructures with radiative fields, a microscopic formula-
tion must be developed.

Motivated by the above-mentioned situation, in this study,
we develop a quantum mechanical framework for mesoscopic
plasmonics, focusing on the L and T components of EM
fields and induced electronic responses in nanostructures that
describe light-induced plasmons (collective excitations), SPEs
(individual excitations), and their coherent coupling via both
the L and T fields. An EM field induces charge polarization,
charge current, spin fluctuation, and so on, and such electronic
responses are described by a constitutive equation with a
nonlocal susceptibility. The responses generate both L and
T field components, and both field components must be

comprehensively considered in a self-consistent treatment of
Maxwell’s and the constitutive equations [43]. Our formula-
tion can be applied to arbitrary models of electronic states,
such as those based on the Drude model [24], jellium model
with random phase approximation (RPA) [44], first-principles
calculation [27], or specific exotic materials, e.g., graphene
[38,45,46]. Such applications are expected to facilitate theo-
retical understanding of the interplay between the individual
and collective excitations in nanoscale systems. Very recently,
to understand the quantum effect in the light-matter inter-
action, a combination of the density functional theory and
the macroscopic Maxwell equation has been discussed [47].
However, a discussion on the coupling of excitations caused
by the L and T field components has not been developed yet.
In this study, we develop an understanding of the coherent
coupling between the individual and collective excitations
in terms of the L and T fields and the charge and cur-
rent densities. To examine the feasibility of our formulation,
we numerically demonstrate the excitation spectrum for a
rectangular nanorod. Then, we determine a non-negligible
contribution of the T field component for a coherent coupling
between the individual and collective excitations and energy
dissipation. Further, our formulation provides a platform for
the study of unrevealed physics concerning not only plas-
mons, but also excitons and/or other quasiparticles within
nanostructures.

The remainder of this article is structured as follows. In
Sec. II, we describe the basic quantities used in our frame-
work and the nanostructure Hamiltonian. The Hamiltonian
is separated into a nonperturbative term and an interaction
with the field-induced potentials. This separation determines
the treatment of the optical response and the electronic states
of the nanostructures. In Sec. III, we introduce the four-
vector representation and deduce the nonlocal susceptibility.
In Sec. IV, we present a formal solution of Maxwell’s equa-
tions with vector and scalar potentials, which is given by
Green’s function describing the propagated fields from the
excited current and charge densities. In Sec. V, we explain
the self-consistent treatment of the constitutive and Maxwell’s
equations demonstrated in Secs. III and IV. In Sec. VI, we
show the result of the numerical calculation of individual and
collective excitations for a rectangular nanorod to demonstrate
practicality of our formulation. In Sec. VII, we discuss pos-
sible applications and advantaged developments of our LT
formulation for plasmonics and photonics. Finally, we present
the summary in Sec. VIII.

II. BASIC QUANTITIES AND HAMILTONIAN OF
ELECTRONS WITH ELECTROMAGNETIC FIELD

In the present formulation, the fields are described by the
vector and scalar potentials, A(r, t ) and φ(r, t ), respectively.
In the quantum mechanics, they are essential rather than the
electric and magnetic fields, E and B. It has been experi-
mentally proven by the Aharonov-Bohm experiment [48,49].
To divide the fields into the L and T components, we apply
the Coulomb gauge, divA(r, t ) = 0, where the vector poten-
tial describes the T field only. In the constitutive equation,
the electronic responses corresponding to the plasmon and
SPE are described by the charge and current densities, ρ(r, t )
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and j(r, t ), respectively, which are directly coupled with φ

and A in the interaction Hamiltonian. The nonlocal suscep-
tibility is deduced from the Hamiltonian in accordance with
quantum linear response theory [43,50], where the electron
eigenstates determine the susceptibility. Therefore the nanos-
tructure sizes, shapes, and internal structures strongly affect
the optical response via the electron states.

To clearly define the light-matter interaction, we first dis-
cuss the matter and interaction Hamiltonians in terms of the
potentials. Within the nanostructures, mixing of the L and T

field components and the densities occurs spontaneously. To
formulate the L and T components explicitly, we introduce a
four-vector representation for the fields A = (A,−φ/c) and
densities J = ( j, cρ). Hence, the nonlocal susceptibility is
expressed as a 4 × 4 matrix. This formulation enables us
to exhibit the roles of the LT components of the fields and
densities in enhancing the optical response and the interplay
between the plasmons and SPEs.

The Hamiltonian for the electrons in the EM fields is

Ĥ =
∑

j

[ { p̂ j − e
∫

drA(r, t )δ(r − r̂ j )}2

2m∗ − εF

]
+ e

∑
j

∫
drφ(r, t )δ(r − r̂ j ) + 1

2

∑
i �= j

e2

4πε0|r̂i − r̂ j | , (1)

where e is the charge of electron and ε0 is the dielectric constant in vacuum. εF is the Fermi energy and m∗ is the (effective)
mass for the conduction electrons. The ˆ symbol indicates the electron operator. In the case of the Coulomb gauge, divA = 0,
and φ(r, t ) = φncl(r, t ) + φext (r, t ) in the second term describes the L field due to the nuclei and external origins. The third term
is the electron-electron (Coulomb) interaction, which is also longitudinal.

The first term is expanded as

{ p̂ j − e
∫

drA(r, t )δ(r − r̂ j )}2

2m∗ = p̂2
j

2m∗ − e

2m∗

∫
dr( p̂ jδ(r − r̂ j ) + δ(r − r̂ j ) p̂ j ) · A(r, t ) + e2

2m∗

∫
drδ(r − r̂ j )A(r̂ j, t ) · A(r, t ).

(2)

With the introduction of a current operator

Î(r) ≡ e

2m∗
∑

j

( p̂ jδ(r − r̂ j ) + δ(r − r̂ j ) p̂ j ), (3)

the second term on the right-hand side (r.h.s.) of Eq. (2) gives the light-matter interaction

ĤIA = −
∫

drÎ(r) · A(r, t ). (4)

Then, the Hamiltonian can be separated as follows:

Ĥ = Ĥ0 + (ĤIA + ĤA2 + Ĥext ), (5)

with

Ĥ0 =
∑

j

[
p̂2

j

2m∗ − εF

]
+ e

∑
j

∫
drφncl(r, t )δ(r − r̂ j ) + 1

2

e2

4πε0

∑
i �= j

1

|r̂i − r̂ j | . (6)

Note that the summations over i and j include the electron spin degrees of freedom.
The second quantization of these Hamiltonians is

Ĥ0 =
∫

dx�̂†(x)

(
− h̄2∇2

x

2m∗ − εF

)
�̂(x) + e

∫
dx�̂†(x)

∫
drφncl(r, t )δ(r − x)�̂(x)

+1

2

e2

4πε0

∫
dx

∫
dx′�̂†(x)�̂†(x′)

1

|x − x′| �̂(x′)�̂(x)

=
∑
n,n′

∫
dxψ∗

n′ (x)

(
− h̄2∇2

x

2m∗ − εF

)
ψn(x)â†

n′ ân +
∑
n,n′

∫
dxρn′n(x)φncl(x, t )â†

n′ ân

+ 1

2

∑
n,n′,m,m′

∫
dx

∫
dx′ ρn′n(x)ρm′m(x′)

4πε0|x − x′| â†
n′ â

†
m′ âmân, (7)

ĤIA = −
∑
n,n′

∫
dxIn′n(x) · A(x, t )â†

n′ ân, (8)

ĤA2 = e2

2m∗
∑
n,n′

∫
dxψ∗

n′ (x)A(x, t ) · A(x, t )ψn(x)â†
n′ ân, (9)

Ĥext =
∑
n,n′

∫
dxρn′n(x)φext (x, t )â†

n′ ân, (10)
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where �̂(x) = ∑
n ψn(x)ân is the field operator. Note that the n state includes the spin degrees of freedom. Here,

ρn′n(x) = eψ∗
n′ (x)ψn(x) (11)

indicates an element of charge density and

In′n(x) = − eh̄

2im∗ [{∇xψ
∗
n′ (x)}ψn(x) − ψ∗

n′ (x){∇xψn(x)}] (12)

is derived from the current operator in Eq. (3). Note that ρn′n(x) has to follow the continuous relation with the charge current
density. Further, the single-electron wave function follows the time-dependent Schrödinger equation,

ih̄
∂ψ (x, t )

∂t
=

[
− h̄2

2m∗

(
∇x − ie

h̄
A(x, t )

)2

+ eφncl(x, t )

]
ψ (x, t ). (13)

Then, ρn′n(x) satisfies

∂ρn′n(x, t )

∂t
= −∇x · jn′n(x, t ), (14)

where

jn′n(x, t ) = In′n(x) − e2

m∗ ψ∗
n′ (x)A(x, t )ψn(x) (15)

is the modified current density in the EM field. The second term contributes to the O(A2) term. The light-matter interaction
component with the vector potential in Eq. (5) is approximately

ĤIA + ĤA2 � −
∑
n,n′

∫
dx jn′n(x, t ) · A(x, t )â†

n′ ân = −
∫

dx ĵ(x, t ) · A(x, t ) ≡ Ĥint. (16)

The second and third terms on the r.h.s. of Eq. (7) can be interpreted as the L component of the electric fields due to internal
sources. In a following formulation of the constitutive equation, the T and L fields are explicitly distinguished by the vector and
scalar potentials, respectively, with the Coulomb gauge. To describe the susceptibility for the vector and scalar potentials, we
treat the many-electron system with Ĥ0 on a one-electron basis and rewrite the second and third terms as∫

dx
∑
n,n′

â†
n′ρn′n(x, t )

[
φncl(x, t ) + e

4πε0

∫
dx′ �̂

†(x′, t )�̂(x′, t )

|x − x′|
]

ân =
∫

dx
∑
n,n′

â†
n′ρn′n(x, t )[φ̂mat (x, t )]ân, (17)

with an inherent scalar potential operator for matter,

φ̂mat(x, t ) = φncl(x, t ) + φ̂e−e(x, t ), (18)

φ̂e−e(x, t ) ≡ e

4πε0

∫
dx′ �̂

†(x′, t )�̂(x′, t )

|x − x′| . (19)

Note that, in the absence of A and φext, a material is electrically neutral, and 〈φ̂mat(x, t )〉0 = 0. Here, we take the basis for the static
state without external fields and consider Ĥ0 in Eq. (7) as a nonperturbative Hamiltonian. When one applies the electromagnetic
field of A(x, t ) and φext (x, t ) to the material, a polarized charge is induced. It gives an additional interaction between the induced
polarized charges,

Ĥp−p �
∫

dx
ρ̂(x, t ) − ρ0(x)

4πε0

∫
dx′ ρ̂(x′, t ) − ρ0(x′)

|x − x′| =
∫

dxδρ̂(x, t )φ̂pol(x, t ). (20)

Here, ρ0(x) = 〈ρ̂(x, t )〉0 is the average charge density from the electrons [ρ̂(x, t ) ≡ e�̂†(x, t )�̂(x, t )]. Thus δρ̂(x, t ) = ρ̂(x, t ) −
ρ0(x) indicates a deviation from the static distribution. The scalar potential due to the induced polarized charge is

φ̂pol(x, t ) =
∫

dx′ δρ̂(x′, t )

4πε0|x − x′| . (21)

Therefore the L field consists of three elements: φ̂mat, φ̂pol, and φext, which are associated with the electron-electron interaction
in the static case, the induced charge densities, and the external field, respectively.

In this study, we divide the total Hamiltonian as Ĥ = Ĥ0 + Ĥind with

Ĥind = Ĥint + Ĥext + Ĥp−p. (22)

Ĥ0 describes the static system without any field irradiation, whereas all induced effects by the external electric and magnetic
fields are in Ĥind. Then, the incident and induced components are included in the perturbative term. For the scalar potential of the
induced polarized charge, we apply the mean field approximation, �̂†(x, t )φ̂pol(x, t )�̂(x, t ) � �̂†(x, t )�̂(x, t )φpol(x, t ). For the
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external potential,
∫

dxρ0(x)φext (x, t ) corresponds to the system energy shifts without excitation, as it is constant. Subtracting
this term from the Hamiltonian, we obtain

Ĥ ′
ind = Ĥind −

(∫
dxρ0(x)φext (x, t )

)
� −

∫
dx[ ĵ(x, t ) · A(x, t ) − δρ̂(x, t )(φext (x, t ) + φpol(x, t ))], (23)

which describes the interaction between the matter and ap-
plied and induced EM fields for both the L and T components.
The L field is included in both the constitutive and Maxwell’s
equations. However, we do not need to take care of a double
count of the electron-electron interaction (see Appendix A).

The susceptibility is obtained from the linear response the-
ory [50]. The susceptibility, field-induced charge density, and
induced current density formulations depend on the treatment
of the nonperturbative and perturbative Hamiltonians. Note
that Ĥ0 includes neither a net charge nor current. Therefore,
for the formulation of the susceptibility based on Ĥ = Ĥ0 +
Ĥ ′

ind is evaluated by the static states |μ〉 for Ĥ0. As this suscep-
tibility is irrelevant to the induced fields, we can analyze the T
and L components of the field-induced charge and current in
terms of A (T field) and φ (L field). A self-consistent relation
between the induced charge and φpol can describe a plasmon
(collective excitation) within the RPA [44], as discussed in the
following section.

We can omit δ of δρ̂(x) in Eq. (23) for simplicity. In the
following discussion, the charge density ρ̂(x) indicates the
induced charge only. This abbreviation does not change
the continuous relation, as ∂ρ0/∂t = 0.

III. FOUR-VECTOR REPRESENTATION FOR
NONLOCAL SUSCEPTIBILITY

The light-matter interaction Ĥ ′
ind(t ) in Eq. (23) gives a

susceptibility to the external fields, A(x, t ) and φind(x, t ) =
φext (x, t ) + φpol(x, t ) in linear response theory [50]. Here, φind

indicates a scalar potential caused by the field irradiation. In
the following, let us omit the subscript “ind” on Ĥ ′

ind and φind

for simplicity. For the interaction Hamiltonian Ĥ ′(t ), let us
introduce the following four-vector representation:

A(x, t ) =
(

A(x, t )

− 1
c φ(x, t )

)
, (24)

Ĵ (x, t ) =
(

ĵ(x, t )

cρ̂(x, t )

)
, (25)

Ĥ ′(t ) = −
∫

dxĴ (x, t ) · A(x, t ). (26)

The time dependence of Ĥ ′(t ) in Eq. (26) is attributed to
the external field A(x, t ) only, and c is the light velocity in
vacuum. Note that we define the sign for the scalar potential
component as negative in Eq. (24) for a simpler formulation.

We assume a monochromatic field, A(x, t )=A(x; ω)e−iωt .
The statistical average of the four-vector current Ĵ (x) gives
the susceptibility by the field A(x; ω):

〈Ĵ (x)〉(t ) = J (x; ω)e−iωt

=J 0(x; ω)e−iωt+
∫

dx′X̄(x, x′; ω)·A(x′; ω)e−iωt ,

(27)

with a nonlocal susceptibility [43]

X̄(x, x′; ω) ≡
∑
μ,ν

[ fνμJ μν (x)(J νμ(x′))t

+ hνμJ νμ(x)(J μν (x′))t]

=
(

χ̄ j j (x, x′; ω) χ jρ (x, x′; ω)

χ t
ρ j (x, x′; ω) χρρ (x, x′; ω)

)
, (28)

and

J νμ(x) = 〈ν|Ĵ (x)|μ〉, (29)

fνμ = ρ0,μ

h̄ωνμ − h̄ω − iγ
, (30)

hνμ = ρ0,μ

h̄ωνμ + h̄ω + iγ
. (31)

The nonlocal susceptibility is a 4 × 4 matrix in the four-vector
space and |μ〉 represents the electronic eigenstates of Ĥ0. Thus
the susceptibility is affected by the nanostructure geometry
via |μ〉. If the electronic system has translational symmetry,
e.g., in the case of a bulk metal, the nonlocality in the sus-
ceptibility is given only by a relative position, X̄(x − x′; ω).
Further, h̄ωνμ = εν − εμ is the energy difference between the
eigenenergies for Ĥ0, γ is an infinitesimal positive value for
the causality, and ρ0,μ in the numerators is an element of the
density matrix at equilibrium, where

ρ0,μ = 〈μ|ρ̂0|μ〉 = 1

Z0
〈μ|e−βĤ0 |μ〉 (32)

with the partition function Z0 = Tr{e−βĤ0}. The first term in
the r.h.s. of Eq. (27) is

J 0(x; ω) =
( 〈 ĵ(x; ω)〉0

c(〈ρ̂(x)〉0 − ρ0(x))

)
=

(− e
m∗ ρ0(x)A(x; ω)

0

)
(33)

at equilibrium. The elements of susceptibility in Eq. (28) are
related to each other and satisfy the continuous relation ∇x ·
〈 ĵ(x)〉 − iω〈ρ̂(x)〉 = 0, where

∇x · χ̄ j j (x, x′; ω) = i(ω/c)χ t
ρ j (x, x′; ω), (34)

∇x · χ jρ (x, x′; ω) = i(ω/c)χρρ (x, x′; ω). (35)

In the linear response, the A dependence of the suscepti-
bility X̄(x, x′; ω) cannot be discussed. To evaluate the effect
of the A(x, t ) term in Eq. (28), the higher-order terms must be
considered.

IV. MAXWELL’S EQUATIONS FOR COULOMB GAUGE

Taking the Coulomb gauge, the vector and scalar poten-
tials describe only the T and L components, respectively.
For Maxwell’s equations, we consider the potentials A(x, t )
induced by the densities J (x, t ) via Green’s function.
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Maxwell’s equations for the potentials, φ(x, t ) and A(x, t ),
are expressed as

∇2A(x, t ) − 1

c2

∂2A(x, t )

∂t2
− 1

c2

∂

∂t
∇φ(x, t ) = −μ0 j(x, t ),

(36)

∇2φ(x, t ) = −ρ(x, t )

ε0
.

(37)

Note that the L component of the field is relevant only to
ρ(x, t ), whereas j(x, t ) generates both of the L and T com-
ponents. Another description may also be considered (see
Appendix B). Equations (36) and (37) are unified in the four-
vector representation(∇2 − ∂2

∂ (ct )2
∂

∂ (ct )∇
0 −∇2

)
A(x, t ) = −μ0J (x, t ), (38)

with the statistical average of the densities, J (x, t ) =
〈Ĵ (x)〉(t ). For the Fourier component, O(x, t ) =
O(x; ω)e−iωt (O = A,J ), Maxwell’s equation is written
as

D̄(x; ω)A(x; ω) = −μ0J (x; ω), (39)

with the 4 × 4 differential matrix

D̄(x; ω) ≡
(

∇2 + ω2

c2 −i ω
c ∇

0 −∇2

)
. (40)

From Eqs. (27) and (39), we can construct a self-consistent
relation between J and A. For the self-consistent equation,
let us obtain the formal solution of Maxwell’s Eq. (39) using
Green’s function

A(x; ω) = A0(x; ω) − μ0

∫
dx′Ḡ(x, x′; ω)J (x′; ω). (41)

The first term in Eq. (41) corresponds to an “incident” field
satisfying

D̄(x; ω)A0(x; ω) = 0. (42)

Green’s function is given as

Ḡ(x, x′; ω) = − 1

4π

(
ei ω

c |x−x′ |
|x−x′| 1̄ −iω

4πc

∫
dx′′ ei ω

c |x−x′′ |
|x−x′′|

x′′−x′
|x′′−x′|3

0 − 1
|x−x′|

)
.

(43)
A detailed derivation of Ḡ in Eq. (43) is presented in Ap-

pendix C. This Green’s function provides a scheme for field
(potential) generation due to the electronic excitations (current
and charge densities).

V. SELF-CONSISTENT EQUATION

In previous sections, we derived the constitutive Eq. (27)
with the nonlocal susceptibility (28) and the solution of
Maxwell’s Eqs. (41) with Green’s function (43) in a
four-vector representation. These expressions form a self-
consistent relation.

A. x-space representation

Let us first formulate the self-consistent equation in terms
of A(x; ω) and J (x; ω). Substitution of the constitutive
equation into the solution of Maxwell’s equation yields the
self-consistent equation for the four-vector potential A(x; ω),

A(x; ω) = A0(x; ω) − μ0

∫
dx′Ḡ(x, x′; ω)J 0(x′; ω)

−μ0

∫
dx′

∫
dx′′Ḡ(x, x′; ω)X̄(x′, x′′; ω)A(x′′; ω).

(44)

By applying the separable integral kernel δ(x − x′) =∑
m ϕ∗

m(x)ϕm(x′) for the vector potential term (33) in the cur-
rent, we expand the delta function as

(−μ0)J 0(x; ω)

= μ0e2n0

m∗

∫
V

dx′δ(x − x′)
(

1̄
0

)
A(x′; ω)

=
(

ωp

c

)2 ∑
m

∑
α=x,y,z

∫
V

dx′(ϕ∗
m(x)eα )(ϕm(x′)eα )tA(x′; ω).

(45)

Here, n0 = ρ0/e is the electron density and ωp =√
e2n0/(ε0m∗) is the plasma frequency in bulk. eα means

a unit vector in the α direction. The integral is applied only
inside the nanostructure.

Since the nonlocal susceptibility X̄(x′, x′′; ω) shown in
Eq. (28) is a separable integral kernel, by multiplying Eq. (44)
by (J ν ′μ′ (x))t, (J μ′ν ′ (x))t, and (ϕm′ (x)et

β ) from the left and
integrating with respect to x, we formulate the matrix form of
the self-consistent equation as

[�̄(ω)]

(
X (−)(ω)

X (+)(ω)

)
=

(
Y ′(0,−)(ω)

Y ′(0,+)(ω)

)
(46)

with

�̄(ω) =
(

h̄�̄ − (h̄ω + iγ )1̄

h̄�̄ + (h̄ω + iγ )1̄

)

+
(

K̄ ′(ω) L̄′(ω)

M̄ ′(ω) N̄ ′(ω)

)
. (47)

The vectors(
Y ′(0,−)(ω)

Y ′(0,+)(ω)

)
=

(
Y (0,−)(ω)

Y (0,+)(ω)

)
+

(
Ū (ω) 1

1̄−R̄(ω)Y
(A)(ω)

V̄ (ω) 1
1̄−R̄(ω)Y

(A)(ω)

)
,

(48)
correspond to an incident field. The detail deriva-
tion and formulation are described in Appendix D.
�̄ = diag(�̄0, �̄1, . . . , �̄N ) is a diagonal matrix with
�̄μ = diag(ω0μ, ω1μ, ω2μ . . . , ωNμ) for the excitation energy
h̄ωνμ = εν − εμ. γ is an infinitesimal value for the causality.
The matrices

K̄ ′(ω) = K̄ (ω) + Ū (ω)
1

1̄ − R̄(ω)
S̄(ω), (49)

L̄′(ω) = L̄(ω) + Ū (ω)
1

1̄ − R̄(ω)
T̄ (ω), (50)
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M̄ ′(ω) = M̄(ω) + V̄ (ω)
1

1̄ − R̄(ω)
S̄(ω), (51)

N̄ ′(ω) = N̄ (ω) + V̄ (ω)
1

1̄ − R̄(ω)
T̄ (ω). (52)

describe the radiative correction or the correlation between
the excited charge and current densities by the longitudinal
and transverse fields. Their matrix and vector components are
defined as

Kν ′μ′,μν (ω) = μ0ρ0,μ

∫
dx

∫
dx′(J ν ′μ′ (x))tḠ(x, x′; ω)J μν (x′), (53)

Lν ′μ′,νμ(ω) = μ0ρ0,μ

∫
dx

∫
dx′(J ν ′μ′ (x))tḠ(x, x′; ω)J νμ(x′), (54)

Mμ′ν ′,μν (ω) = μ0ρ0,μ

∫
dx

∫
dx′(J μ′ν ′ (x))tḠ(x, x′; ω)J μν (x′), (55)

Nμ′ν ′,νμ(ω) = μ0ρ0,μ

∫
dx

∫
dx′(J μ′ν ′ (x))tḠ(x, x′; ω)J νμ(x′), (56)

Rm′β,mα (ω) =
(

ωp

c

)2 ∫
dx

∫
dx′(ϕm′ (x)eβ )tḠ(x, x′; ω)(ϕ∗

m(x′)eα ), (57)

Uν ′μ′,mα (ω) =
(

ωp

c

)2 ∫
dx

∫
dx′(J ν ′μ′ (x))tḠ(x, x′; ω)(ϕ∗

m(x′)eα ), (58)

Vμ′ν ′,mα (ω) =
(

ωp

c

)2 ∫
dx

∫
dx′(J μ′ν ′ (x))tḠ(x, x′; ω)(ϕ∗

m(x′)eα ), (59)

Sm′β,μν (ω) = μ0ρ0,μ

∫
dx

∫
dx′(ϕm′ (x)eβ )tḠ(x, x′; ω)J μν (x′), (60)

Tm′β,νμ(ω) = μ0ρ0,μ

∫
dx

∫
dx′(ϕm′ (x)eβ )tḠ(x, x′; ω)J νμ(x′), (61)

and

X (−)
νμ (ω) = 1

h̄ωνμ − h̄ω − iγ

∫
dx(J νμ(x))tA(x; ω), (62)

X (+)
μν (ω) = 1

h̄ωνμ + h̄ω + iγ

∫
dx(J μν (x))tA(x; ω), (63)

X (A)
mα (ω) =

∫
dx(ϕm(x)eα )tA(x; ω), (64)

Y (0)
ν ′μ′ (ω) =

∫
dx(J ν ′μ′ (x))tA0(x; ω), (65)

Y (A)
mα (ω) =

∫
dx(ϕm(x)eα )tA0(x; ω). (66)

The matrix �̄(ω) describes coupling between the electron-
hole excitations mediated by both longitudinal and transverse
electromagnetic fields, which forms the collective excitation.
The individual electron-hole excitations are followed by �̄,
whereas the field-mediated coupling, namely, the collective
excitation, is in K̄ ′(ω), L̄′(ω), M̄ ′(ω), and N̄ ′(ω). Due to cou-
pling, the eigenvalues of �̄(ω) become complex and provide
zero points in the complex ω = ωr + iωi plane. Its real com-
ponents provide the excitation spectrum, and the imaginary
components means the radiative width. The vectors X (∓)(ω)
and Y ′(0,∓)(ω) in Eq. (46) mean the coefficients of induced
four-vector current and incident four-vector field, respectively.
Therefore the matrix �̄(ω) exhibits the electronic properties
of nanostructures, whereas the vector X (∓)(ω) provides the
output charge and current densities.

At zero temperature, i.e., T = 0, ρ0,μ = δ0,μ in fνμ

and hνμ defined in Eqs. (30) and (31), respectively. Then,

the energy differences h̄ων0 in the denominators of X (−)
ν0

and X (+)
0ν are positive. For the matrix form of the self-

consistent Eq. (46), only J ν0 and J 0ν should be considered.
Therefore the matrix elements are reduced for Kν ′0,0ν , Lν ′0,ν0,
M0ν ′,0ν , and N0ν ′,ν0.

The matrix form of the self-consistent Eq. (46) has an
important advantage. The matrix �̄(ω) with the matrices K̄ , L̄,
M̄, and N̄ consisting of Ḡ and 〈ν|Ĵ |μ〉 gives the eigenmodes
of the system coupled with the radiative field. The L and T
fields are in Ḡ and the properties of the nonlocal response
are given by |μ〉. From the real and imaginary components
of the eigenvalues of �̄(ω), the properties of the collective
and individual excitations are evaluated. Then, the current and
charge densities are discussed in terms of the plasmons and
SPEs.

B. k-space representation

For a metallic structure having some symmetry, the Fourier
transformation of the fields and densities is useful for the eval-
uation. In that case, we consider the k-space representation for
the self-consistent equation. The fields and densities in the k
representation are given as

Õ(k; ω) = 1

(2π )
3
2

∫
dxO(x; ω)e−ik·x, (O = A,J ).

(67)
Maxwell’s Eqs. (39) and their solutions (41) are also
transferred to the k representation, with the latter being
expressed as

Ã(k; ω) = Ã0(k; ω) − μ0Ḡk(ω)J̃ (k; ω). (68)
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Here, Green’s function is given as

Ḡk(ω) =
( 1

−k2+ω2/c2 1̄ − 1
k2

1
−k2+ω2/c2

ω
c k

0 1
k2

)
. (69)

The incident term satisfies(( − k2 + ω2

c2

)
1̄ ω

c k

0 k2

)
Ã0(k; ω) = 0. (70)

Note that the solution of Maxwell’s equations contains no
integral.

The constitutive equation becomes

J̃ (k; ω) = J̃ 0(k; ω) +
∫

dk′X̄k,k′ (ω)Ã(k′; ω), (71)

with the nonlocal susceptibility

X̄k,k′ (ω) =
∑
μ,ν

[ fνμJ̃ μν (k)(J̃ νμ(−k′))t

+ hνμJ̃ νμ(k)(J̃ μν (−k′))t]. (72)

Equations (68) and (71) form the self-consistent equation:

Ã(k; ω) = Ã0(k; ω) − μ0Ḡk(ω)J̃ 0(k; ω)

− μ0

∫
dk′Ḡk(ω)X̄k,k′ (ω)Ã(k′; ω). (73)

The matrix form of the self-consistent equation in the k rep-
resentation is obtained in the same manner as that of the
previous section. It is exactly identical with Eq. (46), see
Appendix D. The matrix elements in the k representation are,
e.g., as

K̃ν ′μ′,μν (ω) = μ0ρ0,μ

∫
dk(J̃ ν ′μ′ (−k))tḠk(ω)J̃ μν (k), (74)

X̃ (−)
νμ (ω) = 1

h̄ωνμ − h̄ω − iγ

∫
dk(J̃ νμ(−k))tÃ(k; ω). (75)

The Fourier transformation demonstrates that these elements
are equivalent to those of the x representation, K̃ν ′μ′,μν (ω) =
Kν ′μ′,μν (ω), X̃ (−)

νμ (ω) = X (−)
νμ (ω), etc. Therefore the matrix

element evaluation can be performed in either the x or k
representations depending on the case.

It is worth noting that, in (J̃ ν ′μ′ (−k))tḠk(ω)J̃ μν (k), a
component between the induced charge densities,

K0,ν ′μ′,μν = μ0ρ0,μ

∫
dkcρ̃ν ′μ′ (−k)

1

k2 cρ̃μν (k), (76)

describes the Coulomb interaction, which arises when an
external field is applied. If the contribution of the cur-
rent densities is negligible, the self-consistent Eq. (46) is
reduced as

[�̄0(ω)]

(
X (−)(ω)

X (+)(ω)

)
=

(
Y (0,−)(ω)

Y (0,+)(ω)

)
(77)

with

�̄0(ω) =
(

h̄�̄ − (h̄ω + iγ )1̄

h̄�̄ + (h̄ω + iγ )1̄

)

+
(

K̄0 K̄0

K̄0 K̄0

)
. (78)

The eigenvalues of the matrix �̄0(ω) generate the spectrum
of the individual (electron-hole) excitation and the collective
(plasmon) excitation. It follows

det{h̄2�̄2 − (h̄ω + iγ )2 + h̄K̄0�̄ + h̄�̄K̄0} = 0. (79)

A rough estimate of the spectrum is

1 ∼ K0
h̄ωνμ

(h̄ω + iγ )2 − (h̄ωνμ)2
. (80)

Hence, we find the spectrum at ω ∼ ωνμ for the electron-hole
excitation and ω � ωνμ for the plasmon excitation In a free
electron model for the basis |μ〉 of Ĥ0, the plasmon spectrum
should correspond to that in the RPA.

In addition to the ρ̃ν ′μ′[Ḡk]ρρρ̃μν term, K̃ν ′μ′,μν and
the other matrix components have j̃ν ′μ′[Ḡk] jρρ̃μν and
j̃ν ′μ′[Ḡk] j j j̃μν terms, which have been neglected in many pre-
vious studies. However, the modifications of the eigenstates
and spectrum of the electronic system due to the coupled
radiative field are given by these components, as noted in
the previous section. The nanostructure shape determines the
spectrum shift via the |μ〉 in ρ̃μν and j̃μν . Therefore anal-
ysis and exploration of an enhancement condition based on
K̃ , L̃, M̃, and Ñ , with ρ̃ν ′μ′[Ḡk]ρρρ̃μν , j̃ν ′μ′[Ḡk] jρρ̃μν , and
j̃ν ′μ′[Ḡk] j j j̃μν are important.

VI. APPLICATION EXAMPLE: RECTANGULAR
NANOROD

To verify the formulation of self-consistent matrix Eq. (46)
with Eq. (47) and the feasibility of calculation, we apply the
formulation to a single rectangular nanorod.

A. Radiative correction matrix for rectangular nanorod

Electron and hole wave functions in a rectangular nanorod
are given as

ψ(eμ)=(nx,ny,nz )(x)

=
√

2

Lx
sin

(
nxπ

Lx
x

)√
2

Ly
sin

(
nyπ

Ly
y

)√
2

Lz
sin

(
nzπ

Lz
z

)
,

(81)

ψ(hμ̄)=(n̄x,n̄y,n̄z )(x)

=
√

2

Lx
sin

(
n̄xπ

Lx
x

)√
2

Ly
sin

(
n̄yπ

Ly
y

)√
2

Lz
sin

(
n̄zπ

Lz
z

)

(82)

with Lx, Ly, and Lz being the length of nanorod in the x,
y, and z directions, respectively. This section aims to verify
calculation feasibility. We suppose the basis |μ = (eμ, hμ̄)〉
for the Hamiltonian Ĥ0 are given by Eqs. (81) and (82). Note
that the electron and hole energies are εeμ > εF and εhμ̄ � εF,
respectively. The excited charge and current densities at zero
temperature are evaluated by the wave functions as

〈0|ρ̂(x)|μ〉 = ρ0μ(x) = eψ(hμ̄)(x)ψ(eμ)(x), (83)
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〈0| ĵ(x)|μ〉 = j0μ(x)

= − eh̄

2im∗ [(∇ψ(hμ̄)(x))ψ(eμ)(x)

−ψ(hμ̄)(x)(∇ψ(eμ)(x))]. (84)

Since the wave functions are real, we find ρμ0(x) = ρ0μ(x)
and jμ0(x) = − jμ0(x).

By applying the Fourier transformation of the densities, the
matrix elements of K̄ , L̄, M̄, and N̄ are evaluated as

K̃μ′0,0μ = μ0

∫
dk

[
( j̃μ′0(−k))t

(
1

−k2 + (nbgω/c)2

)
j̃0μ(k) + ( j̃μ′0(−k))t

(
− 1

k2

nbgω/c

−k2 + (nbgω/c)2
k
)

(c/nbg)ρ̃0μ(k)

+(c/nbg)ρ̃μ′0(−k)

(
1

k2

)
(c/nbg)ρ̃0μ(k)

]
= A(2)

μ′,μ + A(1)
μ′,μ + A(0)

μ′,μ, (85)

L̃μ′0,μ0 = −A(2)
μ′,μ + A(1)

μ′,μ + A(0)
μ′,μ, (86)

M̃0μ′,0μ = −A(2)
μ′,μ − A(1)

μ′,μ + A(0)
μ′,μ, (87)

Ñ0μ′,μ0 = A(2)
μ′,μ − A(1)

μ′,μ + A(0)
μ′,μ. (88)

Here, nbgω/c means the wave number of light in the nanostructure and environment with the refractive index nbg, for which the
background dielectric constant εbg is introduced phenomenologically, nbg = √

εbg/ε0. The light velocity c in Maxwell’s Eqs. (36)
and (37) [or Eqs. (38) with the four-vector definition in Eqs. (24) and (25)] is replaced by c/nbg. The back ground refractive index
nbg modulates the wave number of light, which enlarges the current-current interaction A(2)

μ′,μ and the current-charge interaction

A(1)
μ′,μ and reduces effectively the charge-charge interaction A(0)

μ′,μ by the screening effect.
For the separable integral kernel in the elements of matrices S̄, T̄ , Ū , V̄ , and R̄, we use

ϕm(x) =
√

2

Lx
sin

(
mxπ

Lx
x

)√
2

Ly
sin

(
myπ

Ly
y

)√
2

Lz
sin

(
mzπ

Lz
z

)
(89)

with m = (mx, my, mz ). Its Fourier transferred function satisfies
∑

m ϕ̃∗
m(k)ϕ̃m(−k′) = δ(k − k′). Then, the matrix elements are

S̃m′β,0μ = μ0

∫
dkϕ̃m′ (−k)

(
1

−k2 + (nbgω/c)2

)
j̃ (β )
0μ (k) + μ0

∫
dkϕ̃m′ (−k)

(
− 1

k2

nbgω/c

−k2 + (nbgω/c)2
kβ

)
(c/nbg)ρ̃0μ(k)

= B(2)
m′β,μ + B(1)

m′β,μ, (90)

T̃m′β,μ0 = −B(2)
m′β,μ + B(1)

m′β,μ, (91)

Ũμ′0,mα =
(

ω′
p

c/nbg

)2 ∫
dk j̃ (α)

μ′0(−k)

(
1

−k2 + (nbgω/c)2

)
ϕ̃∗

m(k) = − 1

μ0

(
ω′

p

c/nbg

)2

B(2)
mα,μ′ , (92)

Ṽ0μ′,mα = 1

μ0

(
ω′

p

c/nbg

)2

B(2)
mα,μ′ , (93)

Rm′β,mα =
(

ω′
p

c/nbg

)2 ∫
d3kϕ̃m′ (−k)

(
1

−k2 + (nbgω/c)2

)
ϕ̃∗

m(k)δαβ = Cm′,mδαβ. (94)

Note that ω′
p = ωp/nbg is the (bulk) plasma frequency in a

material with the refractive index nbg. The detail expression
for A(0,1,2)

μ′,μ , B(1,2)
m′α,μ, and Cm′,m are summarized in Appendix E.

B. Excitation spectrum

The matrix �̄(ω) of the self-consistent formulation in
Eq. (47) describes the spectrum for both the individuallike
electronhole excitations and the field-mediated collectivelike
excitation. Then, we demonstrate the eigenvalues and deter-
minant of the matrix �̄(ω) for the nanorod as functions of the
real component of frequency, ω = ωr + iωi. By modulating
the field-mediated couplings to reduce the T field contribution
as shown in the following numerical demonstrations, we find
that the T field contributes significantly to form the collective-

like excitation and enlarges the radiative width related to the
energy transfer between the excitations.

We consider Lx = 10 nm, Ly = 15 nm, and Lz = 200 nm
rectangular nanorod. The Fermi energy of conduction elec-
tron is set at εF = 0.5 eV. The effective mass is m∗ =
0.02me with me being the electron mass in vacuum. Such
an effective mass is obtained for InSb. The background
refractive index is taken as nbg = 5. For a typical size
scale L0 = 100 nm, an order of the confinement energy
is E0 = h̄2π2/(2m∗L2

0 ) � 1.88 meV. Then, the electron-hole
excitation energy is h̄ωμ0 = E0{(n2

x + n2
y + n2

z ) − (n̄2
x + n̄2

y +
n̄2

z )} with μ = (eμ, hμ̄) = ({nx, ny, nz}, {n̄x, n̄y, n̄z}) satisfy-
ing E0(n̄2

x + n̄2
y + n̄2

z ) � εF < E0(n2
x + n2

y + n2
z ). We set γ =

0.1 × E0 as an infinitesimal value. In bulk, the electron
density is evaluated as n0 = (2m∗εF/h̄2)3/2/(3π2). Then,
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FIG. 1. (a) Numerical results of det(�̄(ω)) as a function of ωr

with ω = ωr + iωi when the T field contribution is reduced (ζ = 0).
A parameter ζ tunes the T components of Green’s function Ḡk.
ζ = 1(0) corresponds to a full (no transverse field) calculation. The
energy dimension of �̄(ω) is normalized. The imaginary part of
frequency is introduced to prevent mathematical divergence and set
at h̄ωi = 0.002 eV. (b) Modified plot of log |det(�̄(ω))| in (a) to
see clearly the collective excitation. The determinant is subtracted
by a harmonic function f (x) � −6580.9077x2 + 5034.8828x −
1256.5965 with x = h̄ω/(1 eV), which is deduced from the values at
x = 0.95, 1.05, and 1.15. Lines indicate log |det(�̄(ω))| from ζ = 1
to 0 by 0.1. (c) Color plot of modified log |det(�̄(ω))| in (b). A line
indicates the position of ωr satisfying a real part of the eigenvalues
of �̄(ω) being zero, Re[ξ j (ω)] = 0.

the bulk plasma frequency for above parameters is h̄ω′
p =

h̄
√

e2n0/(εbgm∗) � 0.112 eV.
We focus on the excitation with nx = n̄x, ny = n̄y, and

nz = n̄z + 1 to consider the individuallike and collectivelike
excitation spectrum at a small wave number |q| = |keμ −
khμ̄| = π/Lz. Because of stronger confinements in the x and
y directions than that in the z-direction, a subband structure
characterized by index nx,y is formed; hence, our consider-
ation corresponds to only the intra-subband excitation. The
excitation spectrum should be evaluated from the zero points
of the eigenvalues of �̄(ω) in the complex plane of ω =
ωr + iωi. In this demonstration, however, we fix the imaginary
part of frequency at h̄ωi = 0.002 eV for the visibility and
discuss the eigenvalues and determinant of �̄(ω) when ωr is
swept. First, we consider the determinant when the T field
contribution is reduced from the matrix �̄(ω) to see clearly
the individuallike and collectivelike excitations since the T
field generally causes the radiative correction and enlarges the
imaginary components of the eigenvalues. Then, we introduce
a parameter ζ to tune the T component in Green’s function
Ḡk(ω), i.e., we set K̃μ′0,0μ = ζ 2A(2)

μ′,μ + ζA(1)
μ′,μ + A(0)

μ′,μ, where
the order of ζ corresponds to that of current density in the ma-
trix �̄(ω). Namely, ζ = 1 and 0 signify a fully consideration
and only the Coulomb interaction, respectively. Figure 1(a)

represents log |det(�̄(ω))| when ζ = 0. The energy levels
of the electron-hole excitations at |q| = π/Lz are distributed
in h̄ωμ0 < 0.22 eV. The eigenvalues of �̄(ω) indicates zero
points at ωr ≈ ωμ0, which suppresses strongly the determinant
and shows jagged behavior at h̄ωr < 0.22 eV in Fig. 1(a).
In the present calculation, the imaginary frequency and
the field-mediated couplings broaden the determinant dips.
Hence, it is difficult to find respective dip structures due to
the respective electron-hole excitations.

Above the level distribution, the determinant increases
monotonically with ωr, where the signature of a dip structure
due to the collective excitation is difficult to be found from
the determinant in this scale. Then, we modulate the plot
to see a signature of the collectivelike excitation clearly by
subtracting a harmonic smooth function deduced from the plot
in Fig. 1(a). Figures 1(b) and 1(c) exhibit the modulated plot
of log |det(�̄(ω))|, which shows a shift of dip structure when
the tuning parameter is tuned from ζ = 0 to 1. By tuning ζ ,
we can discuss a contribution of the T field to the construction
of collectivelike excitation. Note that in our formulation, the
existence of collective (plasmon) mode is not supposed in the
Hamiltonian in an empirical way. If the plasmon mode was
assumed as an empirical model, the radiative T field would
simply contribute to the radiative shift of the assumed plasmon
energy. On the contrary, in our result, the collectivelike mode
appears in the deductive process from a cooperation of the
electron-hole excitations via both L and T fields. Then, the
obtained shift of collectivelike excitation spectrum in Fig. 1(b)
contains not only the radiative shift but also contributions by
an additional mechanism to form the collective mode by the
L and T fields. If only the Coulomb interaction is considered
(ζ = 0), the modulated plot shows the dip structure due to the
collectivelike excitation at h̄ωr ≈ 0.284 eV although its depth
is much smaller than the determinant in Fig. 1(a). Note that
generally the plasmon excitation energy in the nanostructure
is largely blue-shifted from ωp in bulk. When ζ = 0, the dip
width is attributed to the imaginary part of the frequency.
If ωi is reduced, the dip structure becomes sharp and shows
divergence at ωi = 0 (not shown).

With a tuning of ζ , in addition to the slight shift of
dip position, the depth decreases and the width broadens.
It signifies that the T-field-mediated interaction between the
excitations induces an energy dissipation. When ζ = 1, how-
ever, the dip structure is not distinguished in Fig. 1(b); hence,
the energy of collectivelike excitation cannot be evaluated
from the determinant. Then, the zero position of (real part
of) the eigenvalue of �̄ corresponding to the collectivelike
excitation, Re[(�̄(ω)) j] = 0, is examined in Fig. 1(c). The po-
sition also shifts with ζ from h̄ωr ≈ 0.284 eV to ≈0.260 eV.
The collectivelike excitation is well defined even at ζ = 1
although the determinant does not indicate the distinct signa-
ture. The shift of collectivelike excitation with the increase of
ζ is harmonic behavior. Thus the current-current interaction
A(2)

μ′,μ is dominant than the current-charge interaction A(1)
μ′,μ.

The contribution of the T component to the collectivelike
excitation is not negligible, especially for the hybridization
and the energy transfer between the individuallike and col-
lectivelike excitations. A generation of the hot electron and
hole should be described by the individual excitations. Thus
the hybridization by the T field would be an important
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ingredient in the hot carrier generation from the plasmon
excitation.

VII. DISCUSSION

In the self-consistent formulation in Eq. (44) and its ma-
trix form (46) with Eq. (47), the optical response of the
nanostructures is described in terms of J νμ(x). The elec-
tron eigenstates |μ〉 contribute to the optical response via
J νμ(x) in the susceptibility. When one prepares the |μ〉 of Ĥ0,
including the Coulomb interaction at equilibrium, the nanos-
tructure optical responses, e.g., the plasmon-polariton and
SPE spectra, are obtained within a theoretical framework for
the prepared eigenstates. The first-principles calculation for a
nanostructure or a nanoscale cluster of atoms was developed
[15,26,27,29,31,32,46,47], where the electronic states with
the electron-electron interaction (the L component of the EM
field) are evaluated precisely. In many previous studies, how-
ever, the T field was not self-consistently considered. In our
formulation, both components of the EM fields are determined
self-consistently on the mesoscopic scale. Further, if one em-
ploys the equilibrium states evaluated in the first-principles
calculation in our formulation, the T fields generated by the
electronic responses and the electron-electron interactions are
taken into account [51]. Hence, our approach provides an
important and convenient framework for investigations of
mesoscopic plasmonics and photonics.

The present formulation is based on the classical
Maxwell’s equations for the incident and induced EM fields.
As the induced L field describes part of the electron-electron
interaction, the quantum Maxwell’s equations for the EM
fields are required for the higher-order electron correlations.
For the linear response framework discussed in this paper,
however, the classical treatment of the fields is equivalent to
the quantum treatment.

Let us emphasize the difference in the four-vector represen-
tation of Eq. (46) compared to the conventional nonlocal and
self-consistent theory [43]. In our formulation, both the vec-
tor and scalar potentials are fully considered. The Coulomb
gauge separates the L and T components in A = (A,−φ/c),
which directly provides a picture of the L and T component
mixing due to the nanostructure in the self-consistent relation
in Eq. (46). For the densities J = ( j, cρ) in the constitutive
Eq. (27), the current is induced not only by the T field, but
also by the L field though Ĥ ′ ∼ −( ĵ · A − ρ̂φ). The charge
density is also attributed to both the L and T fields. These
characteristics are due to the off-diagonal elements in the
4 × 4 susceptibility X̄. In Maxwell’s Eqs. (41), the L field φ

is generated by the charge only, whereas both the current and
charge generate the T field A. This “cross generation” of LT
components is essential physics for the nanostructure and is
enlarged when the nanostructure enhances its χ jρ and χρ j due
to the nonlocality. The present formulation might provide a
guideline for an enhancement of the plasmon resonance since
the generation of the current and charge densities is related to
the collectivelike and individuallike excitations.

We have demonstrated a single nanorod as an example
of the applications in Sec. VI B. For rectangular nanorods,
the charge and current densities in the radiative correlation
matrices are analytically obtained. Such analytical expres-

sions present a clear understanding of the relation between the
excitations and the induced densities. The matrix components
were evaluated numerically, which exhibits the practicality of
our formulation. The numerical results reveal the shift of col-
lectivelike excitation spectrum and enhanced radiative width
due to the T field contribution. In our formulation and model,
the collectivelike excitation appears in the deductive process
from the field-mediated interaction between the electron-hole
excitations. Then, our results suggest a new mechanism for
the collectivelike excitation.

In the present demonstration, we consider the individual
excitations with only small wavenumber |q| = |keμ − khμ̄| =
π/Lz. This corresponds to the intrasubband excitation for
strong confinement in the x and y directions. However, if
the system is larger, or there are several interacting nanos-
tructures in the xy plane, the charge and current deviations
might be important. In such situations, the intersubband ex-
citations becomes essential. Moreover, the T field contributes
to the coherent coupling between the collectivelike and indi-
viduallike excitations. In most previous studies that describe
hot carrier generation caused by the plasmon excitation, the
energy transfer is unidirectional [22–26]. However, if the
coherent coupling between the collective and individual ex-
citations is large, a bidirectional energy transfer [27,28] can
be effective in the nanostructures. To discuss such coherent
coupling mechanism, we will extend the model with large
wave number for the individual excitations considering the
energy closing with the collectivelike excitation in our future
study.

As a further discussion, based on our formulation, the
optical responses of electrons are described in terms of the
current and charge densities. This representation is useful for
considering the responses to the L and T field components.
In many previous studies, the optical properties were dis-
cussed in terms of the plasmons and SPEs. In nanostructures
featuring nonlocality, the plasmons and SPEs are coupled with
each other. Hence, the relation between the densities ( j, cρ)
and the collective and individual excitations is complicated.
The excitation energy spectrum is evaluated from the eigen-
values of �̄(ω) in Eq. (47) as the excitations correspond to
the poles of the system with the radiative field. The densities
J and induced fields A are described in terms of the excita-
tions. This is an advantage over another existing treatment of
the nonlocal effect [33]. Moreover, from the poles, coherent
coupling between the plasmon (collectivelike) excitation and
the carrier generation due to the SPE can be investigated.

The coherent coupling of the collectivelike and indi-
viduallike excitations in the nanostructures gives rise to a
bidirectional energy transfer [27,28]. The plasmon and in-
dividual excitations form discrete and continuous spectra,
respectively. Therefore their coupling may demonstrate the
Fano resonance as evidence of coherent coupling. In such
a scenario, the self-consistency of the L and T total fields
and the induced charge and current densities are important.
In addition to the energy, the electron wave function in the
nanostructures may significantly affect the coupling. There-
fore our microscopic-theory-based formulation reveals such
light-nanostructure interaction and its enhancement. As a
multidimensional integral is included in Eqs. (53)–(66), the
presence of numerous electrons, even in submicrometer-scale
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metallic structures, would make a feasibility of numerical cal-
culations difficult. The approach based on the first-principles
calculation [27,28] has more limited applications than the
analytical approach based on our formulation. Note also that
we can overcome this difficulty for several nanostructures,
e.g., a 2D sheet (including graphene) and a rectangular rod.

The development based on our microscopic approach are
not limited to several adaptable nanostructures, but can be
applied to arbitrary nanostructures by considering appropriate
approximations to restrict the bases. Our approach can also
be applied to an array of two or more nanostructure units, in
which the nonlocal effect is enlarged by the nanogap structure.
The collectivelike excitations in the respective nanostructures
are coupled with each other by the T and L fields. Then,
our formulation will contribute to reveal a coherent energy
transfer between the nanostructures and its enhancement.

VIII. SUMMARY

To correctly describe the coherent coupling between the
collective plasmon excitations and the individual single-
particle excitations via a transverse electric field, which is an
aspect that has been neglected in previous studies, we devel-
oped a self-consistent and microscopic nonlocal formulation
for the light-matter interaction in plasmonic nanostruc-
tures. Our formulation is based on linear response theory
with a nonlocal susceptibility and the classical Maxwell’s
equations describing the transverse and longitudinal elec-
tromagnetic fields. The nonlocal susceptibility X̄(x, x′) is
obtained from the interaction Hamiltonian and the eigenstates
of the nanostructure. The Coulomb interaction is included
not only in the nonperturbative Hamiltonian Ĥ0, but also in
the longitudinal electric fields caused by the charge density
related to the collective and individual excitations. In the
formulation, the longitudinal and transverse components of
the fields and optically induced responses are described in
terms of the four-vector potential A(x, t ) and density J (x, t )
with Green’s function Ḡ(x, x′) in the four-vector space. The
self-consistent equation is rewritten in matrix form with the
incident and induced fields, Y (0,±)

μν and X (±)
μν . From the poles

of this formulated matrix �̄(ω) for the radiative correction,
the excitation spectrum can be examined. The developed for-
mulation can be applied to various frameworks by utilizing the
electronic states obtained according to those respective frame-
works. We examine the excitation spectrum for a rectangular
nanorod to demonstrate the numerical feasibility of our for-
mulation. The solutions of formulated matrix �̄(ω) provides
the collectivelike excitation spectrum, where the transverse-
field-mediated interaction contributes non-negligiblly to the
coherent coupling between the individuallike and collective-
like excitations.

Our formulation could be combined with real-time density
functional theory based on the first-principles calculation, in
which the electron-electron interaction is considered accu-
rately. The four-vector formulation can describe the effects of
transverse fields on the eigenstates given by the first-principles
calculation at each step in a real-time simulation. In this
treatment, the exchange correlation and quantum fluctuation
can be partially considered via the excited states. Application
of the present formulation to various types of metallic meso-

and nanostructures will facilitate theoretical understanding
of the interplay between the collectivelike and individuallike
excitations in nanoscale systems, which will aid the de-
sign of metallic systems to control photo-induced hot carrier
generation.
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APPENDIX A: ANOTHER TREATMENT
OF HAMILTONIAN

In Sec. II, we separate the Hamiltonian into a static com-
ponent including a part of the Coulomb interaction, Ĥ0,
and a light-induced component, Ĥ ′

ind. In this description, the
Coulomb interaction is included in the nonperturbative and
perturbative Hamiltonian. In this Appendix, we consider an-
other treatment for the Coulomb interaction and compare the
two descriptions.

The total Hamiltonian Ĥ subtracting a constant value U0 =∫
dxρ0φext can be read as following two descriptions:

Ĥ = (Ĥ0 + Ĥ ′
p−p) + (Ĥint + Ĥext ) = Ĥ ′

0 + Ĥ ′
int, (A1)

= Ĥ0 + (Ĥint + Ĥext + Ĥ ′
p−p) = Ĥ0 + Ĥ ′

ind. (A2)

Here, Ĥ ′
p−p = Ĥp−p − U0.

In the former description of Eq. (A1), the electron-electron
interaction due to the L field caused by the light-induced
charge density is fully included in the nonperturbative Hamil-
tonian, Ĥ ′

0 ≡ Ĥ0 + Ĥ ′
p−p. The interaction with an external L

field is in the perturbative one,

Ĥ ′
int ≡ Ĥint + Ĥext

= −
∫

dx[ ĵ(x, t ) · A(x, t ) − ρ̂(x, t )φext (x, t )]. (A3)

Here, both the incident and induced T fields are coupled with
the charge current density. Because the perturbative Hamil-
tonian is time-dependent via Ĥp−p in Eq. (20), one must
prepare a quite complex and time-dependent basis |μ(t )〉.
Thus the evaluation of susceptibility by the time-dependent
basis becomes complicated. The induced Coulomb interaction
contributes to the induced charge and current densities via
the susceptibility. This approach is reasonable if the self-
consistent relation between the constitutive and Maxwell’s
equations is not considered. However, for the self-consistent
equation with this description, the constitutive equation in-
cludes φ̂mat and φ̂pol, simultaneously, the interaction between
the induced charges is also considered in Maxwell’s equa-
tions. Then, a double count problem of the electron-electron
interaction must also be handled. Therefore, because of the
basis complexity and the double count problem, this approach
is not useful to analyze the relation between the L and T
components of the induced fields and densities.
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TABLE I. Treatment of Hamiltonian in Eqs. (A1) and (A2). Here, φext describes an external (applied) L field, φpol is an induced L field,
and A consists of the T field of both the applied and induced components.

nonperturb. H perturb. H basis |μ〉 Coulomb int. L field T field susceptibility

Ĥ0 + Ĥ ′
p−p Ĥ ′

int time-dependent fully in |μ〉 φext A time-dep. via |μ〉
Ĥ0 Ĥ ′

ind time-independent partially in |μ〉 φpol + φext A static

For the latter description of Eq. (A2), however, the non-
perturbative Hamiltonian Ĥ0 and its basis |μ〉 are static. All
induced effects by the light irradiation are included in the
perturbative one,

Ĥ ′
ind = −

∫
dx[ ĵ(x, t ) · A(x, t ) − δρ̂(x, t )

× (φext (x, t ) + φpol(x, t ))]. (A4)

Note that although φpol is attributed to the Coulomb inter-
action between the internal charges of the matter, it arises
only when the external fields are applied. Because of the
electric neutrality of the matter, φ̂mat is not incorporated in
Maxwell’s equations. Therefore no treatment of the double
counting of the electron-electron interaction is required as the
induced Coulomb interaction is irrelevant to the susceptibility
in the constitutive equation and considered only in Maxwell’s
equations.

The above discussion and classification are summarized in
Table I and Fig. 2.

FIG. 2. Schematic summary of two treatments of the Hamil-
tonian. In the upper case, the electronic state of nonperturbative
Hamiltonian has induced polarized charges. The Coulomb interac-
tion of the induced charges is included in both the constitutive and
Maxwell’s equations. Then, one has to take care of the double count
of Coulomb interaction. The lower case is our scheme, where the
Coulomb interaction of the induced charges is taken into account
only in Maxwell’s equations. Therefore one does not need to consider
the double count.

APPENDIX B: L-T SEPARATION OF MAXWELL’S
EQUATIONS

In the main text, we formulated the self-consistent equa-
tion in terms of {(A,−φ/c), ( j, cρ)} with the Coulomb
gauge. Let us consider another description in terms of
{(A(T),−φ(L)/c), ( j (T), j (L))}. Here, to emphasize the separa-
tion of the L and T components in the fields and densities,
we present the superscripts explicitly. Equation (36) can be
expressed as(

∇2 − 1

c2

∂2

∂t2

)
A(T)(x, t ) = −μ0 j (T)(x, t ), (B1)

− 1

c2

∂

∂t
∇φ(L)(x, t ) = −μ0 j (L)(x, t ), (B2)

where j(x, t ) = j (T)(x, t ) + j (L)(x, t ). The scalar potential
φ(L) generates the L component only. Equation (37) also de-
scribes the L only, where

∇2φ(L)(x, t ) = −ρ (L)(x, t )

ε0
. (B3)

Equations (B2) and (B3) satisfy the continuous relation for the
L component,

∇ · j (L)(x, t ) + ∂ρ (L)(x, t )

∂t
= 0. (B4)

Let us refer to the T component in the scalar potential as φ(T).
The T component should be ∇ · E = ∇ · (−∇φ(T)) = 0. Thus
it must have a linear dependence up to φ(T)(x, t ) ∼ ax + b.
These terms cannot be induced from the internal charge den-
sity of the system. We incorporate the external scalar potential
φext (x, t ) in the interaction Hamiltonian (23). The T compo-
nent in the external field, however, is included in the vector
potential. Therefore the scalar potential induces the L com-
ponent only, and we find E (L) = −∇φ(L) and E (T) = −∂t A(T)

for E = E (L) + E (T).
Such L and T field separation has been also discussed

by Cho [52], where the scalar potential is reduced from the
Hamiltonian (or Lagrangian) and only the T components, A(T)

and j (T), are included in Maxwell’s equations. The L field,
E (L), is treated as the external field only.

The representation of ( j (T), j (L)) is a modification of
( j, cρ). It may be useful to separate the L and T components
clearly in the source terms. Moreover, Green’s function for
Eqs. (B1) and (B2) is simpler than Eq. (43), as the off-diagonal
components are absent. However, for this representation, the
constitutive Eq. (27) [and the perturbative Hamiltonian (23)]
should be rewritten in terms of ( j (T), j (L)). Then, the suscep-
tibility X̄ must be a 6 × 4 matrix, which is not desirable in
terms of the mathematics.
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APPENDIX C: DERIVATION OF GREEN’S FUNCTION

Green’s function for Maxwell’s equations is defined ac-
cording to the differential operators in the equation, which
corresponds to the matrix D̄(x; ω) in Eq. (39). Therefore
Green’s function Ḡ(x, x′; ω) is the 4 × 4 matrix,

D̄(x; ω)Ḡ(x, x′; ω) = 1̄δ(x − x′). (C1)

Note that D̄(x; ω) is defined as Eq. (40). The formal solution
of Maxwell’s equation is

A(x; ω) = A0(x; ω) − μ0

∫
dx′Ḡ(x, x′; ω)J (x′; ω). (C2)

The first term in Eq. (C2) satisfies

D̄(x; ω)A0(x; ω) = 0. (C3)

To obtain an explicit form, Ḡ is divided into the following
matrix elements:

Ḡ(x, x′; ω) =
(

ḡAA(x, x′; ω) gAφ (x, x′; ω)

g t
φA(x, x′; ω) gφφ (x, x′; ω)

)
, (C4)

where ḡAA is a 3 × 3 matrix, ḡφφ is scalar, and the other
elements are vectors.

We have a mathematical preparation. The solution of

(∇2 + k2)gk (x, x′) = δ(x − x′) (C5)

is given as

gk (x, x′) = − eik|x−x′|

4π |x − x′| . (C6)

Here, we avoid constant and linear terms, α0 + α1 · x, in
Eq. (C6), because of the boundary condition g(|x| → ∞) = 0.

The scalar potential component of Green’s function
satisfies

−∇2gφφ (x, x′; ω) = δ(x − x′), (C7)

the solution of which is given by Eq. (C6) as follows:

gφφ (x, x′; ω) = −g0(x, x′) = 1

4π |x − x′| . (C8)

Further, gφφ gives another matrix element gAφ . From Eq. (C1),

(∇2 + k2)gAφ (x, x′; ω) − ik∇gφφ (x, x′; ω) = 0. (C9)

Here, k = ω/c. By substituting Eq. (C8),

(∇2 + k2)gAφ (x, x′; ω) = ik∇gφφ (x, x′; ω) = − ik

4π

x − x′

|x − x′|3 .

(C10)
This is an inhomogeneous equation, which is related to
Eq. (C5). The solution of gAφ is also obtained using Eq. (C6),
with

gAφ (x, x′; ω) = gk (x) +
∫

dx′′gk (x, x′′)
(

− ik

4π

x′′ − x′

|x′′ − x′|3
)

.

(C11)
The first term satisfies (∇2 + k2)gk (x) = 0. It gives gk (x) =
A0eik·(x−x0 ) with |k| = ω/c. Here, A0 and x0 are constant.
However, this term should be zero because of the boundary
condition at |x| → ∞. Then, we obtain

gAφ (x, x′; ω) = ik

(4π )2

∫
dx′′ eik|x−x′′|

|x − x′′|
x′′ − x′

|x′′ − x′|3 . (C12)

Next, we consider ḡAA and g t
φA. From Eq. (C1), g t

φA satisfies

∇2g t
φA(x, x′; ω) = 0. (C13)

Note that g t
φA is a 1 × 3 row vector. The solution is

g t
φA(x, x′; ω) = {β̄1x + β0}t , where β̄1 and β0 are a constant

matrix and vector, respectively. For the boundary condition,
β0 = 0 and β̄1 = 0, and

g t
φA(x, x′; ω) = 0. (C14)

The last element of Green’s function, ḡAA, satisfies

(∇2 + k2)ḡAA(x, x′; ω) = 1̄δ(x − x′), (C15)

which is equivalent to Eq. (C5), and the solution is

ḡAA(x, x′; ω) = 1̄gk (x, x′) = − eik|x−x′|

4π |x − x′| 1̄. (C16)

Finally, Eqs. (C8), (C14), (C12), and (C16) give Green’s func-
tion in matrix form:

Ḡ(x, x′; ω) = − 1

4π

(
eik|x−x′ |
|x−x′| 1̄ −ik

4π

∫
dx′′ eik|x−x′′ |

|x−x′′ |
x′′−x′

|x′′−x′|3

0 − 1
|x−x′|

)
.

(C17)
This Green’s function provides a picture of the field (poten-
tial) generation due to the electronic excitations (current and
charge densities).

Green’s function in the k-space representation (69) is ob-
tained via a conventional Fourier transformation of Eq. (39).
By applying

O(x; ω) = 1

(2π )
3
2

∫
dkÕ(k; ω)eik·x (C18)

for O = A,J , we find

D̄(x; ω)

{
1

(2π )
3
2

∫
dkÃ(k; ω)eik·x

}

= 1

(2π )
3
2

∫
dk

((−k2 + ω2

c2

)
1̄ ω

c k

0 k2

)
Ã(k; ω)eik·x

= 1

(2π )
3
2

∫
dk(−μ0)J̃ (k; ω)eik·x. (C19)

Hence, Green’s function is

Ḡk(ω) =
(( − k2 + ω2

c2

)
1̄ ω

c k

0 k2

)−1

=
(

1
−k2+ω2/c2 1̄ − 1

k2
1

−k2+ω2/c2
ω
c k

0 1
k2

)
. (C20)

The formal solutions of A = (A,−φ/c) can also be ob-
tained from the separated Maxwell’s equations in Eqs. (36)
and (37). The latter equation gives

φ(x; ω) = φ0(x; ω) + 1

ε0

∫
dx′gφ (x, x′)ρ(x′; ω). (C21)

The scalar Green’s function gφ (x, x′) is equivalent to
gφφ (x, x′) in Eq. (C8). The first term satisfies ∇2φ0(x; ω) = 0.

165408-14



COMPREHENSIVE MICROSCOPIC THEORY FOR COUPLING … PHYSICAL REVIEW B 105, 165408 (2022)

In the Coulomb gauge, however, the T field is described by
A(x; ω) only and, hence, φ0 = 0. The solution of Eq. (36) is

A(x; ω) = A0(x; ω) − μ0

∫
dx′ḠA(x, x′; ω) j(x′; ω) (C22)

with (∇2 + ω2

c2 )A0(x; ω) = 0. Here, the dyadic Green’s func-
tion ḠA for the vector potential is expressed as

ḠA(x, x′; ω)

= gA(x, x′; ω)1̄ +
∫

dx′′gA(x, x′′; ω)∇x′′gφ (x′′, x′)∇x′

= gA(x, x′; ω)1̄ +
∫

dx′′[∇x′′gA(x, x′′; ω)][∇x′gφ (x′′, x′)]

(C23)

with

gA(x, x′; ω) = − ei ω
c |x−x′|

4π |x − x′| . (C24)

For the derivation, Eq. (C21) is substituted and the continuous
equation ∇ · j(x; ω) − iωρ(x; ω) = 0 is used, as the source
term is described by j(x; ω) only in this representation. In
the dyadic Green’s function ḠA(x, x′; ω) in Eq. (C23), gφ is
included, which implies that the L component is related to
the vector potential. This seems strange at first glance, as the
vector potential in Eq. (C22) must satisfy ∇x · A = 0.

To see it, we separate the T and L components of the
current density, j = j (T) + j (L). This is a description in
terms of {(A(T),−φ(L)/c), ( j (T), j (L))}, which is discussed in
Appendix B. The formal solution for Eq. (B1) is given by
gA(x, x′; ω),

A(T)(x; ω) = A(T)
0 (x; ω) − μ0

∫
dx′gA(x, x′; ω) j (T)(x′; ω).

(C25)
Note that Eq. (C25) differs slightly from Eq. (C22) in its
second term on the r.h.s. For the scalar potential, we apply
the continuous relation, iωρ = ∇ · j (L), to Eq. (C21),

φ(L)(x; ω) = 1

iωε0

∫
dx′gφ (x, x′)∇x′ · j (L)(x′; ω). (C26)

The set of Eqs. (C25) and (C26) give the solutions of
Maxwell’s equation for the L-T separation. For the source
term in Eq. (C25), we apply Eqs. (B2), (C26), and the

continuous relation

j (T)(x′; ω)

= j(x′; ω) − j (L)(x′; ω)

= j(x′; ω) − −iω

μ0c2
∇x′φ(L)(x′; ω)

= j(x′; ω) + ∇x′

∫
dx′′gφ (x′, x′′)∇x′′ · j (L)(x′′; ω)

=
∫

dx′′{1̄δ(x′ − x′′) + ∇x′gφ (x′, x′′)∇x′′ ·} j(x′′; ω).

(C27)
Then, Eqs. (C25) and (C22) are equivalent. Note that the last
term can be rewritten as a dyadic function,

∇x′gφ (x′, x′′)∇x′′ · = ←−−−−→
(∇x′∇x′ ·)gφ (x′, x′′). (C28)

As gA(x, x′; ω) depends only on |x − x′|, we find

∇x ·
∫

dx′gA(x, x′; ω) j (T)(x′; ω),

= −
∫

dx′(∇x′ · gA(x, x′; ω)) j (T)(x′; ω),

=
∫

dx′gA(x, x′; ω)(∇x′ · j (T)(x′; ω))

= 0.

This follows the transverse vector potential, ∇x · A = 0.
Therefore the solutions (C21) and (C22) obtained from the
separated Maxwell’s equations have no inquiries.

These treatments of the source term j and the L and T
field components complicate the theoretical framework. In our
four-vector representation, such complexity becomes clear
as the two components (A,−φ/c) of the fields and the two
source components ( j, cρ) are related to each other in matrix
form.

APPENDIX D: DERIVATION OF THE MATRIX FORM OF
SELF-CONSISTENT EQUATION

In this Appendix, we describe the detail derivation and for-
mulation of the matrix form of self-consistent equation from
Eq. (44),

A(x; ω) = A0(x; ω) − μ0

∫
dx′Ḡ(x, x′; ω)J 0(x′; ω) − μ0

∫
dx′

∫
dx′′Ḡ(x, x′; ω)X̄(x′, x′′; ω)A(x′′; ω). (D1)

For the third term in the r.h.s., one substitutes the nonlocal susceptibility X̄(x′, x′′; ω) in Eq. (28), and for the second term, one
uses Eq. (45). By multiplying with (J ν ′μ′ (x))t, (J μ′ν ′ (x))t, and (ϕi(x)et

β ) from the left and integrating by x, one obtains

(h̄ων ′μ′ − h̄ω − iγ )X (−)
ν ′μ′ = Y (0)

ν ′μ′ +
∑
j,α

Uν ′μ′, jαX (A)
jα −

∑
μ,ν

[Kν ′μ′,μνX (−)
νμ + Lν ′μ′,νμX (+)

μν ], (D2)

(h̄ων ′μ′ + h̄ω + iγ )X (+)
μ′ν ′ = Y (0)

μ′ν ′ +
∑
j,α

Vμ′ν ′, jαX (A)
jα −

∑
μ,ν

[Mμ′ν ′,μνX (−)
νμ + Nμ′ν ′,νμX (+)

μν ], (D3)

X (A)
iβ = Y (A)

iβ +
∑
j,α

Riβ, jαX (A)
jα −

∑
μ,ν

[Siβ,μνX (−)
νμ + Tiβ,νμX (+)

μν ]. (D4)
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Here, the factors are defined in Eqs. (53)-(66) in Sec. V A. Note again that the excited states μ indicating an electron-hole
pair include their spin degrees of freedom. α, β takes only x, y, z not φ. The factors, Kν ′μ′,μν , Lν ′μ′,νμ, Mμ′ν ′,μν , and Nμ′ν ′,νμ are
mathematically related. The matrix form of Eqs. (D2)–(D4) is written as

[(h̄�̄ − (h̄ω + iγ )1̄) + K̄]X (−) + L̄X (+) = Y (0,−) + ŪX (A), (D5)

[(h̄�̄ + (h̄ω + iγ )1̄) + N̄]X (+) + M̄X (−) = Y (0,+) + V̄ X (A), (D6)

[1̄ − R̄]X (A) = Y (A) − [S̄X (−) + T̄ X (+)]. (D7)

K̄ and N̄ indicate the resonant and antiresonant radiative cor-
relations, respectively, and L̄ and M̄ describes their couplings.
Here, one introduces an integer N being a cutoff number of
the states and defines the vectors of X (±)

νμ for the fields as

X (±) =

⎛
⎜⎜⎜⎜⎜⎝

X (±)
0

X (±)
1

...

X (±)
N

⎞
⎟⎟⎟⎟⎟⎠ with X (−)

μ =

⎛
⎜⎜⎜⎜⎜⎝

X (−)
0μ

X (−)
1μ

...

X (−)
Nμ

⎞
⎟⎟⎟⎟⎟⎠ ,

X (+)
μ =

⎛
⎜⎜⎜⎜⎜⎝

X (+)
μ0

X (+)
μ1

...

X (+)
μN

⎞
⎟⎟⎟⎟⎟⎠. (D8)

For the incident field Y (0)
νμ ,

Y (0,±) =

⎛
⎜⎜⎜⎜⎜⎝

Y (0,±)
0

Y (0,±)
1

...

Y (0,±)
N

⎞
⎟⎟⎟⎟⎟⎠ with Y (0,−)

μ =

⎛
⎜⎜⎜⎜⎜⎝

Y (0)
0μ

Y (0)
1μ

...

Y (0)
Nμ

⎞
⎟⎟⎟⎟⎟⎠ ,

Y (0,+)
μ =

⎛
⎜⎜⎜⎜⎜⎝

Y (0)
μ0

Y (0)
μ1

...

Y (0)
μN

⎞
⎟⎟⎟⎟⎟⎠. (D9)

Here, Y (0,−) and Y (0,+) correspond to each other by a per-
mutation of the elements. For the vector potential term in the
current X (A)

jα ,

X (A) =

⎛
⎜⎜⎜⎜⎜⎝

X (A)
0

X (A)
1

...

X (A)
M

⎞
⎟⎟⎟⎟⎟⎠ with X (A)

j =

⎛
⎜⎜⎝

X (A)
jx

X (A)
jy

X (A)
jz

⎞
⎟⎟⎠. (D10)

For the incident field Y (A)
jα ,

Y (A) =

⎛
⎜⎜⎜⎜⎜⎝

Y (A)
0

Y (A)
1

...

Y (A)
M

⎞
⎟⎟⎟⎟⎟⎠ with Y (A)

j =

⎛
⎜⎜⎝

Y (A)
jx

Y (A)
jy

Y (A)
jz

⎞
⎟⎟⎠. (D11)

Next, the matrices in Eqs. (D5)–(D7) are defined as fol-
lows. For the energy differences ωνμ,

�̄ =

⎛
⎜⎜⎜⎜⎝

�̄0

�̄1

. . .

�̄N

⎞
⎟⎟⎟⎟⎠ (D12)

is a diagonal matrix with �̄μ = diag(ω0μ, ω1μ,

ω2μ · · · , ωNμ). For the matrices K̄ , L̄, M̄, and N̄ ,

Q̄ =

⎛
⎜⎜⎜⎜⎝

Q̄00 Q̄01 · · · Q̄0N

Q̄10 Q̄11

...
. . .

Q̄N0 Q̄NN

⎞
⎟⎟⎟⎟⎠ (Q = K, L, M, N ) (D13)

with different subscript rules for (N + 1) × (N + 1) block
matrices

K̄μ′μ =

⎛
⎜⎜⎜⎜⎝

K0μ′,μ0 K0μ′,μ1 · · · K0μ′,μN

K1μ′,μ0 K1μ′,μ1

...
. . .

KNμ′,μ0 KNμ′,μN

⎞
⎟⎟⎟⎟⎠, (D14)

L̄μ′μ =

⎛
⎜⎜⎜⎜⎝

L0μ′,0μ L0μ′,1μ · · · L0μ′,Nμ

L1μ′,0μ L1μ′,1μ

...
. . .

LNμ′,0μ LNμ′,Nμ

⎞
⎟⎟⎟⎟⎠, (D15)

M̄μ′μ =

⎛
⎜⎜⎜⎜⎝

Mμ′0,μ0 Mμ′0,μ1 · · · Mμ′0,μN

Mμ′1,μ0 Mμ′1,μ1

...
. . .

Mμ′N,μ0 Mμ′N,μN

⎞
⎟⎟⎟⎟⎠, (D16)

N̄μ′μ =

⎛
⎜⎜⎜⎜⎝

Nμ′0,0μ Nμ′0,1μ · · · Nμ′0,Nμ

Nμ′1,0μ Nμ′1,1μ

...
. . .

Nμ′N,0μ Nμ′N,Nμ

⎞
⎟⎟⎟⎟⎠. (D17)
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For the matrix R̄ related to the vector potential term in the
current,

R̄ =

⎛
⎜⎜⎜⎜⎝

R̄11 R̄12 · · · R̄1M

R̄21 R̄22

...
. . .

R̄M1 R̄MM

⎞
⎟⎟⎟⎟⎠ (D18)

with 3 × 3 block matrices

R̄i j =

⎛
⎜⎝

Rix, jx Rix, jy Rix, jz

Riy, jx Riy, jy Riy, jz

Riz, jx Riz, jy Riz, jz

⎞
⎟⎠. (D19)

For the off-diagonal matrices Ū and V̄ ,

Q̄ =

⎛
⎜⎜⎜⎜⎝

Q̄01 Q̄02 · · · Q̄0M

Q̄11 Q̄12

...
. . .

Q̄N1 Q̄NM

⎞
⎟⎟⎟⎟⎠ (Q = U,V ) (D20)

with (N + 1) × 3 block matrices

Ūμ′ j =

⎛
⎜⎜⎜⎜⎝

U0μ′, jx U0μ′, jy U0μ′, jz

U1μ′, jx U1μ′, jy U1μ′, jz

...

UNμ′, jx UNμ′, jy UNμ′, jz

⎞
⎟⎟⎟⎟⎠, (D21)

V̄μ′ j =

⎛
⎜⎜⎜⎜⎝

Vμ′0, jx Vμ′0, jy Vμ′0, jz

Vμ′1, jx Vμ′1, jy Vμ′1, jz

...

Vμ′N, jx Vμ′N, jy Vμ′N, jz

⎞
⎟⎟⎟⎟⎠ (D22)

and for S̄ and T̄ ,

Q̄ =

⎛
⎜⎜⎜⎜⎝

Q̄10 Q̄11 · · · Q̄1N

Q̄20 Q̄21

...
. . .

Q̄M0 Q̄MN

⎞
⎟⎟⎟⎟⎠ (Q = S, T ) (D23)

with 3 × (N + 1) block matrices

S̄iμ =

⎛
⎜⎝

Six,μ0 Six,μ1 Six,μN

Siy,μ0 Siy,μ1 · · · Siy,μN

Siz,μ0 Siz,μ1 Siz,μN

⎞
⎟⎠, (D24)

T̄iμ =

⎛
⎜⎝

Tix,0μ Tix,1μ Tix,Nμ

Tiy,0μ Tiy,1μ · · · Tiy,Nμ

Tiz,0μ Tiz,1μ Tiz,Nμ

⎞
⎟⎠. (D25)

For the many electrons state (μ, ν = 0, 1, 2, 3, . . . , N),
the size of K̄ , L̄, M̄, and N̄ is (N + 1)2 × (N + 1)2. In case
of zero temperature, the consideration can be reduced due
to ρ0,μ = δμ,0; hence, the matrix size is (N + 1) × (N + 1).
For the separable kernel of delta function, contrarily, if one
considers M bases (i, j = 1, 2, 3, . . . , M), R̄ is 3M × 3M.
Here, the factor 3 comes from α = x, y, and z. In addition,
Ū and V̄ are (N + 1)2 × 3M (or (N + 1) × 3M), and S̄ and T̄
are 3M × (N + 1)2 (or 3M × (N + 1)). Note that the physical
dimension of the matrices is not identical. Hence, one has to
modify the Eqs. (D5)-(D7).

Equation (D7) is deformed as

X (A) = 1

1̄ − R̄
[Y (A) − S̄X (−) − T̄ X (+)]. (D26)

A substitution to Eqs. (D5) and (D6) gives[
(h̄�̄ − (h̄ω + iγ )1̄) + K̄ + Ū

1

1̄ − R̄
S̄

]
X (−)

+
[

L̄ + Ū
1

1̄ − R̄
T̄

]
X (+) = Y (0,−) + Ū

1

1̄ − R̄
Y (A),

(D27)[
M̄ + V̄

1

1̄ − R̄
S̄

]
X (−)

+
[

(h̄�̄ + (h̄ω + iγ )1̄) + N̄ + V̄
1

1̄ − R̄
T̄

]
X (+)

= Y (0,+) + V̄
1

1̄ − R̄
Y (A). (D28)

As a result, one obtains Eq. (46) with Eqs. (47) and (48):

[�̄(ω)]

(
X (−)

X (+)

)
=

(
Z(0,−)

Z(0,+)

)
(D29)

with

�̄ =
[(

h̄�̄ − (h̄ω + iγ )1̄

h̄�̄ + (h̄ω + iγ )1̄

)

+
(

K̄ L̄

M̄ N̄

)
+

(
Ū 1

1̄−R̄
S̄ Ū 1

1̄−R̄
T̄

V̄ 1
1̄−R̄

S̄ V̄ 1
1̄−R̄

T̄

)]
(D30)

and

(
Z(0,−)

Z(0,+)

)
=

(
Y (0,−)

Y (0,+)

)
+

(
Ū 1

1̄−R̄
Y (A)

V̄ 1
1̄−R̄

Y (A)

)
. (D31)

APPENDIX E: RADIATIVE CORRECTION FOR
RECTANGULAR NANOROD

In this Appendix, we summarize the detailed calculations
for the rectangular nanorod discussed in Sec. VI A.

165408-17



TOMOHIRO YOKOYAMA et al. PHYSICAL REVIEW B 105, 165408 (2022)

Single particle wave function for the electron and hole are given by Eqs. (81) and (82).

ψeμ(x) =
√

2

Lx
sin

(
nxπ

Lx
x

)√
2

Ly
sin

(
nyπ

Ly
y

)√
2

Lz
sin

(
nzπ

Lz
z

)
, (E1)

ψhμ̄(x) =
√

2

Lx
sin

(
n̄xπ

Lx
x

)√
2

Ly
sin

(
n̄yπ

Ly
y

)√
2

Lz
sin

(
n̄zπ

Lz
z

)
. (E2)

For these wave functions, the excited charge and current densities at zero temperature, ρ0μ(x) and j0μ(x), are obtained by
Eqs. (83) and (84) with μ = (eμ, hμ̄):

(c/nbg)ρ0μ(x) = (c/nbg)e

LxLyLz

{
cos

((
qn̄x − qnx

)
x
) − cos

((
qn̄x + qnx

)
x
)}{

cos
((

qn̄y − qny

)
y
) − cos

((
qn̄y + qny

)
y
)}

×{
cos

((
qn̄z − qnz

)
z
) − cos

((
qn̄z + qnz

)
z
)}

, (E3)

j (x)
0μ (x) = − eh̄

2ime

1

LxLyLz

[
qn̄x

{
sin

((
qn̄x + qnx

)
x
) − sin

((
qn̄x − qnx

)
x
)} − qnx

{
sin

((
qn̄x + qnx

)
x
) + sin

((
qn̄x − qnx

)
x
)}]

× {
cos

((
qn̄y − qny

)
y
) − cos

((
qn̄y + qny

)
y
)}{

cos
((

qn̄z − qnz

)
z
) − cos

((
qn̄z + qnz

)
z
)}

, (E4)

and similar manner for j (y)
0μ and j (z)

0μ . Here, qnα
= πnα/Lα for α = x, y, and z. Note that an assumed background refractive index

nbg modulates the light velocity to c/nbg. For the calculation, we use the k representation. Then,

(c/nbg)ρ̃0μ(k) = 1

(2π )3/2

∫
dx(c/nbg)ρ0μ(x)e−ik·x

= (c/nbg)e

8LxLyLz

1

(2π )3/2

1

i3

[
2kx

kx
2 − �nx,n̄x

2
− 2kx

kx
2 − Qnx,n̄x

2

][
2ky

ky
2 − �ny,n̄y

2
− 2ky

ky
2 − Qny,n̄y

2

]

×
[

2kz

kz
2 − �nz,n̄z

2
− 2kz

kz
2 − Qnz,n̄z

2

]
(1 − (−1)Nx e−ikxLx )(1 − (−1)Ny e−ikyLy )(1 − (−1)Nz e−ikzLz ), (E5)

j̃ (x)
0μ (k) = 1

(2π )3/2

∫
dx j (x)

0μ (x)e−ik·x

= eh̄

2me

1

8LxLyLz

1

(2π )3/2

1

i3

[
2�nx,n̄x Qnx,n̄x

kx
2 − �nx,n̄x

2
− 2Qnx,n̄x �nx,n̄x

kx
2 − Qnx,n̄x

2

][
2ky

ky
2 − �ny,n̄y

2
− 2ky

ky
2 − Qny,n̄y

2

]

×
[

2kz

kz
2 − �nz,n̄z

2
− 2kz

kz
2 − Qnz,n̄z

2

]
(1 − (−1)Nx e−ikxLx )(1 − (−1)Ny e−ikyLy )(1 − (−1)Nz e−ikzLz ) (E6)

with following definitions: Nα ≡ n̄α + nα , Qnα,n̄α
≡ qnα

+ qn̄α
, and �nα,n̄α

≡ qnα
− qn̄α

. Moreover, we find symmetric relations,
ρ̃μ0(k) = ρ̃0μ(k) and j̃μ0(k) = − j̃0μ(k).

The elements of the radiative correction matrix K̄ in Eq. (85) is

K̃μ′0,0μ = A(2)
μ′,μ(ω) + A(1)

μ′,μ(ω) + A(0)
μ′,μ (E7)

with

A(0)
μ′,μ = μ0

∫
dk(c/nbg)ρ̃μ′0(−k)

(
1

k2

)
(c/nbg)ρ̃0μ(k)

= μ0

(
L0

3

LxLyLz

)2(
2

π

)3 c2e2

π5L0
·
∫ ∞

−∞
dX

∫ ∞

−∞
dY

∫ ∞

−∞
dZ

×(
X 2F̄n′

x,n̄
′
x ;nx,n̄x

(X )
)(

Y 2F̄n′
y,n̄

′
y;ny,n̄y

(Y )
)(

Z2F̄n′
z,n̄

′
z ;nz,n̄z

(Z )
) 1

X 2 + Y 2 + Z2

1

nbg
2
, (E8)

A(1)
μ′,μ(ω) = μ0

∫
dk( j̃μ′0(−k))t

(
− 1

k2

nbgω/c

−k2 + (nbgω/c)2
k
)

(c/nbg)ρ̃0μ(k)

= ηωμ0

(
L0

3

LxLyLz

)2(
2

π

)3 c2e2

π5L0
·
∫ ∞

−∞
dX

∫ ∞

−∞
dY

∫ ∞

−∞
dZ

(
Q̄n′

x,n̄
′
x
�̄n′

x,n̄
′
x
+ Q̄n′

y,n̄
′
y
�̄n′

y,n̄
′
y
+ Q̄n′

z,n̄
′
z
�̄n′

z,n̄
′
z

)

×(
X 2F̄n′

x,n̄
′
x ;nx,n̄x

(X )
)(

Y 2F̄n′
y,n̄

′
y;ny,n̄y

(Y )
)(

Z2F̄n′
z,n̄

′
z ;nz,n̄z

(Z )
) 1

X 2 + Y 2 + Z2

1

(X 2 + Y 2 + Z2) − nbg
2ω̄2

, (E9)
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A(2)
μ′,μ(ω) = μ0

∫
dk

(
j̃μ′0(−k)

)t
(

1

−k2 + (nbgω/c)2

)
j̃0μ(k)

= −ηω
2

ω̄2
μ0

(
L0

3

LxLyLz

)2(
2

π

)3 c2e2

π5L0
·
∫ ∞

−∞
dX

∫ ∞

−∞
dY

∫ ∞

−∞
dZ

× [(
�̄n′

x,n̄
′
x ;nx,n̄x

F̄n′
x,n̄

′
x ;nx,n̄x

(X )
)(

Y 2F̄n′
y,n̄

′
y;ny,n̄y

(Y )
)(

Z2F̄n′
z,n̄

′
z ;nz,n̄z

(Z )
)

+ (
X 2F̄n′

x,n̄
′
x ;nx,n̄x

(X )
)(

�̄n′
y,n̄

′
y;ny,n̄y

F̄n′
y,n̄

′
y;ny,n̄y

(Y )
)(

Z2F̄n′
z,n̄

′
z ;nz,n̄z

(Z )
)

+ (
X 2F̄n′

x,n̄
′
x ;nx,n̄x

(X )
)(

Y 2F̄n′
y,n̄

′
y;ny,n̄y

(Y )
)(

�̄n′
z,n̄

′
z ;nz,n̄z

F̄n′
z,n̄

′
z ;nz,n̄z

(Z )
)] 1

(X 2 + Y 2 + Z2) − nbg
2ω̄2

. (E10)

Here, the functions for the integrands are

F̄n′
x,n̄

′
x ;nx,n̄x

(X ) =
(

1

X 2 − �̄2
n′

x,n̄
′
x

− 1

X 2 − Q̄2
n′

x,n̄
′
x

)(
1

X 2 − �̄2
nx,n̄x

− 1

X 2 − Q̄2
nx,n̄x

)

× 1

4
(1 + (−1)Nx+N ′

x − (−1)Nx e−iπLxX/L0 − (−1)N ′
x eiπLxX/L0 ), (E11)

�̄n′
α,n̄′

α ;nα,n̄α
= Q̄n′

α,n̄′
α
�̄n′

α,n̄′
α
Q̄nα,n̄α

�̄nα,n̄α
. (E12)

F̄n′
y,n̄

′
y;ny,n̄y

(Y ) and F̄n′
z,n̄

′
z ;nz,n̄z

(Z ) are defined in a similar manner for Eq. (E11). The integral variables and several factors are

normalized as dimensionless ones, X = kxL0/π , Y = kyL0/π , Z = kzL0/π , Q̄nα,n̄α
= Qnα,n̄α

L0/π , �̄nα,n̄α
= �nα,n̄α

L0/π , and

ω̄ = ω

c

L0

π
. (E13)

Here, an introduced factor

ηω = π

2

h̄

m∗cL0
ω̄ = 1

m∗/me

h̄ω

2mec2
(E14)

means a relativistic factor. The elements of the matrices L̄, M̄, and N̄ are obtained by Eqs. (86)–(88), respectively.
For the matrices related to the vector potential term in the current, the elements of S̄ in Eq. (90) becomes

S̃m′β,0μ = B(2)
m′β,μ + B(1)

m′β,μ (E15)

with

B(1)
m′x,μ(ω) = μ0

∫
dkϕ̃m′ (−k)

(
− 1

k2

nbgω/c

−k2 + (nbgω/c)2
kx

)
(c/nbg)ρ̃0μ(k)

= −iμ0

(
L0

3

LxLyLz

) 3
2
(

2

π

) 9
2
(

c2e2

π5L0

) 1
2 ωL0

2

cπ2

∫ ∞

−∞
dX

∫ ∞

−∞
dY

∫ ∞

−∞
dZ

(
X 2h̄m′

x ;nx,n̄x (X )
)(

Y h̄m′
y;ny,n̄y (Y )

)(
Zh̄m′

z ;nz,n̄z (Z )
)

× 1

X 2 + Y 2 + Z2

1

(X 2 + Y 2 + Z2) − nbg
2ω̄2

, (E16)

B(2)
m′x,μ(ω) = μ0

∫
dkϕ̃m′ (−k)

(
1

−k2 + (nbgω/c)2

)
j̃ (x)
0μ (k)

= i

(
ηω

ω̄2

)
μ0

(
L0

3

LxLyLz

) 3
2
(

2

π

) 9
2
(

c2e2

π5L0

) 1
2 ωL0

2

cπ2

∫ ∞

−∞
dX

∫ ∞

−∞
dY

∫ ∞

−∞
dZ

(
π̄nx,n̄x h̄m′

x ;nx,n̄x (X )
)(

Y h̄m′
y;ny,n̄y (Y )

)

×(
Zh̄m′

z ;nz,n̄z (Z )
) 1

(X 2 + Y 2 + Z2) − nbg
2ω̄2

. (E17)

Here, the functions for the integrands are

Xh̄m′
x ;nx,n̄x (X ) = Q̄m′

x

X 2 − Q̄2
m′

x

[
X

X 2 − �̄2
nx,n̄x

− X

X 2 − Q̄2
nx,n̄x

]
1

4
(1 + (−1)Nx+m′

x − (−1)Nx e−iπLxX/L0 − (−1)m′
x eiπLxX/L0 ), (E18)

π̄nα,n̄α
= Q̄nα n̄α

�̄nα,n̄α
, (E19)

with a dimensionless factor Q̄mα
= qmα

L0/π . B( j)
m′y,μ(ω) and B( j)

m′z,μ(ω) are obtained in the similar manner. The elements of T̄ , Ū ,
and V̄ in Eqs. (91)–(93) are also given by them.
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Finally, for the matrix R̄, Eq. (94) becomes

Cm′,m(ω) =
(

ω′
p

c/nbg

)2 ∫
d3kϕ̃m′ (−k)

(
1

−k2 + (nbgω/c)2

)
ϕ̃∗

m(k)δαβ

= − L0
3

LxLyLz

(
2

π

)6(
ωp

ω

)2(
ωL0

cπ

)2

·
∫ ∞

−∞
dX

∫ ∞

−∞
dY

∫ ∞

−∞
dZ

(
f̄m′

x ;mx (X )
)(

f̄m′
y;my (Y )

)

×(
f̄m′

z ;mz (Z )
) 1

(X 2 + Y 2 + Z2) − nbg
2ω̄2

(E20)

with

f̄m′
x ;mx (X ) = Q̄m′

x

X 2 − Q̄2
m′

x

Q̄mx

X 2 − Q̄2
mx

× 1

4
(1 + (−1)mx+m′

x − (−1)mx e−iπLxX/L0 − (−1)m′
x eiπLxX/L0 ). (E21)
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