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Tunneling properties in α-T3 lattices: Effects of symmetry-breaking terms
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The α-T3 lattice model interpolates a honeycomb (graphene-like) lattice and a T3 (also known as dice) lattice
via the parameter α. These lattices are made up of three atoms per unit cell. This gives rise to an additional
dispersionless flat band touching the conduction and valence bands. Electrons in this model are analogous to
Dirac fermions with an enlarged pseudospin, which provides unusual tunneling features like omnidirectional
Klein tunneling, also called super-Klein tunneling (SKT). However, it is unknown how small deviations in the
equivalence between the atomic sites, i.e., variations in the α parameter, and the number of tunnel barriers
changes the transmission properties. Moreover, it is interesting to learn how tunneling occurs through regions
where the energy spectrum changes from linear with a middle flat band to a hyperbolic dispersion. In this paper
we investigate these properties, its dependence on the number of square barriers and the α parameter for either
gapped and gapless cases. Furthermore, we compare these results to the case where electrons tunnel from a
region with linear dispersion to a region with a bandgap. In the latter case, contrary to tunneling through a
potential barrier, the SKT is no longer observed. Finally, we find specific cases where transmission is allowed
due to a symmetry breaking of sublattice equivalence.

DOI: 10.1103/PhysRevB.105.165402

I. INTRODUCTION

The probability for a particle to cross potential barriers
even through a classically forbidden region with a tiny proba-
bility is a quantum phenomenon. This counterintuitive aspect
of the transmission takes place when a particle, with some
probability, can create a “tunnel” that enables it to traverse
a potential barrier even when it is higher than the particle
energy. Although such tunneling is not expected in a clas-
sical particle dynamics approach, an analogous effect called
evanescent wave coupling takes place in optics, in which an
electromagnetic wave is transmitted through a region where
the solution of the corresponding wave equation is exponen-
tially decaying. In quantum mechanics, likewise, the tunneling
of a particle can be said to arise due to the coupling of the
propagating solutions of Schrödinger’s equation at either sides
of the potential barrier with decaying solutions in the barrier
region, leading to nonzero transmission probabilities [1].

However, counterintuitive effects emerge in the tunneling
of relativistic particles [2–5]. One example is the total trans-
mission of relativistic particles through large potential steps
at certain values of momentum, which is known as the Klein
paradox [3–5]. Although it was first described by Klein, ex-
perimental realization of a similar effect known as the “Klein
tunneling” (KT), an usual tunneling property characterized by
the suppression of backscattering by potential barriers [6–8],
has only recently been observed [9–12] following the isolation
of stable-single layer (graphene) and bilayer carbon crystals
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where the carbon atoms are arranged on a honeycomb lattice
(HCL) [6,13–15]. Since electrons in graphene at low energy
are well described by the two-dimensional (2D) massless
Dirac equation, i.e., the Dirac-Weyl equation with pseudospin
S = 1/2, graphene boosted the exploration of fundamental
research in 2D materials [16], bridging condensed matter
physics, relativistic quantum mechanics, and quantum field
theory, resulting in the probing of interesting relativistic pre-
dictions, such as KT [6,9–12,15] and Zitterbewegung [17–20].

The KT observed in graphene is strongly related to the
conservation of chirality for carriers in this material and the
nature of its pseudospin [21,22]. Instigated by such unusual
properties lying on the 2D panorama, the search for new
graphene-based materials has been intensified in the past two
decades. Examples of these 2D materials is T3 or dice lattice
[23], Lieb [24], and Kagome [25] lattices. These lattices result
from altering the HCL of graphene by adding an atom at
the center of the hexagons of the unit cell [23–30]. As a
consequence, the charge carriers are described as enlarged
pseudospin Dirac fermions [23,28,31–33] and a flatband ap-
pears touching the top of the valence and the bottom of the
conduction linear bands in the energy spectrum [34,35]. This
flatband has important and unusual effects on the electronic
properties due to its dispersionless nature [33–41].

The α-T3 model interpolates between the HCL and the
dice lattice by varying the parameter α = tan θ , corre-
sponding to the strength between the HCL and the central
site, from α = 0 to α = 1, respectively, with the limiting
cases of the HCL (θ = 0) and the dice lattice (θ = π/4)
[34,38–41]. Unlike graphene, charge carriers in α-T3 lattices
are described as massless Dirac fermions only in the limiting
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case α = 1, i.e., dice lattice. For certain energy conditions,
it presents an angular independent Klein tunneling through
rectangular electrostatic barriers called super-Klein tunnel-
ing (SKT) [32,41]. In addition, an extraordinary Snell law
is found allowing a refracted particle beam to be focused at
one point, such as occurs in a Veselago lens [42–44]. Fur-
thermore, there is a general trend of enhanced transmission
when increasing the α parameter [32,41,45]. Moreover, in the
case of the dice lattice the tunneling is less sensitive to the
number of barriers for certain values of energy [46], whereas
for graphene the number of barriers strongly affects the
tunneling [47].

Nonetheless, for practical electronic applications such as
the fabrication of quantum information devices the creation of
a bandgap is necessary. It was demonstrated that an additional
mass term in α-T3 systems distorts the linear bands around the
Dirac cone and produces an energy gap with a third band in it
which could be flat or dispersive [39,40]. In the present paper
and using the theoretical formalism developed in Ref. [48],
we theoretically study the emergence of SKT and under what
conditions this phenomena is affected when the equivalence
between the sublattices is broken and by increasing the num-
ber of barriers. We find that as a consequence of the enlarged
pseudospin and the symmetry between the three sublattices,
for the dice lattice increasing the number of barriers effects
less the transmission properties for electrons with incident
energy around half the height of the potential and omnidirec-
tional tunneling is observed regardless the number of barriers.
Additionally, we investigate the role of the location of the flat
band in the transmission properties of charge carriers across
potential barriers for particular values of α when different
symmetry-breaking terms are taken into account. In both cases
we find that small deviations in the symmetry between the
sublattices, followed by modifications in the electronic band
structures as discussed in Ref. [48], result in strong modifica-
tions on the nature of wave vectors inside the barriers, conse-
quently, affecting the tunneling properties of charge carriers.
Subsequently, we analyze the transmission of chiral electrons
in α-T3 lattice through a region where the electronic spectrum
changes from linear dispersion to hyperbolic dispersion with
a bandgap and we compare these results with those for HCL
[49]. We highlight that KT is prevented to take place and the
transmission probability is less than 1 for all values of θ for
perpendicular incident angles, although the peaks of resonant
transmission becomes smooth as θ increases and a perfect
transmission is observed for larger values of incident angle.

This paper is organized as follows. In Sec. II, we discuss
the electronic properties of charge carriers in α-T3 lattices,
and how this is affected by small deviations in the atomic
equivalence between the sites. The consequences of the pres-
ence of mass terms on the energy spectrum are discussed
in Sec. III. In Sec. IV, we develop the transfer-matrix ap-
proach to analyze the tunneling of Dirac fermions in α-T3

lattices through a 1D periodic potential. In Secs. V and VI,
we discuss the transmission properties of massless fermions
and the effects of symmetry-breaking on the tunneling prop-
erties. In Sec. VII, we investigate the tunneling through
spatial regions where the energy spectrum of fermions in α-T3

changes from linear to hyperbolic dispersion. Conclusions are
presented in Sec. VIII.

FIG. 1. (a) Illustration of the α-T3 lattice with three atomic sites
(A, B, and C) per unit cell (yellow rhombus) is shown. α = 0 and α =
1 limits correspond to HC (graphene-like) and dice lattices. A − B
and B − C sites are connected by the hopping amplitude t and αt ,
respectively. (b) Low-energy spectrum of massless Dirac fermions in
the α-T3 lattice, composed by a linear dispersion and a flat band.

II. FERMIONS IN α-T3 LATTICE

The low-energy Hamiltonian for the α-T3 model, a crys-
tallographic lattice composed by three atoms per unit cell as
illustrated in Fig. 1(a), around the K point in the first Brillouin
zone can be written as

Ĥkin =
⎛
⎝ 0 fk (τ ) cos θ 0

f ∗
k (τ ) cos θ 0 fk (τ ) sin θ

0 f ∗
k (τ ) sin θ 0

⎞
⎠, (1)

where θ = tan−1 α is the angle that provides a continuous
evolution from the honeycomb graphene-like (α = 0) to the
dice (α = 1) lattice via the parameter α. The tuning parameter
is proportional to the strength of the coupling between B sites
with the additional atoms C at the center of the HCL, as
shown in Fig. 1(a), and the other two atomic sites A and B are
connected by the hopping parameter t . In Eq. (1) we defined
the function fk (τ ) = vF (τkx − iky), with vF = 3a0t/2h̄ the
Fermi velocity, a0 the lattice constant, �k = (kx, ky) the wave
vector, and τ = +1(−1) is the valley index for the K and K ′
valleys, respectively. In the absence of external potentials, the
eigenstates of the Hamiltonian are given by

|�±〉 =
⎛
⎝ cos θeiφk

±1
sin θe−iφk

⎞
⎠, (2)

with eigenvalues E± = ±h̄vF k, where +(−) indicates
the conduction and valence bands, respectively, resulting
in graphene-like conical energy bands. The angle φk =
tan−1(ky/kx ) corresponds to the polar angle associated with
the momentum-vector. In additional to the linear dispersion, a
third energy band, with eigenvalue E = 0, is also found, being
a highly degenerate state, as shown in Fig. 1(b). It is associated
to the flat-band state

|�0〉 =
⎛
⎝ cos θeiφk

0
sin θe−iφk

⎞
⎠, (3)

with eigenvalues that do not depend on the θ parameter, which
affects only the eigenstates.

III. INTRODUCTION OF BAND-GAP

The degeneracy observed at E = 0 in the energy spectrum
shown in Fig. 1(b) is lifted when the equivalence between
the three sublattices is broken, and a gap is introduced into
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FIG. 2. Energy spectrum of Dirac fermions around the K point
for different values of the parameter θ in the α-T3 lattices when (a) the
sublattice symmetry-breaking term Û = Û1 is taken in Eq. (4), and
for the symmetry-breaking term Û = Û2 when (b) θ = 0 (graphene-
like), (c) θ = π/12, (d) θ = π/6, and (e) θ = π/4 (dice).

the energy spectrum. In general, we can include this in the
Hamiltonian by a term Û , as follows:

Ĥ = Ĥkin + �Û , (4)

with the kinetic term Ĥkin given by Eq. (1), and � measures
the strength of the sublattice symmetry breaking. We consider
two different forms of the Û matrix, respectively, given by

Û1 =
⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠, Û2 =

⎛
⎝1 0 0

0 −1 0
0 0 −3

⎞
⎠. (5)

The effects of the inclusion of the terms Û1 and Û2 on the
energy spectrum are shown in Figs. 2(a)–2(e), respectively.

The solution of Ĥ� = E� when Û = Û1 gives the
eigenenergies

E0 = �, E = ±
√

�2 + h̄2v2
Fk2. (6)

Correspondingly, the wave functions in this case are given by

|ψ0〉 =
⎛
⎝ cos θeiφk

0
sin θe−iφk

⎞
⎠, |ψ±〉 =

⎛
⎝α cos θe−iφk

γ

α sin θeiφk

⎞
⎠, (7)

where α = √
E + � and γ = √

E − �.
According to Eq. (6), one obtains an energy spectrum with

a band-gap opening of 2�. It is worth mentioning that the
format of Û2 in Eq. (5) was chosen in order that both sublattice
symmetry-breaking terms Û1 and Û2 give rise to the same
2� band-gap opening. This results in massive Dirac fermions
with an effective mass defined as m = �/v2

F . Since Eq. (6)
does not depend on the parameter θ , the energy spectrum
remains the same for all α-T3 lattices, as shown in Fig. 2(a).
Moreover, as long as the equivalence between the sites A and
C is maintained, the flat band is shifted and touches only the

FIG. 3. Schematic illustration (see top insets) of the wave vectors
in the tunneling process through an electrostatic finite superlattice
formed by rectangular barriers of height V0 and width d . The well
width, i.e., the interbarrier distance, is s − d .

bottom of the conduction band. Notice that now the bottom
of the conduction band and the top of the valence band are
hyperbolic in k.

When we assume Û = Û2 in Eq. (4), the energy dispersion
relation is obtained from a nonlinear equation

(E + 3�)(E2 − �2) − k2(� cos 2θ + E + 2� cos2 θ ) = 0,

(8)

and the eigenstates for the conduction and valence bands are
given by

|ψ〉 =
⎛
⎝α′ cos θeiφk

γ ′

β sin θe−iφk

⎞
⎠, (9)

with α′ = √
(E + 3�)/(E − �), γ ′ =√

(E + � cos(2θ ) + 2� cos2 θ )/(E + �), and β =√
(E − �)/(E + 3�).
Like the previous case, a 2� band-gap opening is still

observed for all values of θ , but now the previous flat band no
longer touches the bottom of the conduction band. In addition,
the dispersion of the middle band depends on the θ parameter,
being flat only when θ = π/4 [dice lattice, Fig. 2(e)]. Note
that for the specific case θ = 0 (graphene-like) the energy
spectra for Û1 [Fig. 2(a)] and Û2 [Fig. 2(b)] differ only by
the localization of the flat band. As we shall discuss later, this
results in similar tunneling properties for both gapped cases
when one-dimensional square potentials are applied to these
systems.

IV. TRANSMISSION THROUGH ONE-DIMENSIONAL
PERIODIC BARRIERS

First, we investigate the transmission probability of
fermions in α-T3 lattice through a finite number N of electro-
static rectangular barriers of constant height V0, width d and
interbarrier distance s − d , as depicted in Fig. 3. We consider
both gapless and gapped cases as obtained from the presence
of sublattice symmetry-breaking terms given by Eq. (5). The
general Hamiltonian taking into account both the presence of
the symmetry-breaking term and electrostatic potential is now
given by

Ĥ = Ĥkin + V (x)Î + �Û , (10)

where Ĥkin is given by Eq. (1), V (x) denotes the super-
lattice potential with translational symmetry breaking along
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the x-direction, and �Û represents the previous sublattice
symmetry-breaking term assumed here by Eq. (5). Due to the
translation invariance in the y direction the wave functions
have the form �(x, y) j = � j (x)eikyy, where the j index is
related to the different potential regions along the x direction
being outside ( j = w) and inside ( j = b) of the barrier. There-
fore, the wave function can be written as

ψ j (x) = Aj√
2

⎛
⎝ α j cos θeiφ j

γ j

β j sin θe−iφ j

⎞
⎠eik j x

+ Bj√
2

⎛
⎝−α j cos θe−iφ j

γ j

−β j sin θeiφ j

⎞
⎠e−ik j x. (11)

The angles φ j = tan−1(ky/k j ) (with j = ω, b) are the angles
associated with the direction of the momentum of the electron
in the regions inside and outside of the potential, as depicted
in the insets of Fig. 3. In addition, the terms α j , γ j , and β j , are
obtained from the eigenstates equation using the Hamiltonian
Eq. (10).

In order to obtain the transmission probability through
electrostatic barriers, we need to solve the scattering prob-
lem by matching wave functions given in Eq. (11) at the
interfaces inside and outside the barrier. We assume potential
variations that are smooth on the length scale of the lattice
constant a0 but sharp on the scale of the Fermi wavelength
λF = 2πvF/|E |.

Writing the wave functions given by Eq. (11) in its general
form as �(x) = [ψA(x), ψB(x), ψC (x)]T and by integrating
the eigenvalue equation Ĥ� = E� over a small interval x =
[−ε, ε], in the limit ε → 0, we obtain the following matching
conditions for the wave function in each region

ψB(−ε) = ψB(ε), (12a)

cos θψA(−ε) + sin θψC (−ε) = cos θψA(ε) + sin θψC (ε).

(12b)

Applying these matching conditions into Eq. (11), we obtain
the transfer matrix for a single barrier

T (1) = Mb(d ) · Mw(0) =
(

w z
z∗ w∗

)
, (13)

where Mb and Mw correspond to the transfer matrix into the
well and barrier, respectively, and are given by

Mb(d ) = �−1
kw

(d )�kb (d ), (14a)

Mw(0) = �−1
kb

(0)�kw
(0), (14b)

with

�k j (x) =
(

γ jeik j x γ je−ik j x

λ jeik j x − λ∗
j e

−ik j x

)
, (15)

and λ j = α j cos2 θeiφ j + β j sin2 θe−iφ j . Using Eqs. (14) and
(15), one can obtain explicitly the terms w and z in Eq. (13)
as

w = 1

a

[
e−i(kw−kb)d (λ∗

wλ∗
b + η1λ

∗
wλw + η2λ

∗
bλb + λwλb)

+e−i(kw+kb)d (λwλ∗
b − η1λ

∗
wλw − η2λ

∗
bλb + λ∗

wλb)
]
,

(16a)

z = 1

a

[
e−i(kw−kb)d(λ∗

wλ∗
b − γ 2

b λ∗
wλ∗

w + γ 2
wλ∗

bλb − λ∗
wλb

)
+e−i(kw+kb)d

(
λ∗

wλb + γ 2
b λ∗

wλ∗
w − γ 2

wλ∗
bλb − λ∗

wλ∗
b

)]
,

(16b)

where a = (λ∗
w + λw )(λ∗

b + λb), η1 = γb/γw and η2 = γw/γb.
Correspondingly, the transfer matrix considering double

barriers with an inter-distance s between them is

T (2) = Mb(2d + s) · Mw(s + d )T (1). (17)

Thus, we can extend this result to N identical barriers, which
is given by the product of transfer matrices:

T (N ) =
N∏

l=1

Mb(l (d + s) − s) · Mw((l − 1)(d + s)). (18)

Once T (N ) is an unimodular matrix and the electron wave
originates from the left of the system in Fig. 3, the trans-
mission probability is obtained as T = 1/|T (N )

22 |2. After some
algebraic calculations, we found the transmission probability
through N barriers as

T = 1

1 + |z|2( sin Nξ

sin ξ

)2 , (19)

where ξ corresponds to the Bloch wave function of the whole
system and is given by

ξ = cos−1[R(w) cos(kw(d + s)) − C(w) sin(kw(d + s))],
(20)

with z given by Eq. (16b), R(w) and C(w) correspond respec-
tively to the real and imaginary terms of w in Eq. (16a).

It is important to highlight that the role of the parameter θ is
built-in in the terms λ j of the matrix in Eq. (15), such as when
we assume the limiting cases θ = 0 and θ = π/4 in the term
λ j , Eq. (15) coincides with that one for dice and graphene, as
discussed in Refs. [37,47].

V. TRANSMISSION OF MASSLESS DIRAC FERMIONS

Initially, we consider the symmetry-breaking free case, i.e.,
taking Ûi = 0 in Eq. (10). The solution of Ĥ� j = E� j in this
case leads to α j = γ j = β j = 1, as can be seen by comparing
Eqs. (11) and Eqs. (2) for the wave functions of the dispersion
bands, and consequently, it implies η1 = η2 = 1 in Eq. (16a).
Moreover, from the secular equation det(Ĥ − E ) = 0 we ob-
tain the wave vectors in the x direction in the well and barrier
regions, kw and kb, respectively as

kw =
√(

E

h̄vF

)2

− k2
y kb =

√(
E − V0

h̄vF

)2

− k2
y , (21)

with the eigenvalues in each region respectively given by

E = ±
√

h̄2v2
F

(
k2
w + k2

y

)
, (22a)

E − V0 = ±
√

h̄2v2
F

(
k2

b + k2
y

)
. (22b)

Figure 4 shows the transmission probabilities using
Eq. (19) for a single barrier as a function of the incident
wave energy E and its transverse wave vector ky for differ-
ent values of the θ parameter: (a) θ = 0, (b) θ = π/12, (c)
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FIG. 4. Transmission probability through a single-barrier in the
(ky, E/V0 ) plane for (a) θ = 0 (graphene-like), (b) θ = π/12, (c)
θ = π/6, and (d) θ = π/4 (dice) in the symmetry-breaking free case
(Û = 0) for barrier height and width assumed as V0 = 0.2 eV and
d = 30 nm, respectively.

θ = π/6, and (d) θ = π/4. The potential height is set to
V0 = 0.2 eV and the barrier width is d = 30 nm. The pos-
sible non-null transmission regions in the (kyd, E/V0) plane
of Fig. 4 can be explained by identifying which modes are
propagating inside and outside the potential barrier. The bor-
ders between these regions are indicated by dashed curves
superimposed on the density plots, where the black and grey
lines correspond to the energy spectrum outside and inside
of the barrier, which are given by Eqs. (22a) and (22b),
respectively. Since wave functions interfere inside the bar-
rier, we observe for all values of θ when E/V0 < 1 the
appearance of resonance peaks marked by T = 1. In ad-
dition, when the incoming wave function is perpendicular
to the barrier, the transmission is total and the barrier is
completely transparent regardless of the potential width and
height, as observed by the red color in the contour plots in
Figs. 4 and 5 for kyd = 0 and φw = 0, respectively. This
perfect transmission at normal incidence is a consequence
of the conservation of the pseudo-spin at scattering on the
barrier, which results in the absence of backscattering of
wave functions, an effect referred as KT, which has been
noted previously for the two limiting cases θ = 0 [21] and
θ = π/4 [38].

We note that for 0 < E/V0 < 0.5 sharp resonances in the
transmission probabilities become softer and less pronounced
as θ increases, leading to a general enhancement trend of
transmission probability for θ �= 0. This result is more evident
in Fig. 5, which shows the transmission probability in the
(φw, E/V0) plane. We observe the broadening of transmission
as θ increases in the energy region 0 < E/V0 < 0.5, indicat-
ing that the barrier becomes more transparent, as depicted
in Fig. 6(a) for a fixed energy E/V0 = 0.25. Furthermore,
the special case θ = π/4 (dice) at E/V0 = 0.5 the barrier
becomes fully transparent leading to an omnidirectional total
transmission, as observed in Figs. 5(d) and 6(b) and discussed
in Refs. [38,41].

FIG. 5. Contour plot of transmission probability through a
single-barrier in the (φw, E/V0 ) plane for (a) θ = 0 (graphene-like),
(b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) for the same
potential parameters as in Fig. 4.

However, as shown in Fig. 5 when the energy of incoming
waves is 0.5 < E/V0 < 1 for all values of θ there is a reduc-
tion of the transmission probability with increasing incident
energy and the transmission curves almost coincide, indicat-
ing that, analogously to the total reflection effect observed in
optics, there is an incident critical angle such that above it
the incident wave function is fully reflected and an evanes-
cent wave function is found inside the potential. This angle
is determined from the conservation of momentum in the y
direction

sin φk = V0 − E

E
sin φq. (23)

Since the condition for total reflection of incoming wave
function is sin φq = 1, the incident critical angle φkc is deter-
mined by

sin φkc = V0 − E

E
. (24)

FIG. 6. Transmission probability through a single barrier as
function of incident angle φw at incident energy values (a) E/V0 =
0.25, and (b) E/V0 = 0.5 for θ = 0 (solid-black curve), θ = π/12
(dotted-magenta curve), θ = π/6 (dashed-red curve), and θ = π/4
(dash-dotted-blue curve) assuming the same potential parameters as
in Fig. 4.
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FIG. 7. Contour plot of transmission probability, shown in the
(φw, E/V0) plane, through a double barrier (N = 2) for (a) θ = 0
(graphene-like), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice)
for the same potential parameters as in Fig. 5 and with a interbarrier
distance of 30 nm.

Note that the critical angles do not depend on the parameter
θ , and the transmission probabilities are almost the same for
E/V0 > 0.5 regardless of θ .

From Eq. (19) we analyze the effects of the number N of
barriers on the transmission probabilities in the (φw, E/V0)
plane. The results for transmission assuming N = 2 and N =
6 are depicted in Figs. 7 and 8, respectively. For all these cases
the interbarrier distance is 30 nm. One notices more resonance
peaks in the transmission as the number of barriers increases
as a consequence of the fact that the wave function interferes
more with itself inside the barriers. Beside that, a perfect
transmission T = 1 for normal or near-normal incidence is
observed, which is a signature of the KT. Unlike graphene-like
and for intermediate values of θ , the increase in the number of
barriers is much less effective for dice when 0 < E/V0 < 1
and the SKT at E/V0 = 0.5 is still observed regardless the
number of barriers, as shown in Figs. 7(d) and 8(d). However,

FIG. 8. The same as Fig. 7, but now for N = 6 barriers.

for incident energies E/V0 > 1 and E/V0 < 0 the effect of the
number of barriers in the transmission is evident for all values
of θ .

Moreover, like the single-barrier case and for 0 < E/V0 <

0.5, as θ increases there is a broadening of the transmission
resonant peaks. Since the increase of the number of barriers
does not affect the nature of pseudospin, which depends only
on the crystal structure, the KT and the SKT, beside the
enhancement of transmission as θ increases, are maintained
regardless the number of barriers.

VI. SYMMETRY-BREAKING EFFECTS INTO
THE TUNNELING PROPERTIES

As discussed in Sec. III, within the low-energy approach,
the presence of small deviations in the equivalence of the
atoms generate a bandgap in the energy spectrum resulting in
charge carriers that are described as massive Dirac fermions.
Now, we shall discuss the tunneling properties of those mas-
sive fermions in α-T3 lattices under the presence of single and
multiple barriers by considering the symmetry-breaking terms
Û1 and Û2 given by Eq. (5).

A. Case Û = Û1

Assuming Û = Û1 in Eq. (10), we obtain the wave func-
tions expressed in Eq. (11) in the barrier and well regions
with αw = βw = √

E + �,αb = βb = √
E − V0 + �, γw =√

E − �, and γb = √
E − V0 − �. The schematic illustration

of this junction is shown in Fig. 9. The wave vectors in the x
direction inside and outside of the barrier are

kw =
√

E2 − �2

h̄2v2
F

− k2
y , (25a)

kb =
√

(E − V0)2 − �2

h̄2v2
F

− k2
y . (25b)

The transmission probability is given by Eq. (19), and the
terms η1 and η2 in Eq. (16a) are

η1 =
√

(E + �)(E − V0 − �)

(E − V0 + �)(E − �)
, (26a)

η2 =
√

(E − �)(E − V0 + �)

(E − V0 − �)(E + �)
. (26b)

FIG. 9. Schematic illustration of the electronic energy spectrum
in the α-T3 lattice considering the inclusion of the symmetry-
breaking term Û1 and the square potential V (x) = V0�(x)�(d − x).
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FIG. 10. Transmission probability through a single
barrier in the (ky, E/V0) plane for (a) θ = 0 (graphene-like),
(b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) by assuming
the symmetry-breaking term as Û = Û1, with sublattice unbalance
strength � = 0.04 eV, for barrier height V0 = 0.2 eV and width
d = 30 nm.

The transmission probabilities for single barrier as func-
tion of (kyd, E/V0), assuming V0 = 0.2 eV, d = 30 nm, and
� = 0.04 eV for different values of θ are shown in Fig. 10.
The nonzero transmission zones are bounded by the energy
levels inside and outside of barrier, corresponding to the grey
and black-dashed curves, respectively. It is clearly seen that
the presence of the sublattice symmetry-breaking induced
bandgap in the energy spectrum lead to a suppression of the
transmission for all values of the parameter θ , as well as the
“fishbone” transmission shape in the energetic region � <

E < 4� is suppressed. Besides, the conservation of chirality
does not take place due to the introduction of small deviation
in the equivalence between the atoms and total transmission
for normal or near-normal incident angles, or equivalently
smaller kyd , is no longer observed indicating that for all values
of θ KT is destroyed, as depicted in Figs. 10 and 11.

However, while the KT is no longer observed, from
Fig. 10(d) one notices perfect transmission when θ = π/4
at 0 < E/V0 < 0.5 for large kyd values, or equivalently for
large incident angles as shown in Fig. 11(d). In fact, when
θ is tuned from the correspondent value of graphene-like to
dice at incident energy E/V0 = 0.25 the transmission curves
tend to exhibit a completely opposite feature: incident waves
nearly parallel to the barrier are completely transmitted, as
shown in Fig. 12(a). On the other hand, for θ = 0 and oblique
incident angles at incident energy E/V0 = 0.5 there is a nar-
row resonance peak, which widens as θ increases, whereas
for dice lattice beyond the broadening of this peak a new total
transmission peak appears for incident angles parallel to the
barrier as noticed in Fig. 12(b). The appearance of this new
peak of total transmission at large values of incident angle
is due to the presence of degenerate states in the electronic
band structure assuming multiples barriers at energies around
E = 0.3V0 at large values of ky, or equivalently to incidence
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FIG. 11. Contour plot of transmission probability through a sin-
gle barrier in the (φw, E/V0) plane for (a) θ = 0 (graphene-like), (b)
θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) for the same system
parameters as in Fig. 10.

angles parallel to the barrier, as shown in Fig. 15, which will
be discussed further in more details.

Figure 13 shows the transmission contour plots considering
now double-barrier systems with the same width and potential
height used in single-barrier case and an interdistance barrier
of 30 nm. Comparing to Fig. 11, we observe that beyond total
reflection of waves for smaller incident angles at E/V0 = 0.5,
the energy scale where there is non-null transmission is re-
duced and for graphene-like and intermediate values of θ there
is no transmission at incident energies close to the value of
�, i.e., E/V0 = 0.2. Nonetheless, for dice lattice the perfect
transmission of waves near-parallel or parallel to barriers is
still observed in the range E/V0 ∈ [0.2, 0.5] and for energies
immediately above the potential energy, i.e., 1.2 < E/V0 <

1.3 a peak of transmission occurs for critical incident angle,
like in the single-barrier case. This result is clear when we an-
alyze the transmission curves in Fig. 14 for incident energies
E/V0 = 1.3 for single and double barriers. While for θ = π/4
and N = 1 there is a peak of total transmission for incident

FIG. 12. Transmission probability through a single barrier as
function of incident angle φw at incident energy values (a) E/V0 =
0.25 and (b) E/V0 = 0.5 for θ = 0 (solid-black curve), θ = π/12
(dotted-magenta curve), θ = π/6 (dashed-red curve), and θ = π/4
(dash-dotted-blue curve) for the same system parameters as in
Fig. 10.
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FIG. 13. Contour plot of transmission probability through a dou-
ble barrier in the (φw, E/V0) plane for (a) θ = 0 (graphene-like),
(b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) when Û = Û1,
V0 = 0.2 eV, � = 0.04 eV, d = 30 nm, and an interbarrier distance
s = 30 nm.

angles around ±10◦, which corresponds to the critical angle
for this value of incident energy. For the other values of θ

the transmission is reduced and falls to zero. Moreover, when
N = 2, beyond the peak of total transmission for dice, there is
a peak of almost-total transmission for θ = π/6.

The perfect transmission at large values of kyd , or incident
angles parallel and near parallel to the barrier, for θ = π/4
as observed in Figs. 11 and 12 is explained when we analyze
Fig. 15(a), where we depict the electronic band structure along
kyd direction of a system consisting of an infinite number of
barriers with the same parameters of potential height, width,
and interbarrier distance used in Fig. 13. We note that for
energies at the interval 0.2 < E/V0 < 0.5 the minibands touch
each other at large values of kyd , indicating the presence of
degenerate states, which is represented by prominent peaks in
the density of states (DOS) at energies around E/V0 = 0.5.

FIG. 14. Transmission probability through a (a) single barrier
(N = 1) and (b) double barrier (N = 2) as function of incident angle
φw at incident energy E/V0 = 1.3 for θ = 0 (solid-black curve),
θ = π/12 (dotted-magenta curve), θ = π/6 (dashed-red curve), and
θ = π/4 (dash-dotted-blue curve) for the same system parameters
as in Fig. 10 and an interbarrier distance of 30 nm for double barrier
system.

(a) (b)

FIG. 15. (a) Electronic band structure along the kyd direction for
θ = π/4 (dice case) superlattices taking the same system parameters
as in Fig. 13. (b) The corresponding DOS of (a) using Eq. (27) is
shown.

The DOS was calculated using

D(E ) =
∑
n,ky

δ(E − En,ky ), (27)

where the sums runs over all states. Therefore, since more
allowed states arise for that particular energy it results in a
peak in the DOS in Fig. 15(b), which leads to an enhancement
of the transmission probability of electrons.

It is interesting to mention similar results were obtained
considering a single potential step for the Lieb lattice in
Ref. [50].

B. Case Û = Û2

For the other symmetry-breaking term denoted by
Û = Û2 in Eq. (10), we have αw = √

(E + 3�)/(E − �),
αb = √

(E − V0 + 3�)/(E − V0 − �), γw =√
(E + � cos(2θ ) + 2� cos2 θ )/(E + �), γb =√
(E − V0 + � cos(2θ ) + 2� cos2 θ )/(E − V0 + �),

βw = √
E − �/(E + 3�), and βb =√

E − V0 − �/(E − V0 + 3�). This system formed by the
square potential barrier and the presence of energy spectrum
considering the symmetry-breaking term Û2 is represented in
Fig. 16.

Consequently, the wave vectors kw and kb are given by

kw =
√

(E2 − �2)(E + 3�)

h̄2v2
F(E + � cos 2θ + 2� cos2 θ )

− k2
y , (28a)

kb =
√

((E − V0)2 − �2)(E − V0 + 3�)

h̄2v2
F(E − V0 + � cos 2θ + 2� cos2 θ )

− k2
y .

(28b)

For this case, the transmission of fermions through N one-
dimensional barriers is obtained using Eq. (19) with η1 and η2

in Eq. (16a) given by

η1 =
√[

E − V0 + � cos 2θ + 2� cos2 θ

E + � cos 2θ + 2� cos2 θ

]
η12, (29a)

η2 =
√[

E + � cos 2θ + 2� cos2 θ

E − V0 + � cos 2θ + 2� cos2 θ

]
η21, (29b)

with η12 = E+�
E−V0+�

and η21 = E−V0+�
E+�

. The transmission
probabilities as function of (kyd, E/V0) for this case are
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FIG. 16. Schematic illustration of the electronic energy spectrum in the α-T3 lattice considering the inclusion of the symmetry-breaking
term Û2 and the square potential V (x) = V0�(x)�(d − x) when (a) θ = 0, (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4.

depicted in Fig. 17. Similar to previous cases, the zones where
waves are able to propagate and therefore the transmission
is non-null are bounded by the energy levels inside and out-
side of the barrier indicated by the grey and black dashed
curves superimposed on the transmission contour plot. As
observed in Figs. 2(a) and 2(b), the energy spectrum for both
symmetry-breaking terms Û1 and Û2 for θ = 0 differs only by
the position of the flat band maintaining the conduction and
valence bands with the same dispersion and position. Since
the dispersionless bands do not contribute to the transmis-

FIG. 17. Transmission probability through a single barrier in
the (ky, E/V0) plane for (a) θ = 0 (graphene-like), (b) θ = π/12,
(c) θ = π/6, and (d) θ = π/4 (dice) when Û = Û2, V0 = 0.2 eV,
� = 0.04 eV, and d = 30 nm.

sion, the effects observed in the tunneling properties for both
symmetry-breaking terms for θ = 0 are similar, as noticed
when we compare Figs. 17(a) and 10(a). However, for θ �= 0
the transmission contour plots are quite different from the
previous gapped case, as depicted in Figs. 17(b)–17(d). We
note that for incident energies 0 < E/V0 < 1 depending on
θ new zones where there is no propagation of waves appear
in the (ky, E/V0) plane. To understand this result we plot in
Fig. 18(a) diagram for the wave vector kb inside the barrier
using the relation given in Eq. (28a) for the same parameters
used in Fig. 17. The blue zones indicate where the trans-
mission is due to propagating waves, i.e., kb is real, in that
case the incoming waves might interfere with itself between
the two interfaces of barrier-well, leading to the transmission
resonances.

When kb is purely imaginary, indicated by the grey zone
in the phase diagram, the transmission is still possible via
evanescent waves but with a reduced amplitude. Furthermore,
the condition to have an evanescent wave is determined by the
incident critical angle, so from the conservation of momentum
in the y direction and using Eq. (28) we get the expression of
a critical incident angle φkc

sin φkc =
√

Eθ

[
((E − V0)2 − �2)(E − V0 + 3�)

(E2 − �2)(E + 3�)

]
, (30)

where

Eθ = (E + � cos 2θ + 2� cos2 θ )

(E − V0 + � cos 2θ + 2� cos2 θ )
. (31)

According to Eq. (30) and as shown in Fig. 19, unlike the gap-
less and previous gapped case, the critical incident angle for
transmission and consequently the condition for evanescent
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FIG. 18. Diagram obtained from the relation given in Eq. (28a)
representing the wave nature inside the barrier plotted in the
(ky, E/V0 ) plane for (a) θ = 0 (graphene-like), (b) θ = π/12,
(c) θ = π/6, and (d) θ = π/4 (dice) when Û = Û2, � = 0.04 eV,
V0 = 0.2 eV, and d = 30 nm. The blue area is the zone of propagat-
ing waves corresponding to a real wave vector kb, the grey area is the
zone where kb is purely imaginary indicating evanescent waves.

or propagating waves depends on the value of θ , indicating
the appearance of new transmission zones as θ is tuned from
graphene-like to dice.

In Fig. 19 we observe at E/V0 = 0.25 that while the trans-
mission probability is nearly perfect for θ = π/12 and θ =
π/4, for θ = π/6 it becomes smaller, as shown in Fig. 20(a).
In addition, in Fig. 20(b) we note that there is no transmission
for θ = π/6 and θ = π/4 at E/V0 = 0.5. we note that there
is no transmission for θ = π/6 and θ = π/4 at E/V0 = 0.5.
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FIG. 19. Contour plot of transmission probability through a sin-
gle barrier in the (φw, E/V0) plane for (a) θ = 0 (graphene-like),
(b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) when Û = Û2,
V0 = 0.2 eV, � = 0.04 eV, and d = 30 nm.

FIG. 20. Transmission probability through a single barrier as
function of incident angle φw at incident energy values (a) E/V0 =
0.25, and (b) E/V0 = 0.5 for θ = 0 (solid-black curve), θ = π/12
(dotted-magenta curve), θ = π/6 (dashed-red curve), and θ = π/4
(dash-dotted-blue curve) when Û = Û2, V0 = 0.2 eV, � = 0.04 eV,
and d = 30 nm.

To understand these results we analyze the regions where
the transmission is allowed from the diagram in Fig. 18.
Where for θ = π/6 and θ = π/4 at E/V0 = 0.5 the incident
waves are localized in the grey zone of Fig. 18, and therefore
are evanescent waves, and consequently the transmission is
zero. On the other hand, for θ = π/12 at this same value of
incidence energy E/V0 = 0.5 the transmission is almost per-
fect since the incident waves are propagating waves regardless
the initial momentum ky, as shown in Fig. 18(b).

Furthermore, for double-barrier systems assuming
graphene-like and intermediate values of θ , the transmission
is in general reduced for large incident angles and there are
more resonant peaks, as shown in Fig. 21. However, for
dice lattice we observe the enhancement of the transmission,
which is almost perfect for all values of incident energy
0.2 < E/V0 < 0.4 and large values of incident angle, as
shown in Fig. 21(d).
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FIG. 21. Contour plot of transmission probability through a
double-barrier in the (φw, E/V0) plane for (a) θ = 0 (graphene-like),
(b) θ = π/12, (c) θ = π/6, and (d) θ = π/4 (dice) when Û = Û2,
V0 = 0.2 eV, � = 0.04 eV, d = 30 nm, and interbarrier distance
s = 30 nm.
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FIG. 22. Schematic illustration of the electronic energy spectrum
in α-T3 lattice at different spatial regions. In region II (0 � x � d),
there is a bandgap in the energy spectrum induced by the presence of
the symmetry-breaking term �Ûi = Û1.

VII. TUNNELING THROUGH SPATIAL REGIONS
OF FINITE MASS

Now we investigate the tunneling properties of electrons in
α-T3 lattices when we assume a region where the electronic
spectrum changes from the usual linear dispersion to a hyper-
bolic dispersion, due to the presence of a gap originating from
the presence of the symmetry-breaking term Û1, as depicted
in Fig. 22. The transmission expression is obtained in a
similar way as in previous section. The wave function �(x)
corresponding to eigenstates with linear dispersion in region I
and III depicted in Fig. 22 is

ψ (x)I,III = A√
2

⎛
⎝ cos θeiφk

1
sin θe−iφk

⎞
⎠eikxx

+ B√
2

⎛
⎝− cos θe−iφk

1
− sin θeiφk

⎞
⎠e−ikxx. (32)

Consequently, the wave function in region II corresponding
to the hyperbolic and gapped energy spectrum at 0 � x � d
is given by

ψII (x) = A′
√

2

⎛
⎝ α cos θeiφq

γ

α sin θe−iφq

⎞
⎠eiqxx

+ B′
√

2

⎛
⎝−α cos θe−iφq

γ

−α sin θeiφq

⎞
⎠e−iqxx, (33)

The incident angles into the different regions with lin-
ear dispersion and bandgap are φk = tan−1 ky/kx and φq =
tan−1 ky/qx, respectively, with momentum along the x direc-
tion given by

kx =
√

E2

h̄2v2
F

− k2
y , qx =

√
E2 − �2

h̄2v2
F

− k2
y . (34)

Using the matching conditions in Eq. (12) and the same pro-
cedure to get the transfer matrix in Eq. (13), we determine the
transmission probability through the spatial regions of finite
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FIG. 23. Transmission contour plots as function of kyd of elec-
trons in α-T3 lattice through a spatial region that begins at x = 0
and width d = 30 nm where there is a bandgap 2� in the en-
ergy spectrum induced by the presence of the symmetry-breaking
term �Ûi = Û1 with � = 0.1eV and for (a) θ = 0, (b) θ = π/12,
(c) θ = π/6, and (d) θ = π/4.

mass using the relation T = 1/|T (1)
22 |2:

T = 1

akaq
[ei(kx+qx )d (�k�

∗
q − η1�k�

∗
k − η2�q�

∗
q + �∗

k�q)

+ ei(kx−qx )d (�k�q + η1�k�
∗
k + η2�q�

∗
q + �∗

k�
∗
q )],

(35)

where � j = cos2 θeφ j + sin2 θe−φ j , a j = � j + �∗
j with j =

k and j = q denoting the linear energy spectrum and gapped
regions, respectively. In that case η1 = √

(E − �)/(E + �)
and η2 = √

(E + �)/(E − �).
Figure 23 shows the transmission probabilities plotted in

the (kyd, E/2�) plane for different θ , using d = 30 nm, and
� = 0.1 eV, resulting in a bandgap opening of 2� = 0.2 eV
into region II . Since our motivation is to compare the trans-
mission results obtained in this section to the previous one
assuming transmission through potential barriers, here we
assume a bandgap with the same energy of that height of
potential used in the previous sections.

The energy spectrum in the different regions, i.e., in the
region with linear dispersion and in the region with hyperbolic
dispersion are indicated by dashed curves superimposed on
the contour plots. We note that due to the band-gap open-
ing in region II , when incident energies are inside the gap
−0.1 < E < 0.1 the transmission is exponentially small and
for kyd = 0 the transmission T < 1. Unlike the case of tun-
neling through barriers discussed in Sec. V, there is absence
of KT. Moreover, beyond the enhancement of the transmission
as θ increases, the transmission curves are almost the same as
incident energy increases only for smaller incident angles φk ,
as observed in Fig. 24. From Fig. 24 we observe, in general,
that there is a broadening of transmission curves for greater
values of θ , like the barrier system case. However, for ener-
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FIG. 24. Transmission probability as function of incident angle φk , and incident energy (a) E = 0.15 eV, (b) E = 0.20 eV, (c) E = 0.30 eV
for θ = 0 (solid-black curve), θ = π/12 (dotted-magenta curve), θ = π/6 (dashed-red curve), and θ = π/4 (dash-dotted-blue curve) when
Û = Û1 in the region II in Fig. 22 with � = 0.1 eV and d = 30 nm.

gies E < 2�, which is analogous to incident energies bellow
the potential barrier in the previous sections, the number of
peaks in the transmission curves is the same regardless of the
parameter θ , as shown in Fig. 24(a). In addition, the trans-
mission continues to be enhanced even for incident energy
above the band-gap energy 2�, as represented in Figs. 24(b)
and 24(c). This result is opposite to the one observed for
tunneling through potential barriers, where the transmission
is reduced for energies above the one associated to the critical
angle. Besides, the difference between the transmission curves
as θ is tuned from graphene-like to dice is more evident for
values E > 2�, as shown in Fig. 24(c), where for θ = π/4
the transmission curve is more smooth for larger values of φk .

VIII. CONCLUSIONS

In summary, using the transfer matrix approach, we inves-
tigated the tunneling properties in α-T3 lattices of electrons
across square barriers and through regions of space where the
energy spectrum has a finite bandgap. For tunneling across
one-dimensional square barriers, we consider both the case of
equivalence between the three sublattices, and the ones where
bandgaps originate due to small deviations of this equivalence
by including symmetry-breaking terms. We also investigated
tunneling of electrons from regions with a linear to a hyper-
bolic dispersion.

For the massless Dirac fermion case, when no symmetry-
breaking terms are present, besides a general trend of
enhanced transmission with increasing α, KT at normal
incidence is found for all values of θ , regardless the number of
barriers. At oblique incidence, the transmission increases with
increasing θ . For a particular case, E/V0 = 0.5 and θ = π/4
(dice), an omnidirectional transmission is observed, which
is called super-Klein tunneling (SKT) effect, and preserved
regardless of the number of barriers. Although the increase
in the number of barriers gives rise to additional resonances
in the transmission for all values of θ , this increase is much
less pronounced for the dice lattice, whereas for a graphene-
like lattice the transmission probability is strongly modified.
Moreover, we found that, similar to total reflection in optics,
above an incident angle φk there is total reflection of the
incident wave functions. This critical angle depends only on
the incident energy and potential barrier and remains the same

for all values of θ . Our findings concerning the robustness of
the omnidirectional transmission observed at E = 0.5V0 for
the dice lattice was also predicted in Ref. [40] using the WKB
method.

The presence of an additional symmetry-breaking term in
the Hamiltonian distorts the linear dispersion around the Dirac
point and changes the location of the flat band, whose occur-
rence depends on the deviation of the equivalence between
the three sublattices. The symmetry-breaking term destroys
the KT and SKT in the α-T3 model. It is demonstrated that
the additional term in general suppresses the transmission
probabilities for both cases Û1 and Û2. When the flat band
is located at the band edge, i.e., when Û1 = diag(1,−1, 1),
resonant tunneling is considerably suppressed and at incident
energies 0 < E/V0 < 0.5 the transmission is perfect for larger
values of incident angle, as a consequence of the presence of
degenerate states around large values of ky observed from the
electronic band structure. In addition, when we consider the
double-barrier system at E/V0 = 0.5, unlike the single barrier,
the transmission is reduced for smaller φw, and perpendicular
or near-perpendicular incident wave functions are totally re-
flected.

When Û2 = diag(1,−1,−3), since the nature of wave vec-
tor kb inside the potential depends on the coupling parameter
we note that for 0 < E/V0 < 1 and intermediate values of θ

new zones with total reflection of the wave function appears
as θ is tuned from graphene-like to dice, indicating the strong
relation between the transmission properties and both location
and distortion of the energy band inside the gap. However,
the transmission probabilities are much less affected by an
increase of the number of barriers as θ increases.

We also discussed the tunneling properties of electrons
in α-T3 lattices when they traverse a region of space where
the spectrum exhibits a finite energy gap. In the case
we considered here, the gap is induced by inclusion of
a symmetry-breaking term Û1, rendering the sublattice C
nonequivalent. The consequence is the opening of a gap in
the energy spectrum. We have shown that the existence of an
energy gap prevents the KT and SKT from taking place for all
values of θ , and the transmission for perpendicular or near-
perpendicular waves are less than 1, unlike the transmission
through a potential barrier. Moreover, at larger values of inci-
dent energy we noted a broadening of the transmission curves
as θ increases. For dice the transmission peaks are smoothed
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as incident energy increases, and at large incident angles the
transmission is perfect as a consequence of degenerate states
at large values of ky, as observed in the potential barrier case
when the Û1 term was considered.

The results obtained in this paper are useful to understand
the effects in the transmission properties due to small devia-
tions in the equivalence between the three sublattices in α-T3

lattices, as well as the role of location and dispersion of the
band inside the gap in the occurrence of KT and SKT. We
discussed a versatile engineering to control and prevent the
SKT and KT, which is a necessary condition for nanoelec-
tronic applications, by changing the symmetry between the

atomic sites of the crystal and consequently, controlling the
dispersion of the middle band.
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