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Acoustic resonators: Symmetry classification and multipolar content of the eigenmodes
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Acoustics recently became a versatile platform for discovering novel physical effects and concepts at a
relatively simple technological level. In this way, single resonators and the structure of their resonant modes play
a central role and define the properties of complex acoustic systems such as acoustic metamaterials, phononic
crystals, and topological structures. In this paper, we present a powerful method allowing a qualitative analysis
of eigenmodes of resonators in the linear monochromatic acoustic domain based on multipole classification
of eigenmodes. Using the apparatus of group theory, we explain and predict the structure of the scattered
field knowing only the symmetry group of the resonator by connecting the multipolar content of incident and
scattered fields. Such an approach can be utilized for developing resonators with predesigned properties avoiding
time-consuming simulations. We performed full multipole symmetry classification for a number of resonators
geometries and tightened it with scattering spectra profiles.
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I. INTRODUCTION

Studying acoustic resonators is essential both for many
technological applications and for fundamental research de-
veloping acoustic metamaterials with established properties
[1–9], various optomechanical systems [10,11], topological
insulators [12,13], and achieving bound states in the contin-
uum [14,15]. One of the most important characteristics of any
resonator is its eigenmode spectrum and their field structure.
Commonly, they are examined with full-wave numerical sim-
ulations, while analytical solutions can be obtained solely for
a limited number of resonator shapes. A spherical scatterer
is one of the examples and the plane-wave scattering on an
arbitrary size sphere [16,17] was considered for the first time
more than 150 years ago by Clebsch [18] and Lorentz [19] for
elastic waves, which in electro-magnetic theory is well known
as Mie scattering [20]. However, the unified description of
eigenmodes in an acoustic resonator of arbitrary shape has
not been made so far. In solid-state physics, quantum chem-
istry, optics, and elastodynamics a powerful method based
on group theory analysis has been widely utilized [21–28].
The mode structure is defined solely by the symmetry of the
system and can be classified by the irreducible representations
(irreps) of the system’s symmetry group. The symmetry of
the eigenmodes can also give an answer on which modes are
involved in physical processes such as linear and nonlinear
wave scattering, also referred to as selection rules [29–35].
We build our approach on multipole decomposition of acous-
tic waves. Generally, the multipole expansion is actively used
in nanophotonics [36–39] and demonstrated that it can be
effectively used for predicting the optical properties of sub-
wavelength resonators. In acoustics the multipole approach
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was also well known for decades, but drew much attention
recently gaining a second wave of popularity [40–50], en-
abling effective control over the wave-propagation directions
and radiation reaction forces [11,51–56].

In our paper, we provide classification and multipole ex-
pansion of an acoustic resonators’ eigenmodes of various
symmetry, as well as its application to the acoustic scattering
(see Fig. 1). We hope that this work will bring a beneficial
addition to the growing body of literature that employs group
theory to analyze the elastodynamics of complex systems of
various levels of geometrical symmetry [28,57–59]. Through-
out this work we will discuss only longitudinal acoustic
pressure waves in a monochromatic domain [60]. Inspired by
the recent progress in nanophotonics, we will operate in terms
of a spherical harmonics (multipoles) basis analyzing their
symmetry [61–64], which could be even simpler and more
efficient due to the scalar origin of fields. We show how to
connect the symmetry of the resonator with the particular mul-
tipolar components of each eigenmode. Based on this, one can
immediately interpret and predict the scattering spectra, direc-
tivity of the scattering, and even acoustics forces acting on res-
onators due to the interaction with an arbitrary incident wave.

The paper is constructed as follows. In Sec. I we give an
introductory part, which designates the paper’s place in the
current state of linear acoustics and optics. In Sec. II we give
some helpful basis of group theory, which is necessary for
the understanding of the main results. In Sec. III we apply
our analysis to a particular case of D3h symmetry group res-
onators, which can be similarly applied to other symmetries.
Then we discuss, what happens with the eigenmodes when
lowering the symmetry. In Sec. IV we discuss an influence of
the resonators’ symmetry on the cross section of the scattered
wave. Finally, in Sec. V we compare it with the case of optical
resonators, while demonstrating some similarities and dissim-
ilarities, eventually revealing ways of better understanding
both types of scattering and other processes.
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FIG. 1. The general approach and step-by-step algorithm to anal-
ysis of acoustic resonators modes suggested in this work.

II. BASICS OF GROUP SYMMETRY AND ACOUSTIC
MODES ANALYSIS

In our work, we discuss a system with a particular symme-
try, i.e., an acoustic resonator or scatterer with a symmetric
shape. We will show how symmetry provides information
about eigenmodes and their multipolar content. For better
understanding of the theory a brief summary of several topics
is presented below. Here we will introduce the concepts of
irreducible representation, functions transformed under irre-
ducible representation (basis of the representation), spherical
harmonics, multipole expansion, and Wigner theorem.

A. Group and representation theory

Group is a set equipped with a binary operation that holds
three axioms: associativity, identity, and invertibility. The
following study focuses mainly on the systems’ symmetry
groups that consist of the elements that transform the system
to itself, i.e., symmetry operations [66]. Group elements are
symmetry operations: rotations and reflections of the res-
onator. A representation of a group G on a vector space V
is a homomorphism T of G to the group of automorphisms of
V : GL(V ) [67]

T : G → GL(V ).

In simpler words, group representation is a matrix group
with square matrices, where we assign a matrix D(g) to
each element g ∈ G such that D(g1g2) = D(g1)D(g2), i.e., the
matrices satisfy the group’s multiplication table [23]. Rep-
resentation is considered irreducible if there is no nontrivial
invariant subspace in space V [22,23]. In other words, all
matrices D(g) of any representation can be simultaneously
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FIG. 2. The real spherical functions Yp�m(θ, ϕ) up to � = 4. At
the top of the line the color shows the value of the function depending
on the angles θ, ϕ, the graph is shown on the sphere. At the bottom
the radius of the sphere is deformed in proportion to the modulus of
the function value.

reduced (by a linear basis transformation) to a block-diagonal
form, which consists of irreducible blocks that turn out to be,
in fact, irreducible representations of that group [23].

The term set of functions ψi(r) transforming through each
other under the irreducible representation (or the basis of
representation) describes that after the group element action
(rotations or reflections in out case) functions are transformed
to the particular linear combinations of themselves (from the
same set)

ψi(g
−1r) =

∑
j

D ji(g)ψ j (r). (1)

To illustrate it, let us introduce spherical harmonic functions
also referred to as multipoles. A real form in terms of complex
spherical harmonics (Fig. 2) is set as [53,68]

Yp�m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i√
2

[
Y −m

� − (−1)mY m
�

]
p = o,

Y 0
l m = 0,
1√
2

[
Y −m

� + (−1)mY m
�

]
p = e.

(2)

Spherical functions with a particular � are basis functions
of 2� + 1-dimensional irreducible representation of the rota-
tion group of sphere SO(3), therefore under an arbitrary angle
rotation they transform into the linear combination of functions
with the same � (Fig. 3) [65].

The results of our work are based on a Wigner’s theorem
[69]. It is formulated as follows:

H(r)ψ (r) = εψ (r). (3)

Suppose that an eigenvalue equation, describing a system,
is invariant under the transformations of a symmetry group,
then the eigenfunctions are transformed under irreducible
representations of the group.
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FIG. 3. Spherical functions with � = 1 transforming through
each other under the three-dimensional irreducible representation.
For complex form of spherical harmonics D(g) matrix can be ob-
tained using Wigner D-matrixes [65].

In other words, each eigenvalue ε corresponds to a par-
ticular irrep, and functions ψ (r), which transform through
each other under a particular irrep, correspond to the same
eigenvalue.

Let us apply this formalism to the linear acoustics in
the monochromatic domain with frequency ω. The main
variables are pressure p = p(r, ω) and velocity v = v(r, ω)
fields which satisfy iωβp = ∇ · v (the equation of con-
tinuity or mass conservation law) and iωρv = ∇p (the
linearized Navier-Stokes equation) [70–72]. Throughout this
paper we use complex amplitudes p, v which are con-
nected with the real observable fields p, v as [p, v](r, t) =
Re([p, v](r, ω)e−iωt ). The medium is characterized by com-
pressibility β = β(r) and density ρ = ρ(r). As a consequence
of the master equations, the pressure field satisfies the equa-
tion

−c2(r)∇2 p = ω2 p, c(r)2 = 1

β(r)ρ(r)
, (4)

here c(r) is the coordinate-dependent speed of sound and
the operator H(r) ≡ −c2(r)∇2. For part of space in which
c(r) = const.(r) Eq. (4) reduces to the well-known Helmholtz
equation. Here we neglected an extra term, which takes place
due to the ∇ρ �= 0 (see Appendix A). This can be done once
the boundary conditions are carefully considered.

From the Wigner’s theorem it immediately follows that the
degree of degeneracy of an eigenmode equals the dimension
of the corresponding irreducible representation. One of the
simplest examples of this approach is that the angular depen-
dence of the each spherical resonator’s mode can be portrayed
as a particular spherical function (Fig. 2) [23], while modes
with identical � are (2� + 1)-degenerate.

B. Multipole expansion of resonators’ eigenmodes

While the eigenmodes of a spherical resonator are defined
by only one spherical harmonic, the situation becomes much
more complex for the resonators of an arbitrary shape. Now
their modes cannot be defined by a specific spherical har-
monic, but rather can be decomposed over a multipoles’ set.
At this stage, defining the multipole content becomes a com-
plex numerical problem, however, one immediately identifies
it using Wigner’s theorem. Indeed, the modes’ behavior under
all symmetry transformations defines under which irreducible

representation it transforms. Now the multipoles contained
in the mode should only belong to the same irreducible
representation. Thus, one needs to know under which irrep
of the resonator’s symmetry group each spherical harmonics
transforms.

III. THEORY AND RESULTS OF MULTIPOLE EXPANSION

A. Multipole analysis using group theory

If there is an acoustic resonator with a defined symmetry,
then the equation describing the system is invariant under the
symmetry transformations of the group. Any finite resonator
can be considered as a perturbation of a spherical resonator
[73,74]. Its eigenmodes can be compounded of the sphere’s
eigenmodes.

In this section, we restrict ourselves to assessing the hard
boundary condition ∂n p|∂� = 0 at the resonator surface. Alter-
natively, the radiative, Sommerfeld-type boundary condition
at r → ∞ can also be assessed. Such open resonators appear
when one ponders scattering problems. However, from the
symmetry point of view they will provide the same result: the
symmetry of the eigenmodes and their multipolar content will
be the same.

Let us consider a particular eigenmode of an acoustic res-
onator which is described by a complex amplitude of pressure
p(r, ω). We can write a multipole decomposition as a sum of
scalar spherical functions [75]

p(r, ω) =
∑
p,�,m

bp�m(r, ω)Yp�m(θ, ϕ), (5)

where the summation is taken over all the indexes as follows:∑
p,�,m ≡ ∑

p=e,o

∑∞
�=0

∑�
m=−�, r = |r| is the magnitude of

the radius vector, θ is the polar angle, and ϕ is the azimuthal
angle in the spherical coordinate system (see the inset in
Fig. 2). Indeed, the real spherical functions form a basis in
space with scalar product given as integral of the solid angle

〈Yp�m|Yp′�′m′ 〉 =
∫

4π

Yp�mYp′�′m′d� = δ
p′�′m′
p�m , (6)

where δ
p′�′m′
p�m is a Kronecker delta,

∫
4π

d� ≡∫ 2π

ϕ=0

∫ π

θ=0 sin θdθdϕ. The multipole content of the mode (set
of the nonzero bp�m) can fully describe the mode properties,
however, we leave the discussion of the multipole series’
convergence and accuracy out of the scope of this paper
saying that the precision is high enough for our purposes. We
refer the reader to [76] where the numerical investigation of
this problem is presented.

According to the Wigner theorem a specific eigenmode
p(r, ω) is transformed under particular irreducible representa-
tion of the resonator’s symmetry group. Thus, in the expansion
(5), only spherical functions which are transformed under this
irreducible representation are presented. There cannot be any
spherical functions transformed under different representa-
tion in the expansion. Accordingly, the problem of multipole
expansion of eigenmodes of the resonator is reduced to
determining from symmetry considerations under which ir-
reducible representation a particular mode is transformed
and finding a set of spherical harmonics Yp�m, transformed
through each other under the same one. To find such a set, the
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FIG. 4. (a) Character table for symmetry group D3h group.
(b) Table of multipole composition of eigenmodes for a closed
acoustic resonator of symmetry group D3h: examples of modes trans-
formed under particular irreducible representation (first column) and
their multipolar content (third column).

projection operator on the irreducible representation is intro-
duced P̂α [77,78]:

P̂α = nα

|G|
∑

g

χ∗
α (g)D̂(g), (7)

where |G| is the order of the group, g is the group element, α

is the number of irrep, nα is the dimension of irrep, χ∗
α (g) is

the character of g, and D̂(g) is the transformation operator.
The operator P̂α projects arbitrary basis functions onto a

linear combination of functions which are transformed un-
der particular irreducible representation α [79]. Commonly,
this procedure allows for the identification of the basis func-
tions. However, for the case of the spherical functions set
we can simply use the already obtained results and address
the ready-made character tables [64,80]. With this, knowing
that a particular eigenmode transforms under irrep α, one
can immediately determine the multipole composition of this
mode by simply finding the spherical functions, which are also
transformed under the same irrep α. This set will determine
the nonzero components in the expansion Eq. (5). For the
resonators of D3h symmetry, the multipolar content is shown
in Fig. 4. The first column shows the results of numerical
simulation obtained using an eigenmode solver in COMSOL

MultiphysicsTM, where the color denotes the acoustical pres-
sure at the surface of the resonator.
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FIG. 5. Illustration of the analysis of the multipole composition
of a particular eigenmode of a closed resonator. The integration of
the pressure function of the eigenmode multiplied by the spherical
function was performed over an auxiliary sphere inside the structure.
The nonzero value of the integral (filled colored cells in the table)
indicates that such a spherical function is included in the eigenmode
expansion with a certain coefficient.

B. Numerical simulations

The group theory approach provides the nonzero multipole
coefficients in the expansion Eq. (5). The quantitative analysis
of these coefficients is usually carried out by direct multipole
decomposition of the modes of open resonators [62]. Here, for
the closed resonator under consideration, we are rather inter-
ested in testing the predicted nonzero multipole components
based on the numerical simulations. For that, we numerically
compute the pressure distributions of the eigenmode p(r, ω)
inside the resonator with the help of commercially available
COMSOL MultiphysicsTM software. Then, the eigenmode func-
tion is multiplied by spherical harmonics Yp�m and integrated
over a spherical surface embedded inside the resonator and
with the center matching the resonator center of symmetry as
shown in Fig. 5:

〈p|Yp�m〉 =
∑

p′,�′,m′
bp′�′m′

∫
4π

Yp′�′m′Yp�md�

=
∑

p′,�′,m′
cp′�′m′δ

p′�′m′
p�m = bp�m. (8)

A nonzero result of the integration represents the fact that
the spherical function is included to the eigenmode expansion
(see Fig. 5 for a particular eigenmode of a prism resonator).
The result will depend on the size of the sphere, however, we
are interested in the zero values of the coefficients due to the
symmetry restriction, which will stay zero for any sphere size.

Figure 6 summarizes the results of the symmetry analysis
for different eigenmodes of D3h group symmetry. It shows
that for each eigenfrequency coefficients deviate from zero
in one representation only. Moreover, there are degenerated
modes in two-dimensional representations: two lines corre-
spond to a single frequency and coefficients are in blocks
or in a checker-board pattern. While finding the degenerate
modes, the numerical solver often selects them in an arbitrary
manner, however, by slightly violating the symmetry, we can
force it to select a particular linear combination. The case of
the checkerboard positioning corresponds to the case, where
in each line every spherical function is either odd or even
(Fig. 7), therefore one of the two degenerate modes is even
when reflected in the y = 0 plane, and the second one is
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FIG. 6. A part of the infinite table of coefficients at spherical
functions for the symmetry group D3h. On the vertical axis, the
product of the wave vector k of eigenmodes by the height h of
the prism is given. The color saturation corresponds to the value
of the coefficient bp�m in the expansion. The checkerboard ar-
rangements correspond to degenerate modes transformed under
two-dimensional representations of E ′, E ′′. The length of the hori-
zontal base of the prism (object of symmetry group D3h) is 44.68 mm
and its height is 50 mm. However, geometrical properties are unim-
portant to this end.

odd. The chequerwise distribution can be achieved artificially
by stretching the shape out along the x-axis. In this case
the modes would not be truly degenerated due to the lower
symmetry of the system, but their frequencies would be close
enough.

C. Eigenmodes decomposition of closed resonators of different
symmetry groups

As a next step, we performed the classification of res-
onators of other symmetry groups of D2h, D3h, D3d , D4h, D6h,
D∞h, C2v , C3v , C4v , C6v , C∞v with customized geometrical
parameters (see Appendix B). The tables for all symmetries
are given in Appendix C in the form similar to Fig. 4.

D. Multipole content in the resonators of decreased symmetry

In this part, we would like to focus attention on an inter-
esting behavior when lowering the symmetry of a resonator
and correspondent multipoles’ content evolution. In Fig. 8
the multipoles set of pyramid resonator (C4v-group symmetry)
is shown. Under particular transformation one can decrease
its symmetry to C2v , which is a subgroup of C4v . When
the symmetry is being lowered the number of irreducible
representations is reduced: two one-dimensional represen-

FIG. 7. Degenerated modes transformed under the irreducible
representation E ′′.

tations are merged, forming a different one-dimensional
representation [23]. Moreover, degeneracies are canceled
when the rotational symmetry around the z-axis is broken:
two-dimensional representation turns to two one-dimensional,
in other words two degenerated modes turn into two modes
with different energies. In the following section, we will
demonstrate the effect it has on the spectral features of acous-
tic wave scattering.

IV. ACOUSTIC WAVE SCATTERING

The scattering of an acoustic wave on the resonator with
a particular set of eigenmodes results in the appearance of
resonant features in the scattering spectrum. At this stage, the
information on the particular multipole content of resonators
can be extremely helpful to analyze and predict the spectral
response of the resonant object.

In this section we used a particle with a particular set
of qualities, such as size and material. As for the material,
we implemented such set of density (ρ = 1/

√
6 kg/m3 for

the particle and ρ0 = 1 kg/m3 for the medium) and speed
of sound (c = 2 m/s for the particle and c0 = 1 m/s for the
medium) that rendered an appearance of Mie resonances
possible when the size of a particle is comparable with the
wavelength. Thus, this set of qualities allowed us to call this
particle a resonator.

On top of that, we used to regard the symmetry classifica-
tion in closed resonator, however, it must be noted that in the
scattering problem we will consider an open one. However,
the symmetry of its eigenmodes will not change, therefore,
the classification can still be applicable, aside from the fact
that in this case modes will appear as quasinormal [81–84].

A. Multipoles expansion

We formulate the problem in the incident-scattered formal-
ism, so the total fields are (pt, vt ) = (pinc, vinc) + (psc, vsc).
Radiation pressure of an incident plane acoustic wave, propa-
gating along the z-axis is in the form of [11,16,17,75,85]

pinc = p0eikr cos θ =
∞∑

�=0

p� j�(kr)Ye�0(θ, ϕ), (9)

where p� = p0i�
√

4π (2� + 1), p0 is the incident wave am-
plitude, j�(kr) is the spherical Bessel function. By virtue of
symmetry, there are solely spherical harmonics m = 0 pre-
sented in the expansion, however, for the scattered wave there
might be all components in the expansion

psc(r, ω) =
∑
p,�,m

ap�m(ω)h(1)
� (kr)Yp�m(θ, ϕ), (10)

where h(1)
� is the spherical Hankel function of the first kind

[86]. The scattering cross section can be expressed through
the scattering coefficient as

σsc = 1

k2

∑
p,�,m

|ap�m(ω)|2 =
∑
p,�,m

σp�m(ω), (11)

where σp�m(ω) = 1
k2 |ap�m(ω)|2. The scattering cross sec-

tion also can be obtained by direct integration of the scattered
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wave energy flux over any surface surrounding the resonant
object, for instance, a sphere of radius R,

σsc = R2

I0

∫
4π

1

2
Re(p∗

scvsc,r )d�, (12)

where I0 is the incident wave intensity, vs
r is the component

of the local velocity of the scattered wave [87]. The answer
does not depend on the integration sphere radius since the en-
ergy flux of the scatterer power 1

2 Re(ps∗vs)|r=R ∝ 1/R2. The
multipole expansion coefficients can be found by projecting
the pressure of the scattered wave onto the corresponding
spherical harmonic

〈psc(r, ω)|Yp�m〉 =
∑

p′,�′,m′
ap′�′m′ (ω)h(1)

�′ (kr)
∫

4π

Yp′�′m′Yp�md�

=
∑

p′,�′,m′
ap′�′m′ (ω)h(1)

�′ (kr)δp′�′m′
p�m

= ap�m(ω)h(1)
� (kr). (13)

If the spherical function Yp�m is included both in the inci-
dent wave expansion and in an eigenmode’s expansion, then
this eigenmode will be excited along with all others, which
are transformed by the same irrep as Yp�m. Therefore, in the
scattered wave the whole basis of spherical harmonics trans-
formed under that irreducible representation is constituted.
The incident plane wave propagating along the z-axis contains
only spherical functions with m = 0 and, thus, it excites all
modes which contain at least one spherical function with
m = 0.

B. Acoustic scattering results

Let us now consider a particular case of wave scattering
over an open acoustic resonator of C2v and C4v symmetry

groups. In accordance with the multipole analysis results
mentioned earlier (Fig. 8), the incident wave excites only one
irreducible representation, A1. However, irreducible represen-
tation A1 for C2v symmetry is a result of merging irreducible
representations A1 and B1 of the C4v symmetry group, there-
fore, irreducible representation A1 for the C2v symmetry group
corresponds to Ye�(2m) spherical functions, while in the C4v

group there are only Ye�(4m) functions present. As a result, the
multipole expansion of the wave scattered by the object with
C2v symmetry shows contributions of modes missing in the
scattering on an object with C4v symmetry (Fig. 9).The used
parameters of the models and environment are presented in
Appendix C.

C. Analogy to optics

Recently, the group symmetry analysis of eigenmodes and
their multipolar content of the subwavelength optical res-
onator has been carried out in optics [62], where multipolar
theory is a powerful tool for describing optical response
of resonant nanostructures, predict, and design their optical
properties [36,48,88,89]. The main difference between the
optics and acoustics is that the electromagnetic fields are
described by vector functions which adds a polarization de-
gree of freedom. When considering the farfield multipolar

TABLE I. Relation between the multipole analysis in acoustics
and optics.

Acoustics Optics

Scalar spherical functions Y Electric multipoles N
— Magnetic multipoles M

For a plane wave k ‖ z
Only m = 0 Only m = 1

165311-6
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FIG. 9. Scattering cross-section expansion of two objects with (a) C2v and (b) C4v symmetries. Plane wave propagates along z-axis and
therefore contains spherical harmonics with m = 0 only in its expansion. (b) The figure illustrates how a slight change of a symmetry alters the
scattering spectrum multipolar content. Additional contributions of Ye�2 are shown. Geometry parameters are a = 1.5 m, b = 0.6 m, overall
height h = 1.5 m; parameters of the resonators: speed of sound c = 2 m/s, density ρ = 1/

√
6 kg/m3; parameters of the host medium: speed

of sound c0 = 1 m/s, density ρ0 = 1 kg/m3.

content of the modes, one should consider two types of vector
spherical harmonics — electric and magnetic ones. However,
despite the complexity of electromagnetic modes, one can
note that the content of the acoustic and optical modes is rather
similar [62] as the electric multipoles behave almost exactly
as the scalar spherical harmonics. The magnetic harmonics
have opposite behavior under inversion and reflection, and can
excite, for example, modes which transform under irreducible
representations A2g and A2u in a cylinder, which is im-

D2h D3h D4h D6h D∞h D3d

a a a

a aa

b
b

C2v C4v C6v C∞v

a a a a

b

x y

z

a

C3v

Parameter D2h D3h D4h D6h D∞h D3d

h, mm 60 50 40 40 30 40
a, mm 40 44.68 25 25 12.5 25
b, mm 0302

Parameter C2v C3v C4v C6v C∞v

h, mm 50 50 50 37.5 21.65
a, mm 50 50 50 50 12.5
b, mm 20

FIG. 10. Geometry of studies closed resonators. h: overall
height. For each resonator: density ρ = 1190 kg/m3, speed of sound
c = 2500 m/c.

possible in acoustics. Another important difference between
acoustic and optical scattering is that the plane wave, incident
along the z-axis, has only m = 1 due to the vector nature of
the electromagnetic fields [90] and, thus, transforms under a
different irreducible representation. Cylindrically symmetric
optical fields with m = 0 can be achieved in vector beams. We
summarize the correspondence between acoustics and optics
in Table I.

V. CONCLUSION

Finally, in conclusion, we applied the machinery of group
theory to classify and analyze the modes of subwavelength
acoustic resonators in a way similar to nanophotonics. We
considered the resonators eigenmodes of several symme-
try groups (D2h, D3h, D3d , D4h, D6h, D∞h, C2v , C3v , C4v ,
C6v , C∞v) and presented the classification tables of their
eigenmodes and the multipolar content for each class. The

TABLE II. Parameters of the studied resonators and media in the
Mie scattering problem.

Parameter C4v C2v Host

h, m 1.5 1.5
a, m 1.5 1.5
b, m 0.6
c, m/s 2 2 1
ρ, kg/m3 1/

√
6 1/

√
6 1

165311-7



MARIIA TSIMOKHA et al. PHYSICAL REVIEW B 105, 165311 (2022)

A1g

A2g

A1u

A2u

B1g

B2g

B1u

B2u

Eg

Eu

Spherical HarmonicsMode examples Irrep D4h Spherical HarmonicsMode examples Irrep D4h

A1g

A2g

A1u

A2u

B1g

B2g

B1u

B2u

Eg

Eu

Ye20 Ye40

Yo74Yo54

Ye10 Ye30 Ye50

Ye22 Ye62

Yo22 Yo42

Yo44 Yo64

Yo32

Ye32 Ye72

Yo21 Ye21 Yo41

Yo11 Ye11 Yo31

Ye42

Yo62

Yo72Yo52

Ye52

Ye(2ℓ)(4m-2)

Yo(2ℓ)(4m-2)

Ye(2ℓ)(4m)

Yo(2ℓ)(4m)

Yo(2ℓ-1)(4m)

Ye(2ℓ-1)(4m)

Ye00

Ye(2ℓ-1)(4m-2)

Y[e,o](2ℓ)(2m-1)

Yo(2ℓ-1)(4m-2)

Y[e,o](2ℓ-1)(2m-1)

Ag

Au

B1g

B2g

B3g

B1u

B2u

B3u

Spherical HarmonicsMode examples Irrep D2h Spherical HarmonicsMode examples Irrep D2h

Ag

Au

B1g

B2g

B3g

B1u

B2u

B3u

Ye40

Yo44Yo22

Ye21 Ye41 Ye43

Yo21 Yo41 Yo43

Ye10 Ye30 Ye50

Yo32 Yo52 Yo54  

Yo11 Yo31 Yo33

Ye11 Ye33Ye31

Yo(2ℓ)(2m-1)

Ye(2ℓ-1)(2m)

Yo(2ℓ-1)(2m-1)

Ye(2ℓ-1)(2m-1)

Ye(2ℓ)(2m)

Yo(2ℓ-1)(2m)

Yo(2ℓ)(2m)

Ye(2ℓ)(2m-1)

Yo42

Ye00 Ye20

A1u

A2u

Eg

A2g

A1g

Eu

Spherical HarmonicsMode examples Irrep D3d Spherical HarmonicsMode examples Irrep D3d

Eg

A1u

A2u

A2g

A1g

Eu

Ye40

Ye10 Ye30

Yo21 Ye21 Yo22

Yo11 Ye11 Yo31

Yo66  

Yo(2ℓ-1)(6m-3)

Y[e,o](2ℓ)(3m-1)

Yo(2ℓ)(6m-3)

Yo(2ℓ)(6m)

Ye(2ℓ)(6m)

Ye(2ℓ)(6m-3)

Ye00

Ye(2ℓ-1)(6m-3)
Yo(2ℓ-1)(6m)

Ye(2ℓ-1)(6m)

Y[e,o](2ℓ)(3m-2)

Y[e,o](2ℓ-1)(3m-1)

Y[e,o](2ℓ-1)(3m-2)

Yo73  

Yo76  Ye33  Ye53  

Ye43  Ye63  

Ye20

A'2

A''2

E'

A''1

A'1

E''

Spherical HarmonicsMode examples Irrep D3h Spherical HarmonicsMode examples Irrep D3h

E'

A'2

A''2

A''1

A'1

E''

Ye40  

Yo43 Yo63 Yo76

Yo66Yo53Yo33

Ye10 Ye30 Ye50

Yo22Ye11Yo11

Yo32Ye21Yo21

Y[e,o](2ℓ-1)(6m-5)

Ye(2ℓ-1)(6m-3)

Yo(2ℓ-1)(6m)

Yo(2ℓ-1)(6m-3)

Ye(2ℓ-1)(6m)

Y[e,o](2ℓ-1)(6m-1)

Ye(2ℓ)(6m)

Yo(2ℓ)(6m-3)

Yo(2ℓ)(6m)

Ye(2ℓ)(6m-3)

Y[e,o](2ℓ)(6m-4)
Y[e,o](2ℓ)(6m-2)

Y[e,o](2ℓ-1)(6m-4)
Y[e,o](2ℓ-1)(6m-2)

Y[e,o](2ℓ)(6m-5)
Y[e,o](2ℓ)(6m-1)

Ye00 Ye20

FIG. 11. Tables of irreducible representations and examples of eigenmodes transformed under them and tables of characters of irreducible
representations for symmetry groups D4h, D2h, D3d , D3h.

proposed multipole classification approach can be extended
to any resonator shape and material. We connected the mul-
tipolar classification with the acoustic scattering problem
since, by knowing only the multipolar structure of the in-
cident wave and the symmetry group of the resonator, one
can predict the exact multipolar composition of the scat-
tered field. We studied in detail the lift of degeneracy in a

resonator of C4v → C2v symmetry and traced the evolution
of the multipolar content as well as the reconfiguration the
scattering spectrum. In particular, we showed that symmetry
decreasing leads to expanding the range of multipoles in the
scattered field. We believe that our result will find an appli-
cation in rapidly developing acoustics of metamaterials and
metaatoms.
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APPENDIX A: ACOUSTICS MASTER EQUATIONS
FOR THE MEDIA WITH

COORDINATE-DEPENDENT PARAMETERS

Fundamental equations for the linear monochromatic
acoustics are [70–72,91]⎧⎨
⎩

iωρv = ∇p linearized Navier-Stokes equation,
iωβp = ∇ · v equation of continuity,
p = c2ρ equation of state.

(A1)

Once there is a medium with coordinate-dependent mass den-
sity ρ = ρ(r) and compressibility β = β(r) the single master
equation for the pressure field without external sources is
going to be [[92], Sec. 2.1],[[91], Sec. 8.1]

∇2 p + ω2

c2(r)
p = ∇ρ

ρ
· ∇p, (A2)

here c = 1/
√

βρ is the speed of sound.

APPENDIX B: COMSOL MULTIPHYSICS TM MODEL

We used EIGENVALUE SOLVER to observe the electromag-
netic fields of closed resonators. We established a spherical
domain inside the resonator (Fig. 5) to estimate the bp�m co-
efficient in the multipole expansion (8). We integrate pressure
and spherical harmonics (6) over the surface of the sphere

bp�m =
∫

4π

p(r)Yp�md�. (B1)

We used a built-in complex form of spherical harmonics to get
a real solution (2).

For the open resonator we used the FREQUENCY DOMAIN

SOLVER. The model geometry is a sphere with a perfect
matched layer (PML) domain and resonator at the center. To
get ap�m(ω) (13) we integrated the scalar product of far-field
scattering pressure ps and spherical harmonics over a concen-
tric parametric surface with a radius R outside of the resonator,
but inside the PML sphere as follows:

ap�m(ω) = 1

h(1)
� (kR)

∫
4π

psc(r, ω)Yp�md�. (B2)

We also note that in Eq. (B2) one should use h(2)
� in COMSOL

MULTIPHYSICSTM instead of h(1)
� . This comes from the fact the

outgoing wave should have the asymptotics as e−ikr once the
e+iωt convention is used, which is the case for the COMSOL
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FIG. 13. Tables of irreducible representations and examples
of eigenmodes transformed under them and tables of charac-
ters of irreducible representations for symmetry groups C2v , C3v ,
C4v .

MULTIPHYSICSTM. The sum of the squared absolute values of
the coefficients equals σsc (11).

We used the same concentric parametric surfaces to get σsc

by Eq. (12). The following expression was used as an inte-
grand in COMSOL MULTIPHYSICSTM model (built-in acoustics
interfaces notation)

0.5*realdot(acpr.p_s,(
(-(d(acpr.p_s,x))*x)+
(-(d(acpr.p_s,y))*y)+
(-(d(acpr.p_s,z))*z)
)/(acpr.rho_c*acpr.iomega))
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APPENDIX C: MODELS AND GEOMETRY OF STUDIES
CLOSED RESONATORS

In this section, we provide the parameters of the resonators
we study, which are given in Fig. 10. For all these shapes we
provide the multipolar decomposition.

In Table II, we present the parameters of the studied res-
onators, which we discuss in scattering problem.

APPENDIX D: EIGENMODES’ MULTIPOLE
DECOMPOSITION RESULTS

In this section, we provide the multipolar classification of
resonators’ modes. In Fig. 11 the symmetry groups of the
resonators are D4h, D2h, D3d , and D3h. In Fig. 12 – C∞v , C6v ,
D∞h, and D6h. In Fig. 13 – C2v , C3v , and C4v .
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