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Fabry-Pérot interferometry has emerged as a tool to probe anyon statistics in the quantum Hall effect. The
interference phase is interpreted as a combination of a quantized statistical phase and an Aharonov-Bohm
phase, proportional to the device area and the charge of the anyons propagating along the device edge. This
interpretation faces two challenges. First, the edge states have a finite width and hence the device area is
ill-defined. Second, multiple localized anyons may be present in states that overlap with the edge, and it may not
be clear whether a second anyon traveling along the edge will go inside or outside the region with a localized
anyon and therefore whether or not it should pick up a statistical phase. We show how one may overcome
both challenges. In a case where only one chiral edge mode passes through the constrictions defining the
interferometer, as when electrons in a constriction are in a Laughlin state with ν = 1/(2n + 1) or the integer
state at ν = 1, we show that the interference phase can be directly related to the total electron charge contained
in the interferometer. This holds for arbitrary electron-electron interactions and holds even if the bulk of the
interferometer has a higher electron density than the region of the constrictions. In contrast to the device area
or to the number of anyons inside a propagating edge channel, the total charge is well-defined. We examine, at
the microscopic level, how the relation between charge and phase is maintained when there is a soft confining
potential and disorder near the edge of the interferometer, and we discuss briefly the complications that can occur
when multiple chiral modes can pass through the constriction.
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I. INTRODUCTION

Arguably, one deals with quantum interference every time
the Schrödinger equation is being solved. However, thinking
about the solution in such a language is not always illumi-
nating. This language is most natural when a small number
of well-defined paths with the same starting and ending points
are available as is the case in quantum Hall interferometry [1].
Figure 1 illustrates a typical setup. Charge can travel only
counter-clockwise along the chiral edges of the sample. Tun-
neling is possible at two constrictions. Hence, two interfering
paths connect the source and the detector.

This setup allows probing fractional charge and statistics
through the interference phase [1]. It is generally understood
that the phase contains three components: a nonuniversal
phase from the tunneling amplitudes in the constrictions, the
Aharonov-Bohm phase, proportional to the tunneling charge
and the magnetic flux through the device, and a statistical
phase that depends on the number of the localized quasipar-
ticles in the interferometer and their mutual statistics with
the tunneling particle. The three phases cannot be disentan-
gled at a fixed magnetic field and fixed gate voltages, but
respond in different ways to a change of the magnetic field.
The nonuniversal contribution depends only weakly on the
field, the Aharonov-Bohm phase changes continuously, and
the statistical phase jumps every time a new quasiparticle
enters the device [2,3]. This idea has been recently used to
directly observe [4] the statistics of anyons at the filling factor
1/3. Several other experiments [5–7] have been interpreted in

the same physical picture [8,9]. It was also proposed to extend
interferometry to heat currents [10,11].

Yet, the above physical picture faces two challenges. First,
the edge has a finite width [12,13] and it is unclear why the
Aharonov-Bohm phase is well defined, even for an integer
quantum Hall state. Second, the statistical phase is defined for
anyons, moving in the gapped bulk of a quantum Hall liquid
around a remote anyon [1]. In interferometry, the interfering
charges move along gapless edges. In GaAs, those edges run
in the region of a lower filling factor than in the bulk [12,13].
This should be understood as containing a finite concentration
of quasiholes. Hence, a fluctuating number of anyons may be
present near the edges. It is not obvious that the statistical
phase is robust in such a situation.

The purpose of this paper is to explore these questions. We
concentrate on the simplest cases, such as the integer state
at ν = 1 and the Laughlin states with ν = 1/(2n + 1), which
have only a single chiral edge state in a system with sharp
edges and no disorder. We find that the interference phase in
these cases should be remarkably robust in the presence of
disorder and a soft confining potential at the sample edges, in
part because the interference phase can be directly related to
the total electric charge in the interferometer region.

In Sec. II, below, we examine the edge of semi-infinite
quantum Hall system in a situation where there is disorder and
soft edge confinement. We discuss what would be expected in
a Hartree-Fock approximation, and then turn to a bosonized
description of the edge mode.
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FIG. 1. Schematic of a quantum Hall interferometer. Charge
travels counterclockwise along chiral edges and can tunnel between
the opposite edges at two constrictions. Two paths, indicated by the
dashed red line, allow charges from the source S to reach the detector
contact D, after tunneling across one of the constrictions. In the
absence of tunneling, charges from S would follow the red solid path
to the ground contact G. Black dashed lines are at ground potential
and carry no current. A cross shows an anyon localized in the device.
The dotted curve is a contour which will be used to define the charge
on the interferometer in Sec. III.

In Sec. III, we apply these results to the geometry of
a Fabry-Pérot interferometer. We show that the interference
phase measured in an interferometer experiment at low current
and low temperature is directly related to the phase accu-
mulation around the interferometer edge in the electronic
ground state. We also establish the result that as long as
there is only a single chiral mode that can pass through
the constrictions defining the ends of the interferometer, the
phase accumulation is completely determined by the charge
on the interferometer. We start with a preliminary discussion
around Eq. (9) and provide general derivations in subsequent
Secs. III A and III B. This analysis significantly relies on
Sec. II.

In Sec. IV, we discuss implications of our results for exper-
imental measurements, and we briefly discuss complications
that arise when one tries to extend the results to quantum Hall
states other than a Laughlin state or ν = 1. Our results are
summarized in Sec. V. In Appendix, we present supporting
discussion of the effects of tunneling between the device edges
and localized states near the edge.

II. EFFECTIVE EDGE THEORY

A. ν = 1

We begin by considering an infinite edge parallel to the x
axis, which separates a ν = 1 quantum Hall state in the region
of positive y from a vacuum state in the region of negative y.
We assume here that electron spins are completely aligned by
the magnetic field, so we can ignore the electron spin for most
of our discussion.

We shall be concerned here with the ground state of the sys-
tem at a fixed value of the magnetic field B and a fixed value
of the electrochemcal potential. We begin by working in a
Hartree-Fock approximation, where one is essentially consid-
ering a model of noninteracting electrons in a self-consistent
potential, V , which depends on position. Furthermore, we

FIG. 2. Shaded stripes are stripes of filling factor 1 separated by
regions of zero filling factor. Each stripe carries two chiral edge
channels on its two opposite edges. Dashed lines show electron
tunneling. Tunneling across a stripe dominates in the lower part of the
figure, where the average filling factor is low. Interstripe tunneling
dominates at a high average density. The red line is the delocalized
chiral channel.

shall initially consider a translationally invariant approxima-
tion, where we assume that V is independent of x. We focus
on a typical edge structure in a GaAs device. (Graphene
devices may show significant differences in the microscopic
edge structure [14], though we still expect the same effective
theory to describe the edge in the low-energy limit in GaAs
and graphene.)

In GaAs, the charge density changes gradually from zero
in the depletion region to its maximal value νbulk in the bulk.
The width of the edge region, where the density changes,
is much greater [12,13] than the magnetic length lB. Within
the translationally invariant Hartree-Fock approximation, the
gradual density change is accomplished by forming a series of
alternating stripes [15] of filling factors 0 and 1 with widths of
the order of the magnetic length lB, as illustrated in Fig. 2. The
relative width of the stripes of the two filling factors, which
determines the average local charge density, will change over
the width of the transition region.

Disorder modifies this picture in two ways. First, it creates
a complex network of wiggling stripes of position-dependent
widths [16,17]. Second, the absence of translational symmetry
in the x direction destroys momentum conservation and allows
charge tunneling between and across stripes. The second ef-
fect is illustrated in Fig. 2 by dashed lines. In fact, external
disorder may not be necessary here. Within a Hartree-Fock
approximation, one might be able to gain energy by breaking
translational invariance in the x direction and forming some-
thing like a Wigner crystal containing one electron per unit
cell, which could open up an energy gap at the Fermi energy.

In any case, we must take into account fluctuations beyond
the Hartree-Fock approximation. The simplest way to proceed
is to consider each ν = 1 stripe in Fig. 2 as a one-channel
quantum wire that can be understood using a bosonized ac-
tion [18]

Ln = 1

4π

∫
dtdx[∂tφnL∂xφnL − ∂tφnR∂xφnR + μnR(x)∂xφnR

− vnL(∂xφnL )2 − vnR(∂xφnR)2 + μnL(x)∂xφnL], (1)
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where the index n numbers the stripes (Fig. 2), e∂xφnL/2π

and e∂xφnR/2π are the charge densities in the left- and right-
moving chiral modes on the two sides of the stripe, vnL,R are
the edge mode velocities, and μnR,L model the chemical po-
tential and the coupling of the charge density with the random
electrostatic potential. In general, there will be a finite number
N of stripes of finite width. The stripe with n = N + 1 is the
bulk ν = 1 state, which, here, stretches to y = ∞. Thus, in the
region of interest, there will be N + 1 right movers but only N
left movers.

The action (1) assumes a gauge of the form A = −B(0, x),
so that Ax = 0 for all the lines.

We start with a model in which the only effect of disorder
consists in random tunneling across the stripes and between
neighboring stripes. The system is described by the action

L =
∑

n

(Ln − Tn − Tn,n+1), (2)

where Tn describes tunneling across stripe n and Tn,n+1 de-
scribes tunneling between stripes n and n + 1. The tunneling
operators can be represented as

Tn =
∫

dtdxun(x) exp(i[φnR(x) + φnL(x)]) + H.c., (3)

Tn,n+1 =
∫

dtdxvn(x) exp(i[φn+1,R(x) + φnL(x)]) + H.c.

(4)

with random complex tunneling amplitudes un(x) and vn(x).
We assume that the mean squares of the amplitudes 〈|un(x)|2〉
and 〈|vn(x)|2〉 do not depend on x but depend on n. Indeed,
a greater tunneling amplitude un corresponds to a narrower
ν = 1 stripe, while a greater tunneling amplitude vn(x) corre-
sponds to a narrow interval between the stripes. The spatially
varying complex phases of un(x) and vn(x) are due to the
magnetic flux enclosed between the edge modes. In the gauge,
we have chosen, this results from the x dependence of Ay. In
a gauge where Ay = 0 and Ax depends on y, this would reflect
the difference in the momenta of the electron states associated
with these modes.

Consider first the limit in which vn and vn−1 vanish for
stripe n and let us ignore Coulomb interactions between
neighboring stripes. Then the action for the chiral modes
bounding the stripe is similar to that for the case of a nonchiral
Luttinger liquid, and we expect that in the presence of disor-
dered tunneling across the stripe, the eigenstates will become
localized. Similarly, if un and un+1 vanish, then the corre-
sponding modes will be localized by inter-stripe tunneling vn.
We also expect a tendency towards localization in the case
where both un and vn are present. However, we know that at
least one right-moving edge mode must remain unlocalized,
as the nonzero edge conductance of a quantum Hall state is
topologically protected.

In the simplest case, the delocalized edge channel will
coincide in space with one of the right-moving modes of
the original translationally invariant model, as indicated by
the red-colored mode in Fig. 2. More generally, however,
the weight of the delocalized mode may spread out, covering
several of the original edge states, and the y coordinate of its
center may fluctuate significantly as a function of x.

FIG. 3. Sketch of a chiral edge channel coupled by tunneling to
three closed edge channels. Shaded regions are occupied by electrons
at ν = 1. Arrows show the chirality of the edge modes.

Within a Hartree-Fock picture, any given localized state
will have a discrete energy. The state will be occupied, if and
only if its energy is below the Fermi level EF . An empty
state localized at a position with y greater than that of the
delocalized edge state may be interpreted as a hole in the
ν = 1 state, whereas an empty state with y below that of
the delocalized edge may be regarded simply as part of the
vacuum. Similarly, an occupied state with y well below the
propagating state may be interpreted as an electron localized
in the ν = 0 region, whereas a filled state with y above the
edge mode may be regarded as simply part of the electron
gas contributing to the filled Landau level. However, localized
states that overlap in space with the extended state will have a
more ambiguous interpretation.

In general, the requirement to minimize the total energy
will lead to changes in the self-consistent Hartree-Fock po-
tential that tend to decrease the energy of occupied states
and increase the energy of empty states. This will tend to
increase energy gaps across the Fermi energy, and will tend
to increase localization of states other than the propagating
extended state. On the other hand, repulsive electron-electron
interactions lead to screening of the disorder potential, which
can decrease the tendency to localization.

In the bosonized description, one can envision eliminating
the localized states by a renormalization group (RG) proce-
dure as one moves towards lower energies. Localized states
appear here as closed loops which disappear as the running
energy cutoff E is reduced below the energy of the state.
Typically, this will occur when the size of the state is of order
hv/E , where v is the edge velocity. In some cases, however,
a closed loop carries one state of energy � hv/l , which will
not be eliminated by RG at the energy scale hv/l .

The situation at a late stage of the RG procedure is il-
lustrated schematically in Fig. 3. Three localized states are
shown that are not yet eliminated and are close enough to the
propagating edge that tunneling between them and the edge
will affect the velocity of propagation along the edge after
further renormalization.

The effect on the propagating mode produced by a local-
ized state near to the edge can be understood using a simple
model. Consider a localized state whose energy εR is initially
above EF by an amount which is large compared to its tunnel
coupling to the edge, so that the state is empty. Then, imagine
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that the parameters are modified so that εR drops below EF by
a large-enough amount that the state becomes occupied. If the
Coulomb interaction is sufficiently screened, one can ignore
additional effects produced by the change in the Hartree-Fock
potential at the edge due to the change in occupancy of the
localized state. One finds, however that during the process,
the phase φ accumulated along the length of the renormalized
edge state will have changed by precisely 2π . (An explicit
solution of this model, in the case of noninteracting elec-
trons, is reviewed in Appendix, below.) This result applies
regardless of whether the localized state was positioned in the
ν = 0 region or the ν = 1 region, and it is a manifestation
of the condition stated in the definition of the action Ln,
that fluctuations in the one-dimensional charge density ρ(x)
associated with an edge are given by e∂xφ(x)/2π . Solution of
the model also shows that the way in which the phase shift
varies for intermediate values of εR is given by arctangent
curve with an energy spread of order h̄�, where � is the decay
rate for an electron initially in the localized state to tunnel
into the propagating mode, when εR is well above the Fermi
energy.

The cumulative effect of phase shifts due to interaction
with multiple localized states can be characterized as a renor-
malization of the edge velocity by an amount which varies
from point to point along the edge. If one ignores all terms
irrelevant in the renormalization group (RG) sense, the action
of the renormalized edge mode can then be written in the form

L = − 1

4π

∫
dtdx∂xφ{[∂t + v(x)∂x]φ − μ(x)}, (5)

where the edge velocity depends on the coordinate due to
disorder effects.

B. Laughlin states

The arguments for ν = 1 can be extended to fractional
quantized Hall states of the Laughlin form. For example,
consider a reconstructed ν = 1/(2n + 1) edge as a system of
alternating ν = 0 and ν = 1/(2n + 1) stripes. The low-energy
theory after renormalization again reduces to the standard
chiral Luttinger-liquid model [18]. The action is now

L = − 1

4πν

∫
dtdx∂xφ{[∂t + v(x)∂x]φ − μ(x)}, (6)

where the edge velocity depends on the coordinate due to
disorder effects and we ignore all terms irrelevant in the RG
sense.

A difference between a Laughlin state and ν = 1 appears
if one considers the effect on the edge when the parameters
of a localized state in the interior of the interferometer are
changed, so that a state initially above the Fermi energy now
falls below the Fermi level. In the case ν = 1/3, the change
in the phase accumulation along the edge will be equal to
2π/3. However, the change δQ in the electric charge when
the localized state is filled is that of a ν = 1/3 quasiparticle,
namely, e/3. Therefore, in both the ν = 1/3 and ν = 1 cases,
the change in accumulated phase may be written

eδ[φ(x2) − φ(x1)] = 2πδQ, (7)

This result will be useful when we consider interferometry.
We provide a detailed justification of this result in the next
section.

III. INTERFERENCE PHASE

We now turn to a discussion of the Fabry-Pérot quan-
tum Hall interferometer. We consider only the simplest case,
sketched in Fig. 1, where the bulk of the interferometer is in
a simple quantum Hall state such as ν = 1 or ν = 1/3, for
which the ideal edge contains just a single propagating mode.

We shall consider the possibility that the edges are compli-
cated by disorder and interactions, and that they may locally
contain multiple forward and backwards propagating edge
modes, but we shall assume that the constrictions are narrow
enough that only one propagating mode enters and leaves
from each side. We assume that the temperature T and the
voltage VS applied to source S are very low, and that as a result
we can assume that particles passing through interferometer
will not suffer inelastic processes. (Inelastic processes will be
discussed in Sec. IV A.) We shall also work in a limit where
the tunneling probability at each constriction is small.

We wish to calculate the total current I that will be scat-
tered from the lower to upper edge of the interferometer and
thus measured at contact D, at a given small value of VS .
We expect that I will be proportional to |t1 + t2eiθ |2, where
t1 and t2 are the intrinsic reflection amplitudes for the two
constrictions, and θ is the phase that would be accumulated by
a quasiparticle traveling in a closed loop around interferom-
eter region between the two constrictions. The accumulated
phase will be sensitive to variations in parameters such as the
applied magnetic field or to voltages VG applied to gates near
the interferometer, so if the parameters are varied, we expect
to see oscillations in I of the form

δI ∝ Re(t∗
1 t2 eiθ ). (8)

We shall argue that this phase accumulation can be related,
after an appropriate gauge transformation, to the sum of
ground-state phase accumulations along the upper and lower
edges.

More importantly, however, we shall argue that the interfer-
ence phase depends only on the total electron charge Q within
the interferometer region. To be more precise, let us draw a
closed contour C which passes through the two constrictions
and otherwise lies entirely in the vacuum outside the area of
the interferometer, as represented by the dotted curve in Fig. 1.
Then Q may be defined as the total charge inside the contour
C. We note that an interferometer experiment only determines
the phase θ modulo 2π , However, we argue below that for
both ν = 1 and for a Laughlin state at ν = 1/(2n + 1), it is
possible to define an absolute phase which will be consistent
with the interferometer measurements and is related to Q by

θ = 2πQ/e + θ0, (9)

where θ0 is a small phase shift that depends only weakly on
parameters such as B and VG and will therefore have no mea-
surable effect in an interferometer experiment. (We assume
that the area of the interferometer is such that the number of
contained flux quanta N� is large, and we shall be concerned
with oscillations in the electrical resistance caused by changes
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in the magnetic field or gate voltages which are large enough
to change N� by amount large compared to unity but small
compared to N�. Thus the characteristics of the constrictions
can be assumed to be constant over this range.)

This result is compatible with the observation (7) relating
a change in the phase accumulation to a change in the electric
charge associated with the edge. However, it is more general,
since it also applies to the charge jump produced by a change
in the occupation of a localized state near the center of the
interferometer that is not readily associated with either edge.
(Although the argument given in Sec. III A requires one to
associate every localized state with just one of the two edges,
this is not required in the more general argument of Sec. III B.)

In the case of ν = 1/3, the addition of a quasiparticle to a
localized state produces a charge jump of e/3, assuming that
Coulomb effects on the edge can be ignored, which results in
a phase jump δθ = 2π/3 that is observable in the interference
pattern. This extra phase is just what one would expect from
the fractional statistics of the quasiparticle.

In a case where the Coulomb interaction between the local-
ized charge and the edge mode is not well screened, a change
in occupation of the localized state may induce a change
in the charge along the edge of the interferometer drawn
from the reservoir beyond the contacts. The additional charge
along the edge will be accompanied by an additional change
in phase, so the total jump δθ will deviate from 2πe∗/e in this
case, where e∗ is one quasiparticle charge.

The power of the result (9) is that it reduces the calcu-
lation of the interferometer phase, in the limit of T → 0, to
an equilibrium calculation of the total electron charge in the
interferometer. It is not necessary to ask whether the charge is
located inside or outside the propagating edge state.

The result (9) is similar to results appearing in the literature
in other contexts. (See, for example, the work [19] of Rosenow
and Gefen who consider effects on a Mach-Zehnder interfer-
ometer produced by interactions with a nearby quantum dot.)
A proof of (9) for noninteracting electrons at ν = 1 follows
standard ideas of scattering theory [20]. We shall give in
Sec. III B an alternate derivation, which is also applicable to
the fractional case. First however, we shall present an anal-
ysis of the interferometer experiment using the bosonization
approach.

A. Bosonized description

Within the bosonization formalism, we arrive at the follow-
ing model of the interferometer [21]:

L = Lu + Ld −
∫

dt[�1 exp(i[φd(x1) + φu(x1)])

+�2 exp(i[φd(x2) + φu(x2)]) + H.c.] (10)

at ν = 1/(2n + 1), where Lu,d are the actions of the upper
and lower chiral edges with the charge densities e∂xφu,d/2π

and �1,2 are complex amplitudes with the phases α1,2. The
two exponents describe quasiparticle tunneling between the
two edges of the interferometer. We assume that �1,2 are
sufficiently small to allow the use of perturbation theory in
inter-edge tunneling.

Because we are now considering the action for a closed
circuit around the interferometer region, the integral around

the edge of the parallel component of the vector potential must
equal the magnetic flux through the interferometer, so we can
no longer assume a gauge where this component vanishes, as
we did in the previous section. Then, in evaluating Lu and Ld ,
the quantity ∂xφ in formulas such as (1), (5), and (6), should be
replaced by (∂xφ − νeAx ) where the coordinate x is taken to
run along the edge. After minimizing the action with respect
to φ(x), this will result in a shift in the accumulated phase by
the amount eν

∮
Axdx = νeBAc, where Ac is the area enclosed

by the circuit. Now the total charge in the interferometer will
be the sum of the underlying bulk charge, νeBAc/2π , and
an additional edge charge, given by e

∮
[∂xφ − νeAx]dx/2π .

The contribution from Ax drops out of the sum, so the total
charge will be given by eφ/2π , where φ is the total phase
accumulated on the two edges of the interferometer.

We still have to relate φ to the phase measured in an
interferometer experiment.

The tunneling current between the upper and lower edges
I = dQu/dt = i[T, Qu]/h̄, where Qu is the charge of the up-
per edge and T is the tunneling term in the square brackets in
Eq. (10). Thus the current operator is

I = iνe

h̄
[�1 exp(i[φd(x1) + φu(x1)])

+�2 exp(i[φd(x2) + φu(x2)]) − H.c.]. (11)

We note that after neglecting terms which are irrelevant at low
energies, Lu,d are quadratic with linear contributions in charge
density that describe the effects of the chemical potential, the
random potential, and the vector-potential component Ax. The
average current, computed in the lowest order perturbation
theory in �1,2, is

〈I〉 = i

h̄

∫ 0

−∞
dt〈[T (t ), I (0)]〉 = −νe

h̄2

∫ 0

−∞
dt

∑
i j

�i�
∗
j

×〈[exp(−i{φd(x j, t ) + φu(x j, t )}),

exp(i{φd(xi, 0) + φu(xi, 0)})]

− [exp(i{φd(xi, t ) + φu(xi, t )}),

exp(−i{φd(x j, 0) + φu(x j, 0)})]〉, (12)

where the angular brackets denote the average with respect
to the quadratic part of the action, Lu + Ld , under conditions
where there is a small voltage difference VS between the lower
and upper edges of the interferometer. The voltage difference
may be implemented by shifting the chemical potential μ(x)
on the lower edge, relative to its equilibrium value, by the
amount −eVS .

It is convenient to write φ(x, t ) = φ̃(x, t ) + η(x, t ), where
η(x, t ) is the mean value of φ(x, t ) in the absence of tunneling.
The quantity η(x, t ) will actually be independent of t except
for a term which is constant along each edge but which in-
creases linearly in t with a rate that depends on the voltage of
the edge. Then φ̃(x, t ) is a Gaussian variable with zero mean.
If the current 〈I〉 is expressed in terms of φ̃, it will have the
same form as (12) except that the phases of � j will be shifted
by an amount which multiplies the terms proportional to �1�

∗
2

and �∗
1�2 by a factor e±iθa , where

θa =
∫

dx ∂x(ηd + ηu) =
∫

dx 〈∂x(φu + φd )〉. (13)
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Fluctuations in φ̃ will renormalize the magnitudes of the vari-
ous terms in the current, but they will not affect their phases.

From our previous arguments, we expect that the right-
hand side of (13) should be equal to 2πQ/e, where Q is the
expectation value of the charge on the interferometer in its
ground state. Thus the measured interference phase θ should
have the form (9), where θ0 is the phase of the original product
�1�

∗
2 .

Little changes when we go beyond the lowest order
of the perturbation theory. Indeed, the terms of the order
|�1|2n|�2|2m�

p
2�

∗p
1 are proportional to exp(ipθ ).

B. Relation between phase and charge

Suppose that we modify the geometry shown in Fig. 1 by
removing the contacts, so the device is now a closed system
with conserved electron charge. We shall assume that regions
to the left of constriction 1 and to the right of constriction
2 are ideal quantized Hall systems, with clean edges and no
impurities, with filling factor ν = 1 or a Laughlin state with
ν = 1/(2n + 1). We shall further assume that the areas AL and
AR of the outer regions are finite but very much larger than the
area of the interferometer region itself. We focus our attention
on the ground state of the system with a total electron number
N , which will be a large integer. If we denote the expectation
values of the electron number in the outer regions as NL and
NR, and the number inside the interferometer region by Nin,
we know that their sum must be equal to the integer N , but the
individual numbers are not quantized, as electrons can flow
between the three regions.

Since the outer regions are ideal, their low-energy degrees
of freedom are associated with a single edge state, and they
will be well described by a bosonized edge mode, with a
quadratic Lagrangian of the form assumed in Sec. II. The
interferometer region may be far from ideal, but if only a
single edge mode enters the constriction at each side, the
phase variables eiφu (x) and eiφd (x) should be well defined at the
contacts. Furthermore these phases must be continuous across
each constriction. If we define a quantity

θ = φu(x1) − φu(x2) − φd (x2) + φd (x1), (14)

the requirement that the phase factors are continuous and
single valued means that θ plus the phase accumulations along
the exterior of AL and AR must add up to zero, modulo 2π .

Since the outer regions are ideal, we know that the phase
accumulations around the regions AL and AR will be equal to
2π times NL and NR, respectively. The edges of the interfer-
ometer region may be far from ideal, but in any case, we would
expect that if B and all gate voltages are fixed, the values of θ

and Nin will be determined by the electrochemical potential of
the system.

Now let us apply to the system a weak external potential
V (r), which is chosen to be zero inside the interferometer
region but different from zero in at least some part of the
outer regions, including a portion of their edges. If N is held
fixed, V will generally change NL and NR and it will change
the electrochemical potential of the system by an amount
such that Nin + NL + NR = 0. Similarly, the change in
θ mod 2π will be equal and opposite to the change in the
phase accumulation in the ideal outer regions. This implies

that as the electrochemical potential is changed, the relation
θ = 2πNin mod 2π will be maintained. The relation will
similarly be maintained if we vary the magnetic field or the
gate voltages on the interferometer, as long as the constric-
tions and the outer regions remain in the quantized Hall state
ν and as long as the interferometer remains in a state where
we can neglect scattering between the upper and lower edges.

With this reasoning, we have established that the ground
state phase accumulation θ will satisfy Eq. (9) modulo 2π .
One must still show that the phase measured in an interfer-
ence experiment at low energies is the same as the ground
state phase. Here we need to make the additional assump-
tion that the rate for scattering of a charged quasiparticle
between the upper and lower edges is much smaller than
the inverse of the propagation time along an edge. Therefore
current is conserved separately on each edge, and the phase
accumulation on each edge will be fixed by the electrochemi-
cal potential on that edge. If VS is sufficiently small, the phase
accumulation will be the same as in the ground state.

We now follow the same reasoning as was used in
Sec. III A. Although the phase variable φ(x) may not be well
defined at all points along the edge of the interferometer, it
should still be valid to assume that quantum fluctuations in the
phase difference between the two ends of the edge are small,
after high frequency fluctuations are eliminated, and that the
remaining fluctuations should be approximately Gaussian.

Since the interferometer phase and the ground state phase θ

are, physically, only defined modulo 2π , we are free to choose
θ to satisfy (9) absolutely.

IV. IMPLICATIONS FOR EXPERIMENTS AT ν = 1 and 1/3

Interferometry experiments have typically been interpreted
in terms of a simplified model that assumes the existence of
one or more propagating edge modes near the interferometer
boundary, together with a set of localized states that have only
negligible tunnel coupling to the propagating modes. In the
case of ν = 1 or 1/3, there is only one propagating mode at
each edge. Since the propagating modes in the interferometer
region pass almost freely through the two bounding constric-
tions, their electrochemical potential is set by the voltage
on the external leads. Consequently, their associated charge
densities can vary continuously as a function of the magnetic
field and the electrostatic potentials arising from voltages on
gates or from Coulomb interactions with localized charges.

In the case where the Coulomb interactions are well
screened, changes in the occupation of localized states do
not affect the charge densities on the propagating edge states.
Then, for ν = 1, where filling of an occupied state causes θ

to jump by 2π , such a jump has no effect on the interference
signal. In the case of ν = 1/3, localized states inside the prop-
agating edge mode can be occupied by quasiparticles with
charge e/3, so the occupation of such a level will produce
an observable jump in θ equal to 2π/3. By contrast, localized
states outside the edge mode can only be occupied by elec-
trons with charge e, so they have no measurable effect, and
they can be ignored, just as for ν = 1.

In reality, however, we expect to find a certain number
of localized states that are so close to the propagating mode
that tunneling to them cannot be ignored. As discussed in
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Appendix, for a single localized state near a ν = 1 edge,
tunneling will lead to an energy broadening of the state by
an amount proportional to the decay rate � for charge on
the localized state to equilibrate with the propagating edge.
The occupation of the localized state at T = 0 is then no
longer restricted to be 0 or 1, but can vary continuously as
the parameters are varied. Similarly, the associated change in
the accumulated phase θ will not be discontinuous but will be
spread out by an amount proportional to �.

In the same way, at ν = 1/3, for a localized state that
overlaps strongly the propagating edge mode, the average
charge in the ground state could vary continuously with the
parameters of the system. We may think of the ground state
as a linear combination of two quantum states whose instan-
taneous occupations differ by one. The relative amplitudes of
the two states will change as the parameters are changed. In
addition, for the case of ν = 1/3, as the center position of lo-
calized state is moved outside the position of the propagating
mode, the accumulated electric charge difference associated
with a unit change in occupancy will also vary from e/3 to
e. (In the composite-fermion-Chern-Simons picture [22], this
may be understood from the result that the net change in
charge density produced by the Chern-Simons flux attached
to a composite fermion depends on the background charge
density in the vicinity of the particle.)

In the experiment of Ref. [4], the sample parameters were
initially tuned to a region where the bulk of the interferometer
was in an incompressible state at ν = 1/3. Specifically, the
Fermi level was inside the energy gap of the ideal ν = 1/3
state, and the density of localized states in the gap due to
impurities in the bulk was small. Consequently, parameters
such as the magnetic field or the voltage on a side gate could
be varied over a range large enough to observe several oscilla-
tions in the interferometer signal before there was a change in
occupation of a localized state far from the boundaries. Over
a more extended range of parameters, however, several jumps
in phase by amounts close to 2π/3 were observed, which
were interpreted as arising from changes in occupancy of a
localized state far from the edge as its energy passed through
the Fermi level. This is in accord with the predicted effect
due to the fractional statistics of an e/3 quasiparticle in a
simple model with an ideal edge state. However, we would
like to understand whether this might be altered in a more
realistic model.

In the region near the edge where the electron density
varies from the bulk density to zero, we expect the density
of localized states to be large, of the order of one state for
every few flux quanta. Of course, not all these states are low
enough in energy to matter for our discussion. But if the posi-
tions of these localized states and their energies were random
and fixed by external disorder, one might expect to see large
fluctuations in the accumulated charge, and consequently the
interferometer phase, as the position of the propagating mode
is varied due to changes in the gate voltage or magnetic
field. However, we actually expect that the density of local-
ized states, and even their locations, will be dominantly set
by the self-consistent potential arising from electron-electron
interactions, and these states will move in or out along with
the propagating mode as external parameters are varied. Then
in the absence of external disorder, the total charge on the

interferometer would vary smoothly, effectively linearly, with
variations in B or VG, giving rise to a simple periodic variation
of eiθ .

The effects of external disorder would lead to some resid-
ual fluctuations in the phase. We do not expect these effects
to be large, due to electrostatic screening and the long-range
nature of the dominant disorder. Even more importantly, how-
ever, as we show below, the interferometry phase is insensitive
to local details such as disorder as long as screening is lin-
ear and can be described in terms of a capacitance. Indeed,
because the distance d to the screening gates is large com-
pared to the magnetic length lB, we expect that the quantities
∂Q/∂B and ∂Q/∂VG, which describe the response of the
electric charge, and hence of θ , to changes in the magnetic
field or side-gate voltage, will be dominated by geometric
electrostatic effects, and will be relatively insensitive to details
of the edge. Similar considerations apply if one wishes to
compute the change in Q that would result from a change in
the electrochemical potential set by the leads, while B and VG

are held fixed.
Suppose that we apply a small voltage V to all of the

leads, and let us define an effective edge capacitance by
Ce = ∂Q/∂V with bulk charge held fixed. Then we may write

1

Ce
= 1

CG
+ 1

CQ
, CQ ≡ e

∂Q

∂μ
, (15)

where CG is the geometric capacitance that would be present
if the compressible edge region were treated as a perfect con-
ductor, and the quantum capacitance CQ is the correction due
to the finite compressibility. Specifically, ∂Q/∂μ measures
the change in edge charge density that would be produced
by a change in chemical potential if the long-range part
of the Coulomb interaction were completely screened. For
d/lB 
 1, we expect that CG will be smaller than CQ, so that
Ce will be only slightly affected if we treat the compressible
region as a metal, taking CQ → ∞.

The edge capacitance Ce is also important for under-
standing the decrease in the interference signal when the
temperature is raised above zero. Thermal fluctuations will
lead to a Gaussian distribution of the edge charge, with vari-
ance given by

〈(δQ)2〉 = CeT . (16)

Then the thermal expectation value of the quantity exp(iθ ),
which enters the interference signal, will be reduced by a
factor

〈e2π iδQ/e〉 = exp(−2π2CeT/e2). (17)

We note that the velocity v for propagation of a long-
wavelength charge fluctuation along the sample edge is
determined by the Hall conductance and the capacitance per
unit length. Specifically, the action (6) implies the energy

E = h̄

4πν

∫
dxv(x)

[
2πρ(x)

e

]2

, (18)

where ρ(x) is the charge density. The energy mini-
mum at a given charge q = ∫

dxρ(x) is achieved for
ρ(x) = q/[v(x)

∫
dx′v−1(x′)]. As a result, one finds that

Ce = νe2Lh−1〈v−1〉e, (19)
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where L is the perimeter of the interferometer region and 〈...〉e

denotes an average along the edge.
The experimental results of Ref. [4], in the region where

the sample bulk remained in an incompressible ν = 1/3 state,
were consistent with the arguments presented above. Specif-
ically, a color plot of the interference signal as a function
of B and VG showed a series of stripes of negative slope.
The distance between successive conductance maxima in any
direction in the plane may be understood as the change in B
and/or VG necessary to add one electron to the interferometer.
The experimental result for the spacing in B, with VG held
fixed, was found to be

B = 3�0/A0, (20)

where �0 = h/e is the magnetic flux quantum, and A0 is, at
least approximately, the area of the interferometer. This is just
the amount necessary to add one electron to the system if the
area remains fixed and the bulk electron density is pinned
to the ideal value, νB/�0. The observed pattern of parallel
stripes was interrupted by a series of phase jumps of size
2π/3, occurring along certain lines of positive slope, which
are understood as arising from changes in the occupation of
a small number of localized states due to disorder deep in
the interior. According to our analysis, one should identify
A0 with ν−1�0∂Q/∂B, under conditions where there are no
changes in the charges on localized states in the interior in-
compressible region. This should not be very different from
the value ν−1�0Q/B.

The resistance measurements of Ref. [4] extended beyond
the region where the Fermi level was inside the bulk energy
gap of ν = 1/3 into the compressible regions on either side.
There, one is in a region where there is a large density of either
positive or negative localized quasiparticles and therefore of
localized states at the Fermi level. However, the longitudinal
conductivity σxx in the bulk remains small, and the bulk Hall
conductance remains at the quantized value, because the local-
ized quasiparticles give a vanishing contribution to transport.
In these compressible regimes, the interferometer oscilla-
tions with VG remained visible, but oscillations with B were
much weakened and only visible at the lowest temperatures.
This behavior can be understood in the simple model [1,23],
if one takes into account the systematic variation of the
occupation of localized states in the bulk with changes
in B or VG.

As was noted above, for ν = 1, a change in the occupa-
tion of a localized state in the bulk will have no observable
effect on the interferometer signal if the Coulomb interaction
between charges in the bulk and the edge is well screened.
However, in samples without a nearby gate, Coulomb inter-
actions can be important. Although the Coulomb effect of
adding a charge to the bulk of a truly insulating system would
be expected to depend importantly on the location of charge,
particularly on the distance from it to the nearest edge, the
situation can be quite different in a case where there is a
large density of localized states at the Fermi energy. Even
if σxx is negligibly small compared to the quantum conduc-
tance e2/h, it may be big enough so that equilibration of
the charge density can occur on the time scale over which
parameters such as VG or B can be varied. Then the bulk of the
two-dimensional electron system will behave like a floating

metallic layer [12], which will screen the localized charge,
reaching a new uniform potential determined by its overall
capacitance to ground.

Within this model, it was argued that if coupling between
the bulk and edge is relatively weak (the “Aharonov-
Bohm” regime) the dominant interference period should be
a magnetic-field dependence corresponding to the addition
of one flux quantum [1,3,23] to the area A0. However, in
the opposite (“Coulomb-dominated”) regime, where the bulk-
edge coupling is strong, the most important oscillations in the
interference pattern should have a period in VG corresponding
to the addition of one electron to the system, but should
be essentially independent of B. For intermediate values of
the bulk-edge coupling, the two interference patterns may be
simultaneously visible [3].

A. Inelastic processes

In our discussion of the interferometer process, we have, so
far, neglected the possibility of inelastic scattering. In the case
of electrons at ν = 1, inelastic process occur if an electron
tunneling across the constriction does not result in a single
electron with the same energy traveling back along the second
edge, but instead results in several particles and hole excita-
tions, along one or both edges. For the Laughlin states, where
quasiparticles along the edge are strongly interacting, it is
better to define inelastic processes as occurring when the final
state contains additional excitations of plasmons along one or
both edges. Within the bosonization formalism, such terms
can arise from terms beyond the quadratic in the effective
Lagrangian.

According to the RG analysis, in the absence of tunneling,
at T = 0, the quadratic Lagrangian should be adequate to de-
scribe propagation along the two edges of the interferometer.
Even if there is a large voltage difference VS between the
edges, each edge will be in the ground state appropriate to its
own electrochemical potential. However, once tunneling oc-
curs, there will be out-of-equilibrium quasiparticles moving,
along the edges, and these could possibly create additional
excitations. At finite temperatures, even in the absence of
tunneling, there could be inelastic processes along the edges,
if the quadratic approximation is no longer valid. Of course,
if VS is made large compared to the energy scale h̄v/L the
interference signal will be lost, even in the absence of inelas-
tic scattering, as particles of different energies will undergo
different phase accumulations as they move around the inter-
ferometer [21].

The existence of a large density of localized states near
the edge, which might occur in the case of strong disorder
and soft confinement, could possibly lead to additional de-
coherence effects due to inelastic scattering processes, for
measurements at nonzero bias voltages or temperatures. Low-
energy neutral excitations could arise from processes where a
quasiparticle is taken from an occupied state below the Fermi
energy and transferred to a nearby empty state, just above
the Fermi energy. More complicated excitations may involve
multiple exchanges. Eventually, these excitations would rera-
diate their energy into plasmons or particle-hole excitations
along the edges. The matrix elements by which charge propa-
gating along the edge can exchange energy with the localized
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modes are likely to be small at low energies, but their effects
on decoherence deserve further study.

B. Other filling factors

The arguments for the robustness of the interference phase
given above do not apply directly when the bulk of the in-
terferometer belongs to a Hall state other than ν = 1 or a
Laughlin state with ν = 1/(2n + 1), so the interferometer
edge will contain more than one propagating mode. In this
case, the interferometer pattern will depend importantly on
which mode is partially reflected at the constrictions.

The simplest case to consider is when the bulk has
nominal filling ν = 2. Then the ideal edge will have two
co-propagating modes: an outer edge mode corresponding
to electrons with the majority spin and an inner edge mode
belonging to the minority spin. If the constrictions are not too
narrow, both edge modes can be transmitted through them.
If we can neglect spin-orbit coupling then there will be sep-
arate phase accumulations θσ for the two spin states, which
will be related to the total charge Qσ in the interferometer
region of electrons with the given spin. Since we expect, in
this case, that back-scattering at the constrictions will occur
primarily for electrons in the inner channel, the interference
signal should then be determined by the number of minority-
spin electrons in the system. Because electric charge can be
redistributed between the two edge modes, the responses of
the system to changes in B, VG, or V will not be determined
only by relatively long-wavelength electrostatic energies, and
they may be much more sensitive to edge disorder or other
details than in the case of ν = 1. Also, since one expects
to find a spin-wave edge mode with velocity much smaller
than the charge velocity, the interference signal may disappear
more quickly with rising temperature than for ν = 1.

Other issues occur if the bulk filling is on a ν = 2 Hall
plateau, but the constrictions are so narrow that the minor-
ity carrier mode is completely reflected, while the majority
spin mode is partially transmitted. Because the number of
minority-spin electrons is now constrained to be an integer, the
interferometer phase can be determined equally well from the
number of majority spin electrons or the total electron number.
However, the existence of two spatially separated edge modes
may make it more difficult to approximate the edge region by
a single geometric capacitance.

For integer fillings larger than ν = 2, disorder at the edge
can cause additional complications due to scattering between
edge modes with the same spin. The possible interferometer
patterns for integer states with ν � 2 have been discussed
in the literature [2], but primarily within a a model that ne-
glects scattering between edge modes. A similar discussion,
which ignores scattering between edge modes, was applied
to fractional quantum Hall states, such as ν = 2/5 or 3/7,
with multiple edge modes all traveling in the same direc-
tion [3]. It is not clear whether predictions of these models will
apply to actual physical systems where such scattering may
be important.

At some filling factors, such as ν = 2/3, the downstream
charged edge mode is necessarily accompanied by topolog-
ically protected upstream neutral mode. Then if the charged
mode passes through the constriction, so will the neutral

mode. If backscattering in the constrictions is mediated by
tunneling of a charge 2e/3 quasiparticle, it seems possible that
a robust interference signal could be observed.

Edge reconstruction may give rise to another scenario. In
Sec. II we focused on the simplest picture of multiple ν = 1
stripes on an integer edge. A possibility of edge reconstruction
with new modes of a lower filling factor ν = 1/3 has also been
proposed [24]. If the ν = 1/3 modes do not pass through the
constriction, their presence in the bulk should have no effect
on the interference signal, and the arguments given in Sec. III
should apply. On the other hand, if the fractional modes can
pass through the constriction in addition to the ν = 1 mode, or
if the constriction is sufficiently narrow that only a fractional
mode can pass through, we expect that any interference signal
will be easily destroyed by disorder.

V. SUMMARY

Experiments with the geometry of a Fabry-Pérot interfer-
ometer have been used to study various aspects of the quantum
Hall effect, including the fractional charge and fractional
statistics of quasiparticles. However, interpretation of these
experiments have tended to use a somewhat oversimplified
picture, wherein there is a set of one or more propagating
modes at the sample edge and a set of localized quasiparticle
states that have only negligible tunneling connections to the
propagating modes.

In this work, we have explored the question of how robust
are these predictions in a more realistic model, where the
propagating edge mode is likely to be embedded in a region
containing a large density of quasiparticle states, which will
be coupled to the edge with tunneling probabilities of various
strengths. Our focus was on the simplest quantized Hall states,
ν = 1 and Laughlin states at ν = 1/(2m + 1), which have a
single chiral edge mode in idealized models.

We first considered the edge of a semi-infintite sample.
We started from a microscopic picture of the edge environ-
ment in the presence of disorder, and we discussed how a
single propagating mode emerges at low energies, both in a
Hartree-Fock picture and with a more accurate analysis using
bosonization of the edge modes. This led to a description in
terms of a single renormalized edge mode, with a well defined
phase accumulation as one moves along the edge. Moreover,
changes in this accumulated phase could be related to changes
in the electric charge associated with the edge.

In Sec. III, we turned to measurements in an interferometer
geometry. We showed how the measured phase of oscillations
in the interferometer signal at low energies can be directly
related to the accumulated phase change θ around the edge of
the interferometer in its ground state, and that θ , in turn, is
related by Eq. (9), in a precise way, to the total electric charge
in the interferometer region. This relation holds equally for
the Laughlin states as for the integer state at ν = 1.

In Sec. III B, we presented a more general detailed argu-
ment for the validity of Eq. (9) in the ground state, assuming
that the constrictions defining the interferometer area are
smooth and allow just a single chiral mode to pass through,
but making no other assumptions about the behavior of the
edge states or other details of the system inside the interfer-
ometer. We then argued that the ground state value of θ would
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be manifest in interference measurements at sufficiently low
energies, provided that the body of the interferometer is close
enough to a quantized Hall plateau that σxx is small and one
can neglect scattering from one edge to the other across the
bulk of the interferometer.

Some consequences of this analysis were explored in
Sec. IV. One consequence is a confirmation that the addition
or removal of a Laughlin quasiparticle from a localized state in
the interior of the interferometer region will produce precisely
the change in interferometer phase as is predicted by the the-
ory of fractional statistics, provided that Coulomb interactions
between the localized quasiparticle and the edge mode can
be neglected because of screening by a nearby conductor.
More generally, Coulomb interactions should be taken into
account. However, the effects of changes in parameters such
as the magnetic field or a gate voltage, as well as effects of a
discrete change in occupancy of a localized state, will still be
completely determined by changes in the total charge on the
interferometer. This charge can be obtained, in principle, from
a generalized electrostatics calculation, where one takes into
account the finite local compressibility of the electron system
in quantized Hall regions with a varying density of localized
quasiparticle states. However, in many situations, the quantum
energy cost of charge fluctuations in a compressible region is
negligible compared to the electrostatic energy cost, so that
compressible regions can be treated as ideal conductors. We
also argued that under conditions where the number of local-
ized states is held fixed, the variation in interference phase
with changes in the applied magnetic field should be only
weakly affected by disorder or other details of the edge: the
variation should be smooth and essentially determined by the
area of the interferometer.

Quantum Hall states with multiple chiral edge modes are
harder to deal with, particularly if one cannot neglect scatter-
ing between the different modes. Nevertheless, insights gained
from our analysis may be helpful in understanding these sys-
tems. In particular, the expectations of the naive model should
hold if the bulk-edge interaction is sufficiently well screened,
and scattering between different edge modes can be neglected.
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APPENDIX: BROADENED PHASE JUMPS

We consider here the way the phase accumulation changes
as one changes the relative energies of a localized state and
the edge state, when the tunnel coupling between the two is
not negligible. In the simplest picture, small changes in the
gate voltage and the magnetic field generally result in small
changes in the device area. Hence, away from the 2πν jumps,
the phase changes linearly with the voltage and the field. The
existence of localized states in and out of the interferometer

complicates this picture. Indeed, as we saw in Sec. II, the
low-energy effective theory contains tunneling between the
chiral edge and localized low-energy states. The states outside
the interferometer can exchange electrons with the edge. The
states inside the interferometer can exchange quasiparticles
with the edge. We will focus on ν = 1, where quasiparticles
and electrons are the same. Our current goal is to see what
happens to the phase when a localized state merges with the
interferometer bulk in response to changing parameters. We
will see that the phase exhibits a glitch of a Lorentzian shape.
The total change of the phase in the process of merging is,
of course, proportional the total charge in the localized state,
which is constrained to be an integer number of quasiparticles.

We shall address the effect of a single impurity state that is
close enough to the edge so that we need to take into account
tunnel-coupling to the edge, but we shall neglect electron-
electron interactions. We consider a closed edge with length L
and velocity v. We treat the impurity state as a resonant state
with a bare energy εR. The Hamiltonian is (with h̄ = 1)

H = H0 + HR + Hint, (A1)

H0 =
∑

n

vkna†
nan, (A2)

HR = εRc†c, (A3)

Hint = 1√
L

∑
n

(γ a†
nc + γ ∗c†an), (A4)

where kn = 2πn/L with nmin � n � nmax. For simplicity we
will choose symmetric cutoffs, nmin = −nmax, and will as-
sume these to be so large that they can be sent to infinity.
This comes at the price of resolving the delta-function in the
coordinate representation of Hint = γ

∫
dxa†(x)cδ(x) + H.c.,

which we resolve as a function u(x), nonzero at small x only
and with a unit integral.

For noninteracting electrons, we need only consider the
behavior of a single electron in the system. We introduce the
operator �, which annihilates the eigenstate of H with energy
E ,

� =
∫

dxψ∗(x)a(x) + αc, (A5)

where ψ (x) is a wave function. Computing the commutator of
� with the Hamiltonian, one gets

Eα = εRα + γ A, (A6)

A =
∫

u(z)ψ∗(z)dz, (A7)

Eψ (x) = −iv∂xψ (x) + α∗γ u(x). (A8)

The solution for ψ (x) can be obtained with the multiplication
of Eq. (A8) by the integrating factor exp(−iEx/v). The solu-
tion is

ψ (x) = exp(iqx)[C − i�A∗

E − εR

∫ x

−∞
exp(−iqy)u(y)dy],

(A9)
where C is a real normalization constant, q = E/v, and
� = |γ |2/v. Neglecting qx in the region of nonzero u(x), we
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can connect A and C with the help of Eq. (A7). The cal-
culation involves the integral I = ∫ ∞

−∞ dzu(z)
∫ z
−∞ u(x)dx =∫

x<z dxdzu(x)u(z). Since I = ∫
z<x dxdzu(x)u(z), it follows

that 2I = ∫ ∞
−∞ dzu(z)

∫ ∞
−∞ dxu(x) = 1. If one substitutes (A9)

into (A7) and neglects qx in the region of nonzero u(x), one
is led to the result A[E − εR − i�/2] = C(E − εR). From this,
one finds that the phase shift θ for an open system at energy
E is given by

exp(iθ ) = E − εR − i�/2

E − εR + i�/2
,

θ = 2 arctan
�

2(εR − E )
. (A10)

In the case where there are multiple impurities, one should
add the phase shifts, or multiply the phase factors. The phase
shift divided by 2π yields the excess number of states with
the energies below E compared to the absence of the impuri-
ties [20]. The correction to the interferometry phase at a low
temperature corresponds to substituting the chemical potential
in place of E . For a single impurity, the phase changes by 2π

as E runs from a large negative value to a large positive value.
We expect that localized states are typically associated with

extended closed edge channels with the length scale ∼100 nm
set by the distance to remote ionized donors. The relative
energy of the interferometer and the localized state depends
on the gate voltage in a way sensitive to the geometry of the
device and the localized state.
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