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Aharonov-Bohm oscillations in phosphorene quantum rings:
Mass anisotropy compensation by confinement potential
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We consider the Aharonov-Bohm (AB) effect on a confined electron ground state in a quantum ring defined
electrostatically within the phosphorene monolayer. The strong anisotropy of effective masses in phosphorene
quenches ground-state oscillations for a circular ring because of interrupted persistent current circulation around
the ring. An elliptic deformation of the confinement potential can compensate for the anisotropy of the effective
masses and produce ground-state parity transformations with the AB periodicity. Moreover, a specific ratio of
the semiaxes is determined for which the spectrum becomes identical to that of a circular quantum ring and
an isotropic effective mass. We identify a generalized angular momentum operator which commutes with the
continuum Hamiltonian for the chosen ratio of the semiaxes that closes the avoided crossings of energy levels for
states of the same parity and spin. Ground-state oscillations for the two-electron ground state are also discussed.
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I. INTRODUCTION

Phosphorene [1] or a monolayer form of black phosphorus
[2–4] is extensively studied for optics [5], field-effect tran-
sistors [2,6,7], and quantum Hall effects [8–10]. Unlike the
half-metallic graphene, phosphorene is a direct gap semicon-
ductor that can host the electrostatic lateral confinement of
electrons. The electrostatic fields produce a clean confinement
in gated two-dimensional systems for the investigation of the
single-electron and interaction effects [11] in carrier traps. A
particular form of the lateral confinement that attracts a lot of
attention is the quantum ring [12]. The annular confinement
allows for persistent current circulation in the presence of
an external magnetic field, with the spectrum and magnetic
response which is periodic with the Aharonov-Bohm period-
icity [13]. The periodicity of the spectrum of a phosphorene
ring defined as a rectangular flake of the crystal with a central
opening has been studied in Ref. [14], including the effect of
the zigzag and armchair edges of the crystal. The purpose of
this paper is to investigate a clean quantum ring defined within
phosphorene by an external potential that keeps the electrons
off the edges of the crystal and is not affected by its details.

The anisotropy of the phosphorene crystal structure [4]
results in a strongly anisotropic electron effective mass [2,15–
18] that is much larger along the zigzag chains of ions [16]
than in the perpendicular direction. The anisotropy prevents
the persistent current flow in the electron ground state con-
fined in a circular ring. However, current circulation can be
restored by deforming the confinement potential to an elliptic
form. Then, the spectrum acquires a braided pattern of even-
and odd-parity energy levels, which cross with the Aharonov-
Bohm period. Moreover, we propose a geometry for the
elliptic confinement in which a modified angular momentum
operator, with one of the Cartesian coordinates rescaled, com-
mutes with the Hamiltonian and the energy spectrum becomes

similar to the one of an electron in a circular quantum ring
with isotropic effective mass. For a confined electron pair
interacting with the Coulomb potential, the operator no longer
commutes with the Hamiltonian, but the Aharonov-Bohm
oscillations of the ground-state energy appear for a tuned
confinement potential.

II. THEORY

A. Tight-binding model

We work with the phosphorene monolayer (see Fig. 1)
using the Hamiltonian

HTB =
∑

kl

tkl pkl c
†
kcl +

∑
k

Vkc†
kck + gμBBσz/2, (1)

where the first sum describes the hopping between the neigh-
boring atoms. The values for tkl (see Table I) are taken
from the five-parameter effective tight-binding Hamiltonian
of Ref. [17]. The positions of the ions in the phosphorene
crystal [3] are plotted in Fig. 1 with the zigzag chains oriented
along the y direction. In Eq. (1), pkl are the Peierls phase
shifts that the electron acquires from the vector potential along

the line between k and l ions, pkl = ei e
h̄

∫ �rl
�rk

�A· �dl . We consider
the magnetic field perpendicular to the monolayer (0, 0, B)
with the vector potential taken in the symmetric gauge A =
(−By

2 , Bx
2 , 0). In Eq. (1), Vk stands for the external potential

on the ion k. The spin Zeeman effect is introduced by the last
term of the Hamiltonian.

The g factor for phosphorene of g ≈ 2.03 was determined
using the k · p theory by Junior et al. [19]. Zhou et al. [20]
indicated the value of g = 2.14 for monolayer black phos-
phorus. On the other hand, experiments have determined the
value of g = 2 ± 0.1 [21] and g ≈ 1.8–2.7 [22] and some
have even reported g = 5.7 ± 0.7 at low filling factors [23].
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FIG. 1. Ions in phosphorene monolayer placed on two planes
separated by a distance of 0.213 nm. The lines link the neighbor ions
with the largest hopping energies (in-plane neighbors, green lines,
hopping energy −1.22 eV) and (neighbors of separate planes, red
lines, hopping energy 3.665 eV) (see Table I).

Nevertheless, the spin Zeeman term produces only a linear
shift in the energy defining the spin splitting. The magnetic
field promotes the spin-down energy levels to the ground
state sooner or later on the magnetic field scale. We focus on
avoided crossings or crossings of the states of the polarized
spin. The absence or presence of Aharonov-Bohm oscillations
will not be affected by the value of the g factor. Therefore, the
spin Zeeman term is calculated with the value g = 2.

B. Effective-mass Hamiltonian

Part of the results of this work is obtained in the continuum
approximation to the tight-binding Hamiltonian. We use a
single-band effective-mass operator,

Hem =
(

−ih̄
∂

∂x
+ eAx

)2/
2mx +

(
−ih̄

∂

∂y
+ eAy

)2/
2my

+V (x, y) + gμBBσz/2, (2)

with the effective-mass parameters derived by fitting the
tight-binding spectrum to the harmonic oscillator spectrum in
Ref. [24] with mass about five times heavier for the carrier
motion along the zigzag chains of the crystal (see Fig. 1),
mx = 0.170 37m0 and my = 0.853 27m0. The effective-mass
Hamiltonian is diagonalized using the finite-difference tech-
nique.

TABLE I. Hopping energies according to Ref. [17] for a single
black phosphorus layer. The left column shows the distance between
the ions and the right column the hopping energy tkl applied in the
tight-binding Hamiltonian (1).

rkl (nm) tkl (eV)

0.222 −1.22
0.224 3.665
0.334 −0.205
0.347 −0.105
0.423 −0.055

C. Confinement potential

We attempt to compensate for the anisotropy of the effec-
tive masses by the anisotropy of the confinement potential. For
that purpose, we use the following external potential,

V (x, y) = 1
2 mxω

2[ρ(x, y) − R]2, (3)

with ρ(x, y) =
√

x2 + y2/α, where α is a parameter that con-
trols the anisotropy of the potential. The potential vanishes for
points (x, y) forming an ellipse,

x2

R2
+ y2

αR2
= 1. (4)

We take the confinement energy h̄ω = 6 meV. Changing α

we keep the area within the ellipse fixed taking R = α−1/4Rc,
with Rc = 30 nm, so that the number of magnetic flux quanta
threading the ellipse is the same for a given magnetic field
B independent of α. For Rc = 30 nm a flux quantum threads
the ring at 1.43 T, which is the period of the energy spectrum
on the B scale for a strictly one-dimensional (1D) circu-
lar quantum ring. We use α � 1 so that the half length of
the major axis a of the ellipse is oriented along the x axis
a = R = α−1/4Rc and the half length of the minor axis is
b = √

αR = α1/4Rc.
In this work, we focus on the confined electron states of the

conduction band. In the continuum Hamiltonian, the bottom
of the conduction band is set as the reference energy level. The
tight-binding spectrum produces the conduction- and valence-
band extrema spaced by the energy gap. For a finite flake,
the spectrum also contains in-gap states that are localized at
the edge of the flake and the spectrum is not symmetric with
respect to the center of the energy gap [14]. Reference [14],
which used the same tight-binding parametrization [17], pro-
vides the lowest conduction-band state energy level of �0.4
eV for a square flake with a side length of 8 nm in the absence
of an external potential. In this paper, we are interested in
states confined in the external potential that are independent of
the details of the edge and thus correspond to an infinite crys-
tal. However, the calculations are carried out in an elliptical
flake for which the position of the ions satisfies the condition
x2 + y2/α < R2

s . We take the flake large enough to contain all
the discussed states within the confinement potential so that
the results are independent of Rs. However, for V = 0, the
conduction-band states occupy the entire flake, and the results
depend on Rs [25]. The dependence on the lowest-energy
level in Rs is well approximated by the dependence E0(Rs) =
C/R2

s + E∞, where C = 673.31 (meV nm2) and E∞ = 340
meV. The R−2

s dependence is due to the finite-size effect, that
is, the kinetic energy due to localization in a finite flake, and
E∞ = 340 meV is the estimated position of the bottom of the
conduction band for an infinite crystal. In the results presented
in the following we shift down the tight-binding energies
by E∞.

III. RESULTS AND DISCUSSION

A. Single-electron solutions

The low-energy spectrum of a circular ring (α = 1) is plot-
ted in Fig. 2(a) [Fig. 2(b)] for the tight-binding (TB) model
(continuum model). The TB results [Fig. 2(a)] here and below
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FIG. 2. (a) The tight-binding and (b) continuum Hamiltonian
eigenvalues for α = 1. The blue and red lines show the spin-down
and spin-up energy levels, respectively. The tight-binding energy lev-
els in (a) were shifted down by E∞ = 340 meV (see text in Sec. II B).
(c) shows the confinement potential and (d) the ground-state charge
density for B = 0 calculated using the continuum model.

are shifted down by 340 meV. The results of both approaches
are nearly identical. The ground state of a circular ring is
localized in two islands near the y axis on the opposite sides of
the ring center [Fig. 2(c)]. The wave function confinement im-
plies a contribution to the kinetic energy which is large along
the x axis due to the low value of mass mx. In consequence
the ground-state wave function is far from the x axis, and no
persistent current circulation is possible in the ground-state.

The lowest spin-up and spin-down energy levels of
Figs. 2(a) and 2(b) are twofold degenerate with respect to the
parity. Degeneracy results from the lack of tunneling of the
wave function across the x axis [Fig. 2(d)]. In the excited state
part of the spectrum, one can see pairs of energy levels that
cross in a braidlike pattern. The corresponding states have
opposite parities, hence the crossings of the levels. These
oscillations are reminiscent of the angular momentum transi-
tions for a circular ring with isotropic effective mass [12,26].

With α < 1 the confinement area on the y axis becomes
thinner and the one along the x axis wider [see Fig. 3(c)
for α = 1.2 mx

my
]. The confinement energy along the y axis

increases and that along the x axis decreases. The x axis
is now accessible for the ground-state electron [Fig. 3(d)].
The ground-state degeneracy is lifted, and the ground-state
crossings of energy levels of opposite parity are observed
[Fig. 3(a,b)].

In Fig. 4(a) we plotted a magnified view of the low-energy
part of the spectrum. By �0 we denote the energy splitting of
the lowest even- and odd-parity energy levels taken at B = 0,
which defines the range of the ground-state energy oscillations
as functions in the external magnetic field. The braided two
energy levels cross with the Aharonov-Bohm period. The

FIG. 3. Same as Fig. 2 only for α = 1.2 mx
my

.

second quantity marked in Fig. 4(a) by �e is the width of
the avoided crossing of even-parity energy levels taken at
B � 7.75 T.

Decreasing the anisotropy parameter to α = mx
my

we find
that the ground-state charge density [Fig. 5(d)] is constant
along the confinement potential minimum [Fig. 5(c)]. The
continuum spectrum [Fig. 5(b)] contains crossings of energy
levels in the entire spectrum. For the tight-binding model
[see also Fig. 4(b)] we find the parity-related crossings of the
energy levels in the ground state as in Fig. 3, and only narrow
avoided crossings are found between the first and second

FIG. 4. Magnified view of the low-energy part of the tight-
binding spectrum for (a) α = 1.2 mx

my
and (b) α = mx

my
[Fig. 6(a)].

Letters “e” and “o” near the energy levels in (a) mark the even- and
odd-parity energy levels that are eigenstates of the parity operator
with the eigenvalues +1 and −1, respectively. �0 is the even-odd-
parity splitting at B = 0 and �e is the width of the avoided crossing
between the lowest even-parity energy levels for B � 7.75 T. The red
arrow in (b) shows the avoided crossing �e, here of the width of 13
μeV (see Table II).
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FIG. 5. Same as Fig. 2 only for α = mx
my

. In (b) the colors indicate

the eigenvalue of the angular momentum l ′
z operator, and in (a) the

colors describe the spin as in Fig. 2.

excited energy levels of the same parity. The one marked by
the red arrow in Fig. 4(b) corresponds to �e = 13 μeV. �e

attains its minimal value for α = mx
my . Values of �0 and �e

calculated with the tight-binding approach for varied α are
summarized in Table II.

B. Angular momentum in the rescaled space

The crossings of the energy levels in the spectrum of
Fig. 5(b) suggest that an additional symmetry is present in
addition to the parity. With the substitution y′ = y/

√
α and

α = mx
my

the Hamiltonian (2) becomes

Hem = − h̄2

2mx

(
∂2

∂x2
+ ∂2

∂y′2

)
+ e2B2

8my
(x2 + y′2)

+ eB

2
√

mxmy
l ′
z + V (ρ ′ − R) + gμBBσz/2, (5)

TABLE II. The spacing �0 between the lowest-energy levels of
even and odd parity for B = 0 [see Fig. 4(a)] and the �e width of the
avoided crossing between the two lowest-energy levels of even parity
[Fig. 4(a)] as a function of the eccentricity parameter α for B � 7.75
T. The results are calculated with the tight-binding approach.

α α/(mx/my ) �0 (meV) �e (meV)

1 2.238 0.001 0.673
0.894 2 0.012 0.414
0.536 1.2 0.061 0.137
0.469 1.05 0.096 0.046
0.447 1 0.113 0.013
0.424 0.95 0.104 0.028

with ρ ′ =
√

x2 + y′2 and the z component angular momentum
operator in the deformed space l ′

z = ih̄(y′ ∂
∂x − x ∂

∂y′ ). The con-
finement potential acquires circular symmetry upon rescaling
of the y coordinate and the Hamiltonian commutes with l ′

z
operator. The crossings of the eigenstates of the effective-mass
Hamiltonian are due to the symmetry which upon rescaling
of the y coordinate is no longer hidden. The l ′

z eigenvalues
are given by color in Fig. 5(b). The ground state undergoes
l ′
z angular momentum transitions similar to the ones found

for circular quantum rings with isotropic electron effective
mass [26]. Note that the applicability of the l ′

z operator is
not limited to quantum rings, but it can also be used to any
potential profile which is radially symmetric for the rescaled
y coordinate.

C. 1D limit

For a narrow radial confinement (large ω) the low-energy
part of the spectrum occupies the same state of radial quan-
tization and there is essentially one degree of freedom of
motion along the ring. The Hamiltonian (5) put in circular
coordinates reads

Hem = − h̄2

2mx

(
1

ρ ′
∂

∂ρ ′ + ∂2

∂ρ ′2 − l ′2
z

ρ ′2

)
+ B

2
√

mxmy
l ′
z

+ e2B2

8my
ρ ′2 + V (ρ ′ − R), (6)

where we neglected the spin Zeeman term. For strong con-
finement (large ω) the radial profile of the wave function no
longer depends on l ′

z or B. Then, the terms with the deriva-
tives with respect to ρ ′ and the external potential produce the
same energy contribution for all the states involved. With this
contribution set as the reference energy level, we obtain the
energy spectrum of the form

E (l ′
z, B) = h̄2l2

z

2mxR2
+ e2B2

8my
R2 + eB

2μ
l ′
z, (7)

where μ = √
mxmy. With R = ( my

mx
)1/4Rc one obtains an ex-

pression that is symmetric in the effective masses,

E (l ′
z, B) = h̄2l ′2

z

2μR2
c

+ e2B2

8μ
R2

c + eB

2μ
l ′
z

= h̄2

2μR2
c

(
�

�0
+ l ′

z

)2

, (8)

where �0 = h
e = 2π h̄

e is the flux quantum and � = BπR2
c .

The final result with the geometric average of the effective
masses is identical to that of the circular ring with an isotropic
effective mass [26].

Figure 6 shows the 2D continuum Hamiltonian (6) spectra
with the spin Zeeman effect excluded for h̄ω = 6 meV in
Fig. 6(a), h̄ω = 120 meV in Fig. 6(b), and the results of the
1D formula in Fig. 6(c). In Fig. 6(a) we see a diamagnetic shift
of the spectrum to higher energy. The period of the Aharonov-
Bohm oscillations is slightly larger than in the 1D results due
to compression of the wave function by the external magnetic
field that decreases average ρ ′ below Rc. For the radial wave
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FIG. 6. The energy spectrum of Hamiltonian (5) with g = 0 for
(a) h̄ω = 6 meV, (b) h̄ω = 120 meV, and (c) the 1D formula (8). The
color of the lines gives the l ′

z operator eigenvalue.

function confined stronger around Rc in Fig. 6(b), we see the
results approach the results for the analytical formula (8).

D. Two-electron spectrum

The electron-electron interaction potential does not com-
mute with the l ′

z operator, so the presence of the ground-state
oscillations is not given a priori. We calculated the two-
electron energy spectrum in the continuum approach using the
Hamiltonian

H2e = Hem(r1) + Hem(r2) + e2

4πε0ε

1

r12
, (9)

where Hem is the single-electron Hamiltonian (2), and ε = 12
is taken. The two-electron Hamiltonian is diagonalized in
the basis of the two-electron Slater determinants constructed
from the 30 lowest-energy single-electron eigenfunctions of
Hamiltonian (2).

For both α = 1 [Fig. 7(a)] and α = mx
my

[Fig. 7(c)] at
B = 0 the ground state is fourfold degenerate, with singlet-
and triplet-energy levels of the same energy. The exchange
interaction is zero since the electrons form single-electron
islands that are completely separated. For α = 1 the lo-

FIG. 7. The two-electron energy spectrum [(a), (c), (e)] and the
ground-state charge density [(b), (d), (f)] calculated using continuum
model for (a), (b) B = 0 and α = 1, (c), (d) α = mx

my
, and for (e), (f)

α = 1.7 mx
my

. In (a), (c), and (e) the color of the lines corresponds to
the z component of the total spin.

calization of the charge density formed a single-electron
island already without interaction [Fig. 2(d)]. For α = mx

my

the electron-electron interaction separates the electron density
to the opposite ends of the longer semiaxis of the ellipse
[Fig. 7(d)]. A more or less uniform electron distribution is ob-
tained for α = 1.7 mx

my
[Fig. 7(f)]. In this case, the ground state

for B = 0 is a singlet which is not degenerate with the triplet.
The field of about 0.5 T promotes the triplet to the ground
state. Periodic avoided crossings are observed in the ground
state, which are similar to the ones found for a system with
an isotropic effective mass but in an anisotropic quantum ring
[27]. For the circular ring, the triplet energy levels correspond
to odd values of the total angular momentum (L) [28] that
correspond to the negative parity (−1)L. In our two-electron
system, only the parity is a good quantum number. In Fig. 7(e)
we see a series of avoided crossings between the ground state
and the first excited state. The avoided crossings obtained for
the spin-polarized two-electron levels are observed due to the
same—odd—parity of these levels, which is in contrast to
the single-electron ground state where the crossings of energy
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levels corresponding to opposite parity were observed in the
ground state.

E. Discussion

The spectra of confined quantum rings are experimen-
tally studied for annular-shaped traps defined in gated
two-dimensional electron gas [29]. The current transport for
electron traps weakly coupled to the electron reservoirs is
governed by the Coulomb blockade [11,30], with the single-
electron current passing through the system only when the
chemical potential of the confined N-electron system falls
within the transport window defined by the Fermi levels of
the source and drain. The technique can also be used for
detection of the excited part of the spectra when the corre-
sponding energy level enters the transport window [29,30].
The transport spectroscopy allows for reconstruction of the
energy spectra with a precision of the order of a few μeV [29]
with the Aharonov-Bohm periodicity as the signature of the
angular confinement. The gated quantum rings can exhibit an
elliptically deformed confinement potential as in Ref. [29] in
particular.

The gating techniques for phosphorene have been devel-
oped [2,6,7] and applied for fabrication of the field-effect
transistors. The ringlike potential can be defined electrostati-
cally in a plane plate capacitor system with a tubular electrode
protruding from one of the plate electrodes with the phos-
phorene layer embedded in a dielectric [31,32]. For a similar
gating system defined for electrons on liquid helium surface,
see, e.g., Ref. [33].

The results of this paper indicate the way to observe the
Aharonov-Bohm effect for the system confined by the exter-
nal potential in phosphorene. For circular quantum rings the
Aharonov-Bohm oscillations can only be observed in the ex-
cited part of the spectrum since in the degenerate ground state
the electron density forms separated islands and the persistent
current circulation is interrupted. For an elliptical deformation
of the confinement potential, the oscillations of the ground-
state parity appear with the Aharonov-Bohm periodicity. The
amplitude of these oscillations has been determined (see �0

in Table II). Based on results of Ref. [29] one can expect
that for α � 1.2 mx

my
the ground-state oscillation should enter

the experimental resolution.

For a specifically chosen eccentricity parameter α one can
reduce the spectra to those that are characteristic to a circular
quantum ring with an isotropic effective mass. We explained
this effect analytically in the effective-mass approximation
that indicates an additional symmetry found for a value of α

and the spectra that agree with the tight-binding ones up to
an avoided crossing in the excited energy spectra found in the
latter, which is minimal for the optimal value of α = mx

my
(see

�e in Table II). The width of the avoided crossing should also
be accessible for an experimental study.

IV. SUMMARY AND CONCLUSIONS

We have studied the ground-state energy oscillations in a
quantum ring potential defined within monolayer black phos-
phorus with the tight-binding and effective-mass models. In
a circular quantum ring, the strong anisotropy of the effec-
tive mass produces a ground state localized along the axis
related to the heavier mass. The current circulation around
is possible for an elliptic ring. A braided pattern of even-
and odd-parity energy levels is then observed in the ground
state with crossings appearing with the Aharonov-Bohm pe-
riodicity. In particular, for the ellipse with the ratio of the
semiaxes equal to the effective-masses ratio, the electron den-
sity becomes uniform along the ring. Then, the single-electron
energy spectrum becomes similar to that of a circular quantum
ring with an isotropic effective mass equal to the geometric
average of the effective masses along the two crystal direc-
tions. We demonstrated that the angular momentum in the
rescaled space l ′

z is definite in the single-electron Hamilto-
nian eigenstates. We provided an analytical formula for the
spectrum in the 1D limit. The applicability of the l ′

z operator
exceeds the quantum rings and can be used for modeling
other confined systems in phosphorene. For two electrons, an
elliptical deformation of the ring produces avoided crossings
in the ground state due to the same parity of low-energy
spin-polarized states appearing periodically on the magnetic
field scale.
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