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Origin of giant valley splitting in silicon quantum wells induced by superlattice barriers
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Enhancing valley splitting in SiGe heterostructures is crucial for developing silicon spin qubits. Complex SiGe
heterostructures, sharing a common feature of four-monolayer (4 ML) Ge layer next immediately to the silicon
quantum well (QW), have been computationally designed in 2013 to have giant valley splitting approaching
9 meV and hence could be used to overcome the challenge of valley splitting towards the experimental realization
of Si quantum computing. However, none of them has been successfully fabricated, perhaps due to their
complexity. Here, we remarkably simplify the originally designed complex SiGe heterostructures by laying
out the Si QW directly on the SiGe substrate followed by capping a (Ge4Si4)n superlattice (SL) barrier with a
sacrifice in valley splitting (VS), which is reduced from a maximum value of 8.7 to 5.2 meV. Even the smallest
number of SL periods (n = 1) will also give a sizable VS of 1.6 meV, which is large enough for developing stable
spin qubits. We further develop an effective Hamiltonian model to reveal the physical mechanism underlying the
enhanced valley splitting by the (Ge4Si4)n SL barriers. We surprisingly find that the presence of the SL barrier
will reduce rather than enhance the VS in most cases. The only exception is the (Ge4Si4)n SL barriers, where their
miniband states have such a strong coupling with Si QW valley states that they provide an even larger VS. These
findings lay a solid theoretical foundation for overcoming the valley splitting issue of SiGe heterostructures in
the experiment that is heading toward Si quantum computing.

DOI: 10.1103/PhysRevB.105.165308

I. INTRODUCTION

Silicon spin qubits have several advantages over other
competing qubit schemes [1,2] including extremely long spin
relaxation time [3] and dephasing time [1], the scalability, and
the mature microelectronic technologies [2]. Particularly, the
last one is the key advantage for its capability to integrate both
the qubits and electronics on a single chip to take advantage
of both spin and charge degrees of freedom of electrons and
fabricate millions of qubits in a silicon quantum chip needed
to implement universal quantum computing. However, the
electronic energy level is twofold degenerate in Si quantum
dots due to the sixfold degenerate bulk Si conduction band
X-valleys, which becomes a primary factor hindering us from
achieving the well-defined and effectively controlled silicon
spin qubits [1,2,4]. In bulk Si, the conduction band minimum
is located at � point, 0.85 × (2π/a0) from the � point toward
the X point of the Brillouin zone (a0 = 5.43 Å is the Si
lattice constant), and thus has a sixfold valley degeneracy.
In Si quantum wells (QWs), the space confinement along the
growth direction splits the sixfold degenerate �6 valleys into
a low-lying two-fold degenerate �2 valley and a high-lying
fourfold degenerate �4 valley. The twofold degeneracy of
the low-lying �2 valley is difficult to be further lifted. For
a system with its ground-state manifold is composed of more
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than one orbital level, it is difficult to precisely manipulate
the spin qubit and realize well-characterized qubits, which is
one of the crucial criteria for the implementation of quantum
computation [5]. In Si QWs, it was believed [6–11] that the
sharp interfacial potential causes coupling between two low-
lying �2 valleys and thus lifts the twofold degeneracy with an
energy separation referring to valley splitting (VS). The VS
has to be much larger than the magnetic field-induced spin
splitting (Zeeman splitting) to realize stable qubits. Numerous
studies [12–15] have been carried out to evaluate the impacts
of VS on the initialization and manipulation of Si spin qubits
as well as to enhance the VS. For instance, it has been illus-
trated that for Si spin qubits, the VS magnitude determines
the highest possible operation temperature, which is usually
less than 30 mK [16–18] and was recently promoted to ex-
ceed 1 K [19,20]. Spin relaxation hotspots (peak in relaxation
rate or rapid decline in the spin lifetime) occur when the
VS equals the Zeeman splitting, indicating the VS must be
large enough to exceed the Zeeman splitting to achieve a long
spin lifetime [12,13]. Last but not least, sizable VS is also
essential for the accomplishment of the two-electron qubits
[21–23]. Unfortunately, in Si qubit devices the achievable VS
is remarkably limited [12,24–31] to about 0.1 ∼ 0.7 meV in
Metal-Oxide-Silicon (MOS) (Si/SiO2) architecture [12,24]
and to an even smaller range from 0.01 to 0.2 meV in Si/SiGe
QW architecture [25–31].

Previous work [32], in the spirit of the inverse de-
sign [33,34] approach, has computationally designed Si
QWs with substantially enhanced VS approaching 9 meV
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FIG. 1. (a) Schematic sketch of Si QW structure in the original design (left) and simplified Si QW structure in this work (right).
(b) Computationally predicted VS of Si40 QW/(GemSim )4 SL barrier hybrid systems as varying period thickness m from 2 to 6 by performing
atomistic SEMP calculations. The dashed horizon line marks the VS of the corresponding isolated 40-ML Si QW embedded in the pure Ge
barrier. (c) Computationally predicted EVS of Si40 QW/(GemSim )n SL barrier hybrid systems as a function of the number of SL periods n for
period thickness m = 2, 3, 4, 5, 6.

relying on a combination of a genetic algorithm used to
explore the Ge/Si superlattice (SL) barriers and atomistic
semiempirical pseudopotential method (SEPM) for band
structure calculations [35–37]. The searching configuration
space comprises a thickness fixed Si QW (say 40 ML,
1 ML = a0/4, a0 is the lattice constant) sandwiched be-
tween two mirror-symmetric 80-ML thick Ge/Si SLs with
varying the stacking sequence of Ge and/or Si mono-
layers. For a 40-ML thick Si QW, the optimized best
SL barriers to have the largest VS are with stacking se-
quences of Ge4Si4Ge2Si6Ge4Si4Ge4Si2..., Ge4Si4Ge4Si2Ge4

Si6Ge4Si2..., and Ge4Si6Ge2Si6Ge4Si4Ge4Si4... (subscript
numbers denote the number of MLs and “...” represents the
repetition of the preceding stacking) starting from the inter-
face of 40-ML Si QW layer for substrates of pure Si and
Si0.8Ge0.2 and Si0.6Ge0.4 alloys, respectively. The correspond-
ing VS is 5.7, 7.4, and 8.7 meV, respectively. Interestingly,
all designed SL barriers share the same feature as a 4-ML
Ge sublayer immediately next to the 40-ML Si QW layer.
Even a simple (Ge4Si4)10 SL (10 periods with a repeating
unit of 4-ML Ge/4-ML Si) barrier gives rise to a remarkably
large VS of EVS = 7.2 meV for 40-ML thick Si QW. By
contrast, all explored SL barriers starting from a non-4-ML
Ge sublayer afford a much smaller VS for Si QWs [32].

Although these computationally designed SL barriers offer
one order of magnitude enhancement in VS for Si QWs, none
of them has been fabricated to overcome the challenge of val-
ley splitting towards Si quantum computing. Their complex
stacking sequence or large SL periods might cause difficul-
ties in fabrication. It is thus highly desired to simplify their
structures to make them readily accessible to experimentalists
utilizing currently reliable technology. Particularly, a thinner
SL barrier will help improve gate voltage control since spin
qubits in gate-defined Si quantum dots (QDs) are electrically
insulated from top metal gates by a gate oxide insulating layer
and the SiGe barrier layer. It is also interesting to unravel
the physics underlying the interface engineering to achieve an
order of magnitude enhancement in VS for Si QWs.

This work aims to simplify the structures to make them
feasible for fabrication and reveal the physics governing the
VS enhancement by the (Ge4Si4)n SL barriers for Si QWs.
Specifically, we consider putting the Si QW directly on the
Si0.7Ge0.3 substrate followed by a capping layer of a Ge/Si SL
[schematically shown in Fig. 1(a)] instead of sandwiching the
Si QW between two mirror-symmetric Ge/Si SLs [schemati-
cally shown in Fig. 1(a)] in the original design [32]. We name
such simplified structures as Si40 QW/(GemSim)n; SL barrier
hybrid systems hereafter. Note that to simplify the atomistic
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calculations and analysis, we make an approximation for
the substrate by replacing Si0.7Ge0.3 alloy by pure bulk Ge;
additionally, built-in biaxial stress induced by the Si0.7Ge0.3

substrate is implemented via setting the in-plane lattice con-
stant of the system to the lattice constant of the Si0.7Ge0.3 alloy
(5.5004 Å) in our atomistic calculations. This approximation
will certainly introduce the differences in the conduction band
offset and interface potential by alloy disorder that might
reduce the QW valley splitting 2δ [marked as the dashed lines
in Figs. 1(b) and 1(c)]. Considering the main purpose of this
work is to demonstrate that the VS can be remarkably en-
hanced by engineering the (single) top interface of the Si QW
alone by fixing the bottom interface to Si-QW/Ge substrate,
the adopted approximation will not change our conclusions.
By performing atomistic calculations, we examine VS of the
Si40 QW/(GemSim)n SL barrier hybrid systems as reducing
the number of SL periods n for a variety of periodic thickness
m = 2, 3, 4, 5, 6. We indeed find that replacing two mirror-
symmetric m = 4 SLs by one side of m = 4 SL degrades the
VS slightly from 7.2 meV to 5 meV for a 40-ML-thick Si QW.
Reducing the number of SL periods n for simplification, VS
decreases gradually. Fortunately, even at the smallest number
of periods (n = 1), VS still has a sizable value of 1.6 meV,
which is large enough for developing stable spin qubits. In
contrast, m �= 4 SL barriers suppress the VS of Si QW to less
than 1 meV. To reveal the underlying microscopic physics,
we expand the Hilbert space by additionally including the
miniband-edge states of the SL barrier (SL-MBS) different
from the traditional valley splitting theory, which considers
only the lowest two valley states in the Si QW (QW-VS)
[6–11]. Based on this consideration, we establish the effective
Hamiltonian model of the hybrid system. In the model, the
coupling between QW-VS and SL-MBS states is treated as
off-diagonal elements. After employing the Löwding parti-
tion, we obtain the reduced Hamiltonian for the two lowest
valley states with the effects of SL-MBS treated as first-order
perturbation [38]. It is thus straightforward to get VS of the
hybrid system in a simple but intuitive formula, providing a
deep insight into the significant enhancement of VS by the SL
barrier. We find that the presence of the SL barrier will reduce
the VS instead of enhancing it. Only the m = 4 SL barrier
with an extremely strong coupling with Si QW valley states
provides a remarkable enhancement in VS.

II. THEORETICAL METHODS

A. Atomistic calculation method

We investigate here the Si QW and GeSi SL interaction
effects on the valley coupling between the two lowest Si valley
states using a direct diagonalization of the band Hamiltonian
− 1

2∇2 + V (r) for the QW/SL hybrid structure described by
its potential V (r). We use for the potential of the hybrid
structure a superposition of overlapping, spherical screened
pseudopotential vα (r) of the constituent atom [36,37],

V (r) =
∑

n

∑
α

v̂α (r − Rn − dα ), (1)

where v̂α (r − Rn − dα ) is the screened pseudopotential con-
taining spin-orbit interaction of atom type α at site dα in the
nth primary cell Rn. Considering the 4.2% lattice mismatch

between Si and Ge, a large strain exists between atomic thin
Si and Ge layers in GeSi SL. We use the atomistic valence
force field method [39,40] to minimize the strain energy
when finding the atomic equilibrium positions. We diagonal-
ize − 1

2∇2 + V (r) within a plane-wave basis [36] whose size
is sufficiently selected such that the weak valley coupling
is accurately considered. The supercell approach combined
with the periodic boundary conditions is implemented. The
screened pseudopotentials {v̂α} are fitted [36] so as to re-
move the “LDA error” in the bulk crystal; they reproduce
well not only the band gaps throughout the zone, but also
the electron and hole effective-mass tensors, as well as the
valence band and conduction band offsets between well and
barrier materials, spin-orbit splittings, and GW spin-splitting
in bulk materials [41]. This is described in Refs. [36,41]. This
approach has been previously applied to superlattices [42,43],
colloidal quantum dots [44], and Stranski-Krastanow quantum
dots [45].

B. Effective Hamiltonian model

The hybrid system consists of [001]-oriented Si QW and
(GemSim)n SL barrier. These two components possess D2d ,
C2v point symmetries. The whole system is of C1 symmetry
in the QW growth direction. Symmetry allows the couplings
between the QW-VS and the SL-MBS because these states
share the single representation of the point group (in terms of
the double group, including spin-orbit coupling). These cou-
plings may influence the VS of the Si QW subunit. To access
this influence, we expand the Hilbert space of the lowest two
Si valley states [6–11] to include SL-MBS of the SL barrier
and have the effective Hamiltonian for the hybrid system by
introducing the coupling between QW-VS and SL-MBS states
(off-diagonal elements) as follows:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
QW
0 δ λ1

1 ... λ1
i ... λ1

n

δ ε
QW
0 λ2

1 ... λ2
i ... λ2

n

λ1
1 λ2

1 εSL
1 0 0 0 0

... ... 0 ... 0 0 0

λ1
i λ2

i 0 0 εSL
i 0 0

... ... 0 0 0 ... 0

λ1
n λ2

n 0 0 0 0 εSL
2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where the diagonal element ε
QW
0 is the average of the low-

est two degenerate valley states in the Si QW. This twofold
degeneracy is lifted in the energy of 2δ by the confinement
potential. Therefore, the energy levels of the two Si valleys
are ε

QW
1 = ε

QW
0 − δ, and ε

QW
2 = ε

QW
0 + δ, respectively. εSL

i is
the energy level of ith state in (GemSim)n SL (i = 1, 2, ..., 2n).
Note that each period has �z and �−z two valley states, and
thus SL with n periods has 2n valley states. The remaining
�x and �y valley states are neglected due to weak coupling
between �z and �x,y. λ1,2

i depict the interaction strengths
between two Si valley states and the ith state of the (GemSim)n

SL barrier. Figures 3(a) and 3(b) schematically illustrate these
SL-MBS and QW-VS as well as their couplings.

The substantial space confinement in the short-period SL
barrier yields energy levels of the SL-MBS much higher
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FIG. 2. Atomistic calculations predicted energy levels of the two
lowest Si valley states in (a) Si40 QW/(Ge4Si4)n SL barrier and
(b) Si40 QW/(Ge5Si5)n SL barrier as a function of the number of
SL periods n.

than that of the QW-VS, with an energy difference being
far more extensive than δ. We, therefore, can reduce the
(2 + 2n)-dimension effective Hamiltonian Eq. (2) to a 2 × 2
Hamiltonian for the lowest two Si valley states taking into ac-
count the effects of SL-MBS as first-order perturbation based
on the quasidegenerate perturbation theory using the Löwding
partitioning method [38]. The reduced effective Hamiltonian
is thus as follows:

H̃ =
[

H̃11 H̃12

H̃21 H̃22

]
(3)

where

H̃11 = ε
QW
0 +

2n∑
i

λ1
i λ

1
i

ε
QW
0 − εSL

i

, (4a)

H̃22 = ε
QW
0 +

2n∑
i

λ2
i λ

2
i

ε
QW
0 − εSL

i

, (4b)

H̃12 = H̃21 = δ +
2n∑
i

λ1
i λ

2
i

ε
QW
0 − εSL

i

. (4c)

The reduced Hamiltonian can now be diagonalized di-
rectly, and the corresponding eigenvalues of two valley states
read

E± = 1
2 (H̃11 + H̃22 ± EVS), (5)

and the VS of the hybrid system is

EVS =
√

(H̃11 − H̃22)2 + 4H̃12H̃21. (6)

If we learn λ1,2
i , ε

QW
0 , and εSL

i , we can then reproduce EVS

predicted from atomistic calculations according to Eq. (6),
which will tell the factors’ contribution to the enhancement
of VS due to coupling between QW-VS and SL-MBS (λ1,2

i ).

III. COMPUTATIONAL RESULTS

Figure 1(c) shows atomistic pseudopotential method cal-
culated VS of the Si40 QW/(GemSim)n SL barrier hybrid

systems as a function of the number of SL periods n for a
variety of period thickness m = 2, 3, 4, 5, 6. The VS of the
isolated 40-ML Si QW embedded in the pure Ge barrier is
0.9 meV [represented by the dashed lines in Figs. 1(b) and
1(c)]. Interestingly, inserting just one unit of Ge4Si4 (i.e., n =
1 in the case of m = 4 SL barrier) into the interface between Si
QW and Ge barrier, the VS is immediately enhanced to EVS =
1.6 meV. This means we can considerably simplify the hybrid
system by reducing the number of (Ge4Si4)n SL periods to
n = 1 to have a large enough VS for Si electron spin qubits
[12]. Increasing the number of (Ge4Si4)n SL periods from
n = 1 to n = 10, EVS raises rapidly from 1.6 to 4.2 meV. After
that, EVS grows slowly toward a saturation value of 5 meV as
further increasing n. We note that this saturation value is only
slightly smaller than EVS = 7.2 meV of the original sandwich
structure of the (Si)40 QW/(GemSim)10 SL barrier [32] despite
the former being much simpler than the latter for experimental
fabrication as shown in Fig. 1(a). Whereas, in cases of m �= 4
SL barriers, we see that EVS is even smaller than the VS
(EVS = 0.9 meV) of the isolated Si QW in a whole range of
investigated periods n = 1 − 30. This result is unexpected. It
also implies that the enhanced EVS by the m = 4 SL barrier
is susceptible to the fluctuation of the atomic thickness in SL
repeating units, which requires precisely controlled growth of
Si/Ge interfaces at the atomic layer level.

We also examine the corresponding energy levels of the
two lowest valley states of the hybrid systems as a function of
the number of SL periods n for m = 4 and m = 5 SL barriers.
Figure 2(a) shows the results for Si QW/(Ge4Si4)n SL barrier
hybrid system. It is interesting to see that, with the increasing
the number of SL periods n, the upper level stays almost
constant with a small fluctuation and the lower one goes down
in energy, leading to the increase in EVS, as shown in Fig. 1(c).
Whereas, in the case of (Ge5Si5)n SL barrier, Fig. 2(b) shows
that both energy levels are insensitive to varying the number
of SL periods n, yielding a period-independent VS [see
Fig. 1(c)].

IV. DISCUSSION

A. The effect of the SL barrier states on VS

To understand the computationally calculated results as
mentioned above, we have developed an effective Hamilto-
nian model as presented in the method section. However,
it requires assessing λ1,2

i , ε
QW
0 , and εSL

i , which are difficult
to obtain. In the following, we take further approximations.
Firstly, we expect the coupling strengths between each SL
state and two Si valley states to be approximately the same,
i.e., λ1

i ∼ λ2
i , regarding two Si valley states have a similar

envelop wave function [see Fig. 4(a)] and 2δ � εSL
i − ε

QW
0 .

For the sake of simplicity, we make a rough assumption that
all SL-MBS have the same coupling strength to the QW-VS,
i.e., λ1

i ∼ λ2
i ∼ 	. As a result, we can further simplify Eqs. (5)

and (6) as

E± = ε
QW
0 − 	2T ± 1

2 EVS, (7a)

EVS = 2
∣∣	2T − δ

∣∣, (7b)
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FIG. 3. (a),(b) Schematic representation of the interaction between the QW-VS and the SL-MBS. (c) Energies of the two Si valley states
due to the QW/SL coupling. (d) VS as the function of the coupling energy; I is the weak coupling region, and II is the strong coupling region.
Only when the coupling energy exceeds the critical value, namely 	2T > 2δ, the corresponding VS starts to be enhanced.

where

T ≡
2n∑
i

1

εSL
i − ε

QW
0

, (8)

where 	 quantifies the averaged coupling strength between
SL-MBS and QW-VS, and T is an energy factor representing
the energy distribution of the SL-MBS relative to QW-VS.
Therefore, 	2T quantifies the total QW/SL coupling strength.

It is straightforward to read from Eq. (7a) that, if 	2T � δ,
E+ = ε

QW
0 + δ − 2	2T and E− = ε

QW
0 − δ, otherwise E+ =

ε
QW
0 − δ and E− = ε

QW
0 + δ − 2	2T . Interestingly, we can

learn that the QW/SL coupling will not alter the energy level
of the lower one of the two valley states in Si QW but push
down the upper one. This model result explains exactly the
above observation in the atomistic calculations (Fig. 2) that
there is one energy level that stays almost constant with a
small fluctuation as varying the number of periods n as well
as the period thickness m. It has also been schematically
illustrated in Fig. 3(c). As increasing the QW/SL strength
	2T from zero to δ, the upper valley approaches toward the
lower valley, resulting in the reduction in EVS. At 	2T = δ,
the upper valley passes the lower valley, eliminating the VS
(EVS = 0). Afterward, when further increasing the QW/SL
strength 	2T , the original upper valley (now becomes lower
in energy) continuously goes down in energy, raising again
the VS, but being still smaller than 2δ the VS of the isolated
Si QW. The enhancement in VS (i.e., EVS > 2δ) occurs only
when 	2T > 2δ. Consequently, the presence of the SL barrier
is, surprisingly, suppressing the VS instead of enhancing it
unless the QW/SL coupling strength is strong enough.This
finding explains why the VS of hybrid systems for all m �= 4
SL barriers is even smaller than that of the isolated Si QW, as
shown in Fig. 1(c).

Figure 3(d) sketches that we can divide the QW/SL cou-
pling into two regions: strong coupling (	2T > 2δ) and weak
coupling (	2T � 2δ). From the results presented in Figs. 1(b)
and 1(c) we learn that the (Ge4Si4)n SL barrier provides a
strong QW/SL coupling and the remaining m �= 4 (GemSim)n

SL barriers are in the weak coupling region. In the following,
we attempt to unravel the physics causing the m = 4 SL bar-

rier to stand out clearly from the remaining m �= 4 SL barriers
by examining the coupling matrix 	 and energy factor T
separately.

B. The coupling matrix �

The coupling matrix 	 is defined as: 	 = 〈ψQW|�V |ψSL〉.
The perturbation potential �V couples the QW valley
states to the SL miniband states and is given by
�V = U�(z + l

2 )�(−z + l
2 ), where l is the SL period

thickness m and U is the conduction band offset between
Ge and Si. Thus, we can assess the magnitude of 	

by examining the wave function overlaps around the
interfaces, as shown in Fig. 4(a). Therefore, the 	 reads as
follows: 	 = U

∫
�(z + l

2 )�(−z + l
2 )ψSL(z)ψQW(z)dz =

U
∫ l/2
−l/2 ψSL(z)ψQW(z)dz. Reference [32] has shown that

the SL barriers usually enhance the localization of wave
functions of the lowest two valley states inside the Si
QW layer with a much smaller leakage into the barrier in
comparison with the SiGe alloy barrier. However, there is
no one-to-one relationship between VS and wave-function
leakage. Figure 4(a) shows that the difference in (GemSim)n

SL barriers introduces hardly a sizable change in wave
functions of two valley states. In this respect, ψQW(z) can
be approximated as a constant A in the above integral,
and the coupling matrix can be further reduced as:
	 ∼ AU

∫ l/2
−l/2 ψSL(z)dz ∼ AU

∫ z1

z0
ψSL(z)dz ∝ ∫ z1

z0
ψSL(z)dz,

which is namely the evanescent integral of the (GemSim)n SL
wave functions. Considering the energy factor U is the same
in the evanescent integrals for different (GemSim)n SL, we can
factor it out. Dropping the energy factor U is reasonable since
we only care about the relative magnitudes among different
SLs. For the integral range, we choose z0 and z1 as 0 and a,
with coordinate origin at the position of the interface between
the Si QW and the nearest neighboring Gem barrier. a is the
lattice constant of the Si.

The evanescent integrals for different (GemSim)5 SL bar-
riers are given in Fig. 4(b). One can see that the magnitude
of 	 decreases as the SL period thickness m increases. Note
that, in SLs made by semiconductors, the electron states in
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FIG. 4. (a) Wave-function overlap between the QW-VS and the SL-MBS around the interface. The red dashed lines mark their overlap
region. (b) The estimated coupling matrices for different GemSim SL. (c) Energy spectrum of different GemSim SL (with SL period of 5). The
reciprocal-space characters are quantified using the majority representation approach [46] combined with the weight functions [47]. The black
dashed lines mark the position of Si valley states in isolated Si QW. (d) The calculated energy factors T for different GemSim SL. (e) The total
coupling strength 	2T between different GemSim SL and Si QW.

neighboring QWs can interact as the barrier width decreases
to a sufficient narrow thickness. The corresponding discrete
energy levels confined inside QWs broaden into energy bands
known as minibands, which are very narrow in energy com-

pared to bulk energy bands [48]. In the Si/Ge heterostructures,
it is well known that the electron states are localized inside
the Si layer [49]. Thus, thicker Ge sublayers of the (GemSim)n

SL cause SL miniband states to be less expanded and create
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narrower minibands. Furthermore, the thicker Sim sublayer
will also give the electron states more space confinement,
making their wave functions more localized inside Si sub-
layers. Figure 4(a) indeed shows that the wave function in
(Ge6Si6)n SL is the most localized while the wave function in
(Ge2Si2)n SL is the most extended. Therefore, electron states
of SL with larger m have less probability of tunneling into
the Si QW region. In this respect, a smaller coupling matrix
	 is expected for (GemSim)n SL with larger m, as shown in
Fig. 4(b) based on a rough evaluation from the evanescent
integral.

C. The energy factor T

We now turn to evaluate the dependence of the energy
factor T on the period thickness m of the (GemSim)n SL
barrier in hybrid systems. To do so, we have also computed
the unperturbed energy levels ε

QW
0 and εSL

i of isolated Si
QW and five-period (GemSim)5 SL, respectively, by carrying
out atomistic SEPM calculations. Both isolated Si QW and
five-period (GemSim)5 SL are separately embedded within the
pure Ge matrix. Figure 4(c) shows the atomistic calculations
predicted results. One can see that, as the period thickness is
getting thinner (or m decreases), the SL energy levels εSL

i raise
and are going far away from the Si QW valley level ε

QW
0 . This

raising in the SL energy levels is attributed to the enhanced
quantum confinement effect. The energy spacing between SL
energy levels εSL

i is also getting larger, responsible for a wider
miniband width. We sum up the SL energy levels relative to
ε

QW
0 according to Eq. (8), giving rise to the energy factor

T , which is shown in Fig. 4(d) as a function of SL period
thickness m. One can see that T gets larger almost linearly
as increasing the SL period thickness m. It is straightforward
to learn that this linear increase in T is due to going down in
energy of all εSL

i relative to ε
QW
0 .

Furthermore, if the number of SL periods n is infinite,
the discrete energy levels in the SL form minibands. The
summation in T term can then be approximated by the inte-
gral over a fixed energy interval from miniband bottom (εSL

1 )

to miniband top (εSL
2n ): T ≡ ∑

i
1

εSL
i −ε

QW
0

∝ ∫ εSL
2n

εSL
1

1
εSL

i −ε
QW
0

dε =
ln( εSL

2n −ε
QW
0

εSL
1 −ε

QW
0

). This approximation shows that, in addition to

the absolute energy level positions, the miniband width is
also an important parameter. Wider miniband width εSL

2n − εSL
1

occurring in smaller period thickness will give larger T and
thus larger VS, which compensates partially the reduction in T
and thus VS induced by energy level shifting up due to strong
confinement in narrow period thickness.

D. Nonmonotonic dependence of coupling strength �2T on SL
period thickness m.

So far, we have shown that by decreasing the periodic
thickness of the SL barriers but keeping the number of pe-
riods constant, the coupling matrix 	2 is going to become
bigger, and the energy factor T will get smaller for hybrid
systems. Figure 4(e) shows that the opposite trends in 	2 and
T render their product the total coupling strength 	2T to be
a nonmonotonic function as varying the periodic thickness m
with a sharp peak occurs at m = 4. This result agrees with the
atomistic calculation where the Ge4Si4 SL induce the largest

VS, as shown in Fig. 1(a). Therefore, we have illustrated
that the competition between the coupling matrix and energy
factor makes m = 4 SL barrier defeating the remaining m �= 4
SL barriers to possess alone the strong coupling. In contrast,
the hybrid systems associated with the remaining m �= 4 SL
barriers are in the weak coupling region, with EVS being
smaller than the VS of the isolated Si QW, which is 0.96 meV
for an isolated 40-ML Si QW embedded in the pure Ge matrix.
In particular, the trend of VS with SL period thickness m in
Fig. 1(b) and one of estimated coupling energy with SL period
thickness m in Fig. 4(e) do not exactly agree. This is mainly
caused by the approximation we have taken in estimating the
coupling energy. It should be emphasized that our aim is to
highlight the nonmonotonic character of the variation of the
coupling energy with the SL period thickness m.

E. Physics underlying the further improvement of VS by
increasing the m = 4 SL period.

We can now explain why only the (Ge4Si4)n SL barrier
will continuously enhance the VS by increasing the number
of SL periods n; whereas the remaining m �= 4 SL barriers
lack such enhancement, as shown in Fig. 1(c). Because the
number of SL periods quantifies the total number of quantum
states in the miniband [50], the number of the valley states
composing the SL miniband grows doubly as increasing the
number of SL periods n, which has been explained in the text
above Eq. (2). According to Eq. (8), a more significant number
of SL periods n gives a more considerable energy factor T .
On the other hand, increasing the SL periods is expected to
reduce the component of wave functions penetration into the
Si QW, which will suppress the coupling matrix 	. Figure 5
shows the spatial distributions of the two lowest SL-MBS
in (GemSim)n SL with varying m and n. One can observe a
unique feature of the m = 4 SL: the lowest energy ground
state is p like as it has one node in its envelope function.
Whereas, remaining m �= 4 SLs have an s-like ground state
as usual. Figure 5 exhibits that the p-like ground state in the
m = 4 SL guarantees more distributions of wave functions
at the two terminated interfaces. That, in turn, ensures the
component penetration into the Si QW, equally the coupling
matrix 	, is unchanged as increasing n. In contrast, the s-like
ground state in the remaining m �= 4 SLs is distributed mainly
inside the SL with tails on the two terminated interfaces.
In these m �= 4 SLs, increasing the number of SL periods
will increase the component inside the SL and thus reduce
the component penetration into the Si QW. Subsequently, as
the SL period increases, the coupling matrix 	 decreases for
m �= 4 SLs. The rise of T and decrease of 	 may make the
EVS a product of 	 and T unchanged in m �= 4 SLs, as shown
in Fig. 1(c). However, the increased T and unchanged 	 make
the EVS enhanced continuously as increasing n in m = 4 SL.

V. CONCLUSION

To make fabrication feasible, we have remarkably sim-
plified the originally designed structure of the Si QW
sandwiched by two symmetric Ge/Si SLs with substantially
enhanced valley splitting EVS exceeding 9 meV [32]. The
simplified structure is engineered by laying out the Si QW
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FIG. 5. Atomistic calculated wave functions of two lowest SL-MBS in (GemSim )n SL with variant m and n.

on the SiGe substrate and then capping a (Ge4Si4)n SL bar-
rier on top of the Si QW. By performing the sophisticated
atomistic-pseudopotential calculations, we predicted that such
simplification leads to a small sacrifice on EVS, reducing it
from the original 8.7 to 5.2 meV. We reduce the SL period
n in the (Ge4Si4)n barrier to further simplify the structure.
In that case, EVS decreases gradually but still has a large
enough value of EVS = 1.6 meV needed for electron spin
qubits. Interestingly, the m = 4 SL barrier is unique because
the EVS is less than 1 meV in structures associated with m �= 4
SL barriers. To reveal the underlying microscopic physics, we
have developed an effective Hamiltonian model of the simpli-
fied structure and thus obtained EVS in a simple but intuitive
formula, providing insight into the enhancement of VS by SL
barrier. Surprisingly, we found that the presence of the SL
barrier is usually suppressing the EVS instead of enhancing
unless the QW/SL coupling strength is strong enough. We
demonstrated that only the (Ge4Si4)n SL barrier has a strong
coupling between QW and SL and thus gives rise to signif-
icantly enhanced EVS. In contrast, the remaining m �= 4 SL
barriers have weak coupling and thus yield EVS even smaller
than the corresponding isolated Si QW value. Our results pro-
vide an effective, more importantly, easily fabricated approach
to fulfill the large VS in Si that makes Si spin qubit gain new
momentum in pursuing the general quantum computation.

ACKNOWLEDGMENTS

The work was supported by the National Science Fund
for Distinguished Young Scholars under Grant No. 11925407,
the Basic Science Center Program of the National Natu-
ral Science Foundation of China (NSFC) under Grant No.
61888102, and the Key Research Program of Frontier Sci-
ences, CAS under Grant No. ZDBS-LY-JSC019 and CAS
Project for Young Scientists in Basic Research under Grant
No. YSBR-026. Z.-G.S. was also supported by the National
Key Research and Development Program of China under
Grant No. 2021YFB2800304.

APPENDIX A: EFFECT OF QW WIDTH ON THE VS IN
OUR PROPSED DEVICE TOPOLOGY

We perform the atomistic calculations for a 40-ML (5.4-
nm) thick Si QW. However, in practice, for easier device
fabrication, the Si QW usually has a thicker well width, typi-
cally 8 nm [25–31]. The VS is known to decrease as the QW

width increases [7–11,32,51]. The decreasing VS is due to
the reduced value of the valley wave function at the interface
caused by the weakening of the quantum confinement effect in
the thicker QW. In the present work, we focus on the relative
magnitudes between the VS induced by different GemSim SL
barriers, for which we need to fix the QW thickness. How-
ever, the increase of the QW width will uniformly change
the VS in different Si QW/GemSim-SL hybrid structures so
that the optimal period thickness m would not change due
to the increase of the QW width. To make our conclusions
more reliable, we give the results of atomistic calculations for
10-nm-thick Si QW, which are presented in Fig. 6. We see
that SL period thickness m is still 4 ML to have a significant
enhancement on VS over the remaining SL period thickness
although its enhanced VS is reduced from 5 meV in the case
of 5.4-nm-thick Si QW to 0.5 meV in the 10-nm-thick QWs
when SL having period n of 20. Therefore, we safely drew the
conclusions based on the 5.4-nm-thick Si QW.

APPENDIX B: IMPACT OF INTERFACE ROUGHNESS AND
ATOMIC STEP EDGES ON OUR PROPOSED DEVICE

TOPOLOGY

The VS is known to be quite sensitive to atomistic details.
We evaluate the impact of interface roughness on the VS in

FIG. 6. Calculated EVS of 10 nm Si QW/(GemSim )n SL barrier
hybrid systems as a function of the number of SL periods n for period
thickness m = 2, 3, 4, 5, 6.
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FIG. 7. (a) Interface roughness effect. Si QW/(Ge4Si4)3 SL structure in the presence of interface roughness η is shown at the top. In order
to evaluate the interface roughness, we replace the pure Ge by GeηSi1−η alloy and pure Si by SiηGe1−η at the Ge/Si interface. The maximum
degree of interface roughness is η = 0.5. Two lower graphs show VS as the function of η for 40-ML and 50-ML Si QW, respectively. The
black dashed lines indicate the VS values with ideal interface. Five empty circles for a give roughness η represent the results of five different
alloy configurations at the interface. Green solid lines denote the VS values after averaging over different configurations. (b) Atomic step edge
effect. Schematic diagram of Si QW/(Ge4Si4)3 SL with one interface step at each Ge/Si hetero-interface. xstep quantifies the interface step
positions in the x direction. Calculated VS as the function of xstep for Si QW with well width of 40 and 50 ML are displayed separately at the
lower side.

Si QW/Ge4Si4 SL in Fig. 7(a). Overall, interface roughness
reduces the VS as usual. Interestingly, the interface roughness
induced VS degradation in our device topology does not
maximize when the individual Ge/Si hetero-interface
has the most considerable degree (η = 0.5) of roughness
but an intermediate one. This nonmonotonic behavior
stems from the new pseudo-ordered periodic structure i.e.,
(Ge0.5Si0.5)2/Ge2/(Ge0.5Si0.5)2/Si2 . . . in the η = 0.5 case.
The nominal maximum disorder happens at the middle η

value. The roughness among different Ge/Si heterointerface
is typically uncorrelated, thus disrupting the SL’s periodic
structure. Accordingly, SL defect states appear. In this way,
the localization of the SL defect states causes the decrease
of coupling strength between QW and SL. That is why the
interface roughness or period thickness m fluctuations in the
GemSim SL decrease the VS. In contrast, the restoration of
the “periodic structure”, which is technically not that periodic
but is “pseudo-ordered”, in the η = 0.5 case adds up to the
reduction in the number of SL defect states, which in turn
relieves the VS suppression caused by the interface roughness.
We assess the influence of interface steps on the VS in Si
QW/Ge4Si4 SL hybrid structure in Fig. 7(b). Only the single
interface step case is shown here. Similar VS behaviors are
presented in the multiple interface step case provided that
the different in-plane sections (having different well width)
are divided by the interface steps, and have the same portion
as in the single case. To be specific, the VS is the same in
the following two cases: (1) A single interface step separates
the whole structure into Si QW(t = t0)/Ge4Si4 SL and Si
QW(t = t0 + 1)/Ge4Si4 SL with ratios of 0.6 and 0.4 in the x
direction. (2) Two interface steps split the whole structure into
Si QW(t = t0)/Ge4Si4 SL, Si QW(t = t0 + 1)/Ge4Si4 SL
and Si QW(t = t0)/Ge4Si4 SL with ratios of 0.2, 0.4, and 0.4.

APPENDIX C: EFFECT OF ELECTRIC FIELD

VS enhancement [9,11,52,53] by the out-of-plane electric
field Ez is typically visible [12,24] in MOS-based devices
where the electron is strongly confined to the oxide interface.
A tunable VS that linearly depends on Ez has been reported
[12,24] in MOS devices. However, to the best of our knowl-
edge, in Si/SiGe heterojunction devices, VS is rarely modified
by Ez, but rather the VS is changed in the two-dimensional
electron gas at the Si/SiGe interface by modulating the
Landau level occupation through the application of an

FIG. 8. (a) Atomistic calculations of VS as function of electric
field in Si QW (40 ML)/(Ge4Si4)5-SL hybrid structure. Electric
field drives the valley states close to the (Ge4Si4)5-SL. (b) Calcu-
lated coupling strength 	2T presented in the linear scale, 	2T =∑n

i=1
|〈ψSL

i |�V |ψQW
1 〉|2

εSL
i −ε

QW
1

, as function of electric field in 5.4-nm-thick

Si QW/(Ge4Si4)5-SL hybrid structure by effecttive mass envelope
function method. The electric field drives the valley states close to
(Ge4Si4)5-SL.
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FIG. 9. (a) Coupling strength between Si QW and (GemSim )5 SL as the function of SL period thickness m calculated via the envelope

function method. 	2T = ∑n
i=1

|〈ψSL
i |�V |ψQW

1 〉|2
εSL

i −ε
QW
1

, the summation runs over SL miniband bound states. (b) Envelope functions and eigen energies

of both Si QW valley states and SL miniband bound states in case of Si QW/(GemSim )5-SL hybrid system. The perturbation potential �V is
indicated by the black solid line.

out-of-plane magnetic field [26,27]. Recent work [29] has at-
tempted to tune VS by electric field in Si/SiGe heterojunction
devices. However, the researchers were unable to tune VS by
Ez due to the limitation of the relatively weak Ez. Instead, they
found that they could tune VS by electric field by modulating
the horizontal movement of QD at the heterojunction interface
relative to the interface step. In any case, a few MV/m of
Ez can be held in the Si/SiGe heterojunction device, such
that it is theoretically possible to achieve the adjustment of
VS by changing Ez. For this purpose, we have considered
the effect of Ez on VS in the Si QW/SiGe-SL structure. The
results of the atomistic calculations are shown in Fig. 8(a),
where it can be seen that VS also increases linearly with Ez.
It should be noted that in the Si QW/SiGe-SL structure, there
are two main mechanisms for the VS enhancement. First, Ez

increases the original valley coupling 2δ caused by the scat-
tering of the interface potential. This enhancement is due to
the electric field that increases the electron penetration depth
in the barrier thus increasing the 2δ. Second, Ez can alter the
coupling energy 	2T between Si QW and SiGe SL. In order
to quantify the effect of Ez on the magnitude of this coupling,
we calculated the coupling energy between Si QW and SiGe
SL using the effective mass envelope function method, and
the results are shown in Fig. 8(b). It can be seen that the
coupling energy increases when Ez is applied to drive the Si
QW valley states close to the QW/SL interface. Moreover,
the coupling energy increases linearly with the magnitude of
Ez. Combining these two mechanisms, Ez enhances VS in the
QW/SiGe-SL structure.

APPENDIX D: COUPLING STRENGTH CALCULATED BY
THE EFFECTIVE MASS ENVELOPE FUNTION

METHOD

In Sec. IV D, we attribute the reason behind the maximum
valley splitting induced by the m = 4 SL to the nonmonotonic
dependence of coupling strength 	2T on SL period thick-
ness m which originates from the competition between the
decrease of coupling matrix 	 and increase in the energy
factor T involved in the QW/SL interaction when widening
the SL period thickness m. To further confirm the nonmono-
tonic dependence of the coupling strength on the SL period
thickness m, we also evaluate the coupling strengths em-
ploying the effective mass envelope function method. In our
envelope function calculations, we first obtain the envelope
functions (ψQW

1 , ψSL
i ) and eigenenergies (εQW

1 , εSL
i ) of both

isolated Si QW and GemSim SL, respectively, results for Si
QW/(Ge4Si4)5-SL are shown in Fig. 9(b) as an example.
Then we explicitly calculate the coupling strength 	2T . Fig-
ure 9(a) shows the calculated results of the coupling strengths
using effective mass method. We reproduce the turning point
although the critical point deviates from the m = 4 predicted
by the more sophisticated atomistic pseudopotential method.
This dicrepancy is owing to the continuous envelope func-
tion model fails to describe the microscopic details that the
atomistic pseudopotential method can handle. Besides, the
inaccuracy of wave functions obtained for the GemSim with
atomic-scale periodic thickness m through the effective mass
envelope function method also catalyzes the disparity.
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