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Suppression of magneto-optical transport in tilted Weyl semimetals by orbital magnetic moment
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By incorporating the orbital magnetic moment, we investigate the magneto-optical transport of Weyl semimet-
als within a semiclassical approximation. In the linear or nonlinear response regime, an analytic expression for
the magnetoconductivity is obtained, where a new term due to the orbital magnetic moment is added, and leads
to a partial cancellation for the total magnetoconductivities. This suppressed feature is further manifested by
analyzing the linear and quadratic contribution in the magnetic field to magnetoconductivities. This result may
be used to explain the deviation between the recent theory and experiment.
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I. INTRODUCTION

Weyl semimetals are a newly discovered class of topo-
logical materials with pairs of conduction and valence bands
touching at the discrete points in the Brillouin zone (called
Weyl points) [1–8], around which the dispersion relation is
linear. This special band structure gives rise to a nontrivial
topological property, which can be identified by the Berry cur-
vature that is usually considered as an effective magnetic field
in the momentum-space with a monopole located at the Weyl
node. According to the Nielsen-Ninomiya theorem [9,10], the
Weyl nodes always appear in pairs, and form a source and sink
of this effective field, respectively, which leads to a number
of the unusual phenomena, such as high mobility phenomena
[11,12], the existence of Fermi arcs [4–8], the chiral anomaly
[13–16], and the anomalous Hall effect [17,18], etc.

The discovery of Weyl semimetals triggers a search for
a variety of novel quantum phenomenon. As an important
aspect, the magneto-electronic transport properties have been
quickly a focus of interest. A series of phenomena related
to the chiral anomaly is revealed successively. For exam-
ple, the negative magnetoresistance has been experimentally
observed in Weyl semimetal materials [19–23]. The planar
Hall effect is predicted theoretically in Weyl semimetals, in
which a nonzero Hall conductivity has emerged in the plane
of the electric and magnetic fields [24–29]. Additionally, the
anomalous Nernst effect has been studied both theoretically
and experimentally [30–38].

Recently, much attention has been paid to the re-
search of the nonlinear magneto-optical responses in the
Weyl semimetal materials. In the absence of external mag-
netic fields, the second-order optical response in the Weyl
semimetals involves injection, shift, and anomalous current.
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Interestingly, all these quantities relate to the topological
effect of Weyl semimetals, and require breaking inversion
symmetry. The injection current is proportional to the Berry
curvature and the difference of the velocities of electrons
between the conduction band and valence band in Weyl
semimetals [39–44]. The shift current stems from a com-
bined effect of the linear photoabsorption and the shift vector
(defined by Berry connections) [41,45,46], and has been con-
firmed by observing a strong second harmonic signal in TaAs
[47]. The nonlinear anomalous current (nonlinear Hall effect)
arises from the Berry curvature dipole [48–56], and has been
observed in the materials WTe2 and Cd3As2 [57–59]. Under
the weak magnetic field, the optical activity and the chiral
anomaly will contribute to the second-order nonlinear optical
response in the Weyl semimetal [60–63]. Whereas in a strong
magnetic field, the third-order responses have an extremely
high optical susceptibility originating from the linear energy
dispersion near the Weyl nodes [64,65].

It is known that the “self-rotation” of the Bloch wave
packet will induce an orbital magnetic moment [66], and
modify the energy of the electron under the external magnetic
field, which will change the magneto-optical responses of
tilted Weyl semimetals, an issue which is addressed here.

In this paper, we study the linear and nonlinear magneto-
optical responses for tilted Weyl semimetals, where an orbital
magnetic moment is introduced. We derive an analytic expres-
sion for the magnetoconductivity by means of the Boltzmann
equation method. It is found that the orbital magnetic moment
induces a new magnetoconductivity term, which gives rise
to a partial cancellation for the total magnetoconductivity.
This suppressed feature is further manifested by analyzing
the linear (B-linear) and quadratic (quadratic-B) contribution
in the magnetic field to magnetoconductivities. We also show
that no matter in the linear or nonlinear response regime, the
B-linear (quadratic-B) magnetoconductivity exhibits a behav-
ior that is dependent (independent) of the chirality of the Weyl
node.
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The paper is organized as follows: In Sec. II, we begin with
the model of a 3D Weyl semimetal with a tilt in the z direction,
and then the semiclassical equations of motion for the dynam-
ics of the electron wave packet in the electric and magnetic
fields are presented. In Sec. III, the B-linear and quadratic-B
magnetoconductivities including the orbital magnetic moment
are obtained in the linear response regime, and analyzed in
detail. In Sec. IV, we study second harmonic generation, and
give the second harmonic conductivity formula as well as the
further analysis for this result. We end with conclusions in
Sec. V.

II. MODEL AND METHOD

A. Weyl semimetals and the semiclassical equations of motion

We consider the effective low-energy continuum Hamilto-
nian for a 3D Weyl semimetal with a tilt in the z direction,
which takes the form [67–70]

H0(k) = sh̄vF k · σ + h̄vFtskzσ0, (1)

where s = ± is the chirality of the valley, vF is the Fermi
velocity, k is the momentum, σ0 is a 2 × 2 identity matrix and
σ are the Pauli matrices. We use ts [ts ∈ [0, 1)] to describe
the tilt of Weyl cones. The case with parameter t+ = −t− = t
respects tilt inversion symmetry and the case with parameter
t+ = t− = t breaks tilt inversion symmetry [70]. The eigen-
value of the Hamiltonian (1) is εs

k = h̄vF (tskz + nk) with n =
±1 labeling the conduction and valence bands, respectively.

The semiclassical equations of motion for the electron
wave packet at the location r and the wave vector k in a given
band are [66,71]

ṙ = 1

h̄
∇kε̃

s
k − k̇ × �s

k, (2)

h̄k̇ = −eE − eṙ × B, (3)

where −e is the electron charge, E and B are external electric
and magnetic fields, respectively. �s

k is the Berry curvature,
and ε̃s

k = εs
k − ms

k · B with the orbital magnetic moment ms
k

induced by the semiclassical “self-rotation” of the Bloch wave
packet [66]:

�s
k = −Im

[〈∇kus
k

∣∣ × ∣∣∇kus
k

〉]
, (4)

ms
k = − e

2h̄
Im

[〈∇kus
k

∣∣ × (
H0(k) − εs

k

)∣∣∇kus
k

〉]
, (5)

where |us
k〉 satisfies the equation H0(k)|us

k〉 = εs
k|us

k〉. By solv-
ing these coupled equations (2) and (3), one obtains

ṙ = 1

h̄D

[
∇kε̃

s
k + eE × �s

k + e

h̄

(∇kε̃
s
k · �s

k

)
B

]
, (6)

k̇ = 1

h̄D

[
−eE − e

h̄
∇kε̃

s
k × B − e2

h̄
(E · B)�s

k

]
, (7)

where the factor D = 1 + e/h̄(�s
k · B) modifies the phase

space volume [72].

B. Boltzmann equation under optical field

We suppose that a static magnetic field B and a light
field E(t ) = E(ω)e−iωt are simultaneously applied to Weyl
semimetals. The distribution function of electrons f̃ s obeys
the semiclassical Boltzmann kinetic equation

∂ f̃ s

∂t
+ k̇

∂ f̃ s

∂k
= − f̃ s − f̃ s

0

τ
, (8)

where τ is the relaxation time originating from the scattering
of electrons by phonons, impurities, electrons, and other lat-
tice imperfections [73]. f̃ s

0 (ε̃s
k) is the Fermi-Dirac distribution

function for the energy ε̃s
k, and at the low magnetic field

expanded as [71,74,75]

f̃ s
0 = f s

0

(
εs

k − ms
k · B

)
� f s

0

(
εs

k

) − ms
k · B

∂ f s
0

(
εs

k

)
∂εs

k

, (9)

where f s
0 = f s

0 (εs
k) = 1/[e(εs

k−μ)/kBT + 1] with kB the Boltz-
mann constant, T the temperature, and μ the chemical
potential.

Equation (8) can be solved by expanding the distribution
function in a power series in the electric field as follows:

f̃ s = f̃ s
0 + f̃ s

1 e−iωt + f̃ s
2 e−2iωt + · · · , (10)

where f̃ s
1 and f̃ s

2 are the first- and second-order terms for E,
respectively. The electric current density can be calculated by

j = −e
∫

[dk]Dṙ f̃ s, (11)

where [dk] = dk/(2π )3. Equations (8) and (11) establish a
basis for studying transport properties under the combined
influence of the external magnetic and electric fields.

III. LINEAR RESPONSE OF WEYL SEMIMETALS

Firstly, we focus on linear responses driven by monochro-
matic light at the frequency ω. Substituting Eq. (7) into Eq. (8)
and retaining terms up to first order in E, we obtain

1

h̄D

[
−eE − e2

h̄
(E · B)�s

k

]
· ∂ f̃ s

0

∂k
− iω f̃ s

1 = − f̃ s
1

τ
. (12)

It is noted that the ṽs
k × B term vanishes in the square brackets

of Eq. (12) since it is perpendicular to (1/h̄)∂k f̃ s
0 [61]. How-

ever, it exists for the first-order correction f̃ s
1 , and will give

rise to the ordinary Hall current, which depends on ωcτ (here
ωc = eBv2

F /μ is the cyclotron frequency). For the case of only
intranode scattering, the cyclotron motion can be neglected
at μτ/h̄ � 1 [25–27]. Furthermore, from Eq. (12), it can be
observed that the term ṽs

k × B does not couple to the other
ones related to the Berry curvature. Thus for the simplicity,
we ignore the ordinary Hall term. A further calculation for
Eq. (12) gives

f̃ s
1 = τ

1 − iωτ

1

h̄D

[
eE + e2

h̄
(E · B)�s

k

]
· ∂ f̃ s

0

∂k
. (13)
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At the low magnetic field, we expand Eq. (13) up to the second order in B, and find

f̃ s
1 = τ

1 − iωτ

[
eE · vs

k
∂ f s

0

∂εs
k

− e2

h̄

(
B · �s

k

)(
E · vs

k

)∂ f s
0

∂εs
k

+ e2

h̄
(E · B)

(
�s

k · vs
k

)∂ f s
0

∂εs
k

− e

h̄
E · ∂

∂k

(
ms

k · B
∂ f s

0

∂εs
k

)

− e3

h̄2

(
B · �s

k

)
(E · B)

(
�s

k · vs
k

)∂ f s
0

∂εs
k

+ e3

h̄2

(
B · �s

k

)2(
E · vs

k

)∂ f s
0

∂εs
k

+ e2

h̄2

(
B · �s

k

)
E · ∂

∂k

(
ms

k · B
∂ f s

0

∂εs
k

)

− e2

h̄2 (E · B)�s
k · ∂

∂k

(
ms

k · B
∂ f s

0

∂εs
k

)]
. (14)

From Eqs. (6) and (14), the current density at the frequency ω

is given by

j1 = −e
∫

[dk]
[
ṽs

k + e

h̄

(
ṽs

k · �s
k

)
B

]
f̃ s
1

−e2

h̄

∫
[dk]E × �s

k f̃ s
0 , (15)

whose component is simply expressed as

ja(ω) = σab(ω)Eb(ω), (16)

where σab(ω) is the frequency-dependent conductivity. It is
known that the single contribution from the group velocity
ṽs

k or the Berry curvature �s
k form the conventional longitu-

dinal or Hall conductivities. In the presence of the magnetic
field, the conductivity σ (ω) consists of the coupling terms
between the group velocity ṽs

k and the Berry curvature �s
k

besides the conventional ingredients [see Eq. (15)]. Their
combined contributions are triggered by the external magnetic
field, and play a crucial role in the electron transport (see
below).

A. The conductivity σ
(0)
ab in absence of magnetic field

Substituting Eq. (14) into the first term of Eq. (15) and
keeping B = 0, the conductivity tensor linking the Cartesian
components is given by

σ
(0)
ab (ω) = e2τ

1 − iωτ

∫
[dk]vs

av
s
b

(
−∂ f s

0

∂εs
k

)
. (17)

At T = 0, owing to −∂ f s
0 /∂εk = δ(εs

k − μ), we arrive at

σ (0)
zz (ω) = σD

t3
s

[
−3ts − 3

2
ln

1 − ts
1 + ts

]
, (18)

σ (0)
xx (ω) = σD

t3
s

[
− 3ts

2(t2
s − 1)

+ 3

4
ln

1 − ts
1 + ts

]
, (19)

and σ (0)
xx (ω) = σ (0)

yy (ω), where the Drude frequency dependent
complex conductivity is

σD = e2τμ2

(1 − iωτ )6π2h̄3vF
. (20)

Equations (18) and (19) are in consistent with the results of
Refs. [27,76,77]. Figure 1(a) shows a comparison on the tilt
t+ dependence of σ (0)

xx (ω) and σ (0)
zz (ω). For ts → 0, σ (0)

xx (ω) =
σ (0)

zz (ω) = σD. When ts is taken into account, the system be-
comes anisotropic [see Hamiltonian (1)], and so there appears
a difference between the conductivities σ (0)

xx (ω) and σ (0)
zz (ω),

which is greatly enhanced with increasing ts. From Eqs. (18)

and (19), one also finds that σ (0)
aa (ω) is even with respect to

the tilt ts, reflecting the chirality symmetry of the system.
Thus, the total conductivity is twice the contribution from a
single Weyl node. In addition, similar to the usual metals,
the frequency dependence of the conductivity σ (0)

aa (ω)(a =
x, z) exhibits a Drude-type behavior, as shown in Fig. 1(b).
In the Weyl semimetals, we have the relaxation time τ ∼
10−13 s, and the Fermi velocity vF ∼ 105 m/s [25–27]. When
the Fermi energy is taken as μ = 1 meV, the conductivity is
estimated as σ (0)

xx � 2.4 	−1 m−1 at ω → 0.

FIG. 1. (a) The dependence of the conductivity on the tilt t+[see
Eqs. (18) and (19)]. (b) The frequency dependence of optical con-
ductivity at t+ = 0.5. The other parameters are taken as vF = 4.13 ×
105 m/s, μ = 1 meV and τ = 10−13 s.
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B. B-linear contribution to the conductivity σ
(B)
ab

For a weak magnetic field, substituting Eq. (14) into the
first term of Eq. (15), we only keep the linear order terms in

B. The magnetoconductivity is then given by

σ
(B)
ab (ω) = σ

(B,	)
ab (ω) + σ

(B,m)
ab (ω), (21)

where

σ
(B,	)
ab (ω) = e3τ

h̄(1 − iωτ )

∫
[dk]

[(
vs

aBb + vs
bBa

)(
vs

k · �s
k

) − vs
av

s
b

(
B · �s

k

)](−∂ f s
0

∂εs
k

)
, (22)

σ
(B,m)
ab (ω) = e2τ

h̄(1 − iωτ )

∫
[dk]

[
∂vs

a

∂kb

(
ms

k · B
) − ∂

(
ms

k · B
)

∂ka
vs

b

](
−∂ f s

0

∂εs
k

)
. (23)

From Eq. (21), one finds readily the magnetoconductivity
σ

(B)
ab (ω) = σ

(B)
ba (ω). For the tilt ts = 0, since the system pos-

sesses the time-reversal symmetry, σ
(B)
ab (ω) needs to obey the

Onsager relation, and thus has to vanish [61,78,79]. However,
when the tilt ts 	= 0, the time-reversal symmetry is broken by
the tilt, and so Eq. (21) can survive in the case of a tilted
Weyl node. The first term in Eq. (21) [ i.e., Eq. (22)] is related
to the Berry curvature, and is reported previously (see, e.g.,
[27,31,32,80–83]). The second term in Eq. (21) [i.e., Eq. (23)]
is our newly obtained result, and stems from the contribution
of the orbital magnetic moment. In the following, the detailed
analysis of Eq. (21) is given by considering the magnetic field
perpendicular and parallel to the tilt axis.

(i) For the case of the magnetic field along the
tilt direction(B ‖ ts), the off-diagonal magnetoconductivity
σ

(B,	)
ab (ω)(a 	= b) vanishes since the integrands in Eqs. (22)

and (23) contain product of an odd number of the velocity
components. The diagonal component σ (B,	)

aa (ω) for small tilt
parameter ts reduces to

σ (B,	)
zz (ω) = σ

(B)
1 s

[
2
(
3 − 5t2

s − 3t4
s

)
3t3

s

+
(
t2
s − 1

)2

t4
s

δs

]
,

(24)

σ (B,	)
xx (ω) = σ

(B)
1 s

[
2t2

s − 3

3t3
s

− 1 − t2
s

2t4
s

δs

]
, (25)

where

σ
(B)
1 = e2τ

8π2(1 − iωτ )

eB

h̄

vF

h̄
, (26)

and

δs = ln

(
1 − ts
1 + ts

)
. (27)

The results are in agreement with Ref. [27]. Via the similar
calculation, Eq. (23) becomes

σ (B,m)
zz (ω) = σ

(B)
0 s

[
2
(−3 + 5t2

s

)
3t3

s

−
(
t2
s − 1

)2

t4
s

δs

]
, (28)

σ (B,m)
xx (ω) = σ

(B)
0 s

[(
3 − 8t2

s

)
3t3

s

− 1 − 3t2
s

2t4
s

δs

]
. (29)

(ii) For the case of the magnetic field perpendicular to
the tilt direction (B ⊥ ts), the diagonal components of the
conductivity vanish, and the off-diagonal components are
given by [27]

σ (B)
xz (ω) = [σ (B,	) + σ (B,m)] cos φ, (30)

σ (B)
yz (ω) = [σ (B,	) + σ (B,m)] sin φ, (31)

FIG. 2. (a) The dependence of the conductivity σ (B)(ω) on the tilt
t+ [Eqs. (32) and (33)]. (b) The frequency dependence of the optical
conductivity at t+ = 0.5 and B = 1 T. The other parameters are the
same as those of Fig. 1.
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where φ = arctan(By/Bx ), σ (B,	) and σ (B,m) are obtain from
Eqs. (22) and (23), respectively,

σ (B,	) = σ
(B)
1 s

[
−3 + 5t2

s − 6t4
s

3t3
s

−
(
1 − t2

s

)2

2t4
s

δs

]
, (32)

σ (B,m) = σ
(B)
1 s

[
−2t2

s − 3

3t3
s

+ 1 − t2
s

2t4
s

δs

]
. (33)

From Eqs. (24)–(33), we notice that the B-linear magne-
toconductivity in tilted Weyl semimetals is independent of
Fermi energy μ, and the odd function of ts. According to
the Nielsen-Ninomiya theorem [9,10], the Weyl nodes with
opposite chirality always appear in pairs. The total magneto-
conductivity of the system is the sum of all the Weyl nodes.
Therefore, for the case of t+ = t−, where the tilt inversion
symmetry is broken, the contribution of the Weyl node to the
magnetoconductivity has the opposite sign for the opposite
chirality, giving rise to σ

(B)
ab (ω) = 0. Whereas, for the case of

t+ = −t−, each Weyl node produces an identical contribution
to the magnetoconductivity, and so the nonzero magnetocon-
ductivity emerges for this case. Figure 2(a) shows the B-linear

magnetoconductivity as a function of the tilt t+. It is ob-
served that the contribution from the orbital magnetic moment
is always negative and decreases with increasing t+, which
partially cancels the contribution of the Berry curvature to
magnetoconductivity. The total magnetoconductivity tends to
slow down at the large t+. Figure 2(b) shows the B-linear mag-
netoconductivity as a function of the THz incident light, we
find that σ (B)(ω) is about one order of magnitude greater than
σ (0)(ω). For a Weyl semimetal under an external magnetic
field B = 1 T, the B-linear magnetoconductivity σ

(B)
ab (ω) ∼

102 	−1 m−1 at ω → 0.

C. Quadratic-B contribution to the conductivity σ
(B2 )
ab

Substituting Eq. (14) into the first term of Eq. (15) and
keeping terms to second order in B, after straightforward but
cumbersome algebra, we obtain the conductivity

σ
(B2 )
ab (ω) = σ

(B2,	)
ab (ω) + σ

(B2,m)
ab (ω), (34)

where

σ
(B2,	)
ab (ω) = e4τ

h̄2(1 − iωτ )

∫
[dk]

[
vs

av
s
b

(
B · �s

k

)2 − (
vs

aBb + vs
bBa

)(
vs

k · �s
k

)(
B · �s

k

) + BaBb
(
vs

k · �s
k

)2
](

−∂ f s
0

∂εs
k

)
, (35)

σ
(B2,m)
ab (ω) = e3τ

h̄2(1 − iωτ )

∫
[dk]

[
∂

∂k
· [

vs
aBb�

s
k

](
ms

k · B
) − ∂

[
vs

a

(
B · �s

k

)]
∂kb

(
ms

k · B
) + ∂

[
Ba

(
vs

k · �s
k

)]
∂kb

(
ms

k · B
)

+ ∂
(
ms

k · B
)

∂ka

(
B · �s

k

)
vs

b − ∂
(
ms

k · B
)

∂ka
Bb

(
�s

k · vs
k

) − ∂2
(
ms

k · B
)

e∂ka∂kb

(
ms

k · B
) − Ba

∂
(
ms

k · B
)

∂k
· �s

kv
s
b

](
−∂ f s

0

∂εs
k

)}
. (36)

σ
(B2,	)
ab (ω) and σ

(B2,m)
ab (ω) arise from the contributions of the

Berry-curvature �s
k and the orbital magnetic moment ms

k,
respectively. In order to decode the information on �s

k and
ms

k in Eq. (34), we consider the two case in the following:
(i) In the case of B ‖ ts, one obtain the nonzero conductivity

components [27]

σ (B2,	)
zz (ω) = 8σ

(B2 )
1 , (37)

σ (B2,	)
xx (ω) = σ

(B2 )
1 , (38)

where

σ
(B2 )
1 = e2τ

8π2(1 − iωτ )

(
eB

h̄

)2 h̄v3
F

15μ2
. (39)

Considering the effect of the orbital magnetic moment [see
Eq. (36)], we have

σ (B2,m)
zz (ω) = (−3 + 5t2

s

)
σ

(B2 )
1 , (40)

σ (B2,m)
xx (ω) = −σ

(B2 )
1 . (41)

Evidently, from Eqs. (38) and (41), σ (B2,	)
xx (ω) and σ (B2,m)

xx (ω)
have the opposite sign, thus the total conductivity σ (B2 )

xx (ω)
is equal to zero. For the conductivity component σ (B2,m)

zz (ω),
there is a zero value point at ts = t0 = (3/5)1/2. When 0 <

ts < t0(or ts > t0), σ (B2,m)
zz (ω) < 0(or >0), so that the total

conductivity is suppressed or enhanced on the left or right
sides of t0 by the orbital magnetic moment [see Fig. 3(a)].

(ii) In the case of B ⊥ ts, from Eq. (35), one obtain the
diagonal components of the magnetoconductivities [27]

σ (B2,	)
xx (ω) = [(

8 + 13t2
s

)
cos2 φ + sin2 φ

]
σ

(B2 )
1 , (42)

σ (B2,	)
zz (ω) = (

1 + 7t2
s

)
σ

(B2 )
1 , (43)

and the off-diagonal components of the magnetoconductivi-
ties

σ (B2,	)
xy (ω) = (

7 + 13t2
s

)
sin φ cos φσ

(B2 )
1 . (44)

Considering the effect of the orbital magnetic moment [see
Eq. (36)], we have

σ (B2,m)
xx (ω) = [(−3 − 6t2

s

)
cos2 φ − sin2 φ

]
σ

(B2 )
1 , (45)

σ (B2,m)
zz (ω) = (−1 + t2

s

)
σ

(B2 )
1 , (46)

σ (B2,m)
xy (ω) = (−2 − 6t2

s

)
sin φ cos φσ

(B2 )
1 . (47)

It is noted that all the other magnetoconductivity com-
ponents are zero. It is clear that the above conductivity
equations are independent of chirality, i.e., the Weyl cones
with opposite chiralities have the same contribution to
the conductivity. Additionally, the conductivity component
σ (B2,m)

xx (ω) is always negative [see Eq. (45)], a result that will
leave the total conductivity σ (B2 )

xx (ω) weakened. Likewise, the
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FIG. 3. The dependence of the conductivity σ (B2 )
zz (ω) on the tilt

t+ for the case of (a) B||ts [see Eqs. (37) and (40)], and (b) B ⊥ ts

[see Eqs. (43) and (46)].

orbital magnetic moment also leads to an attenuation of the
conductivity component σ (B2 )

zz (ω) [see Fig. 3(b)].
In the present system, the planar Hall effect can take

place [24–29], and manifest itself in a nonzero conductivity
σ (B2 )

xy (ω). Similar to the diagonal component of the conduc-

tivity, σ (B2 )
xy (ω) also consists of the contributions from the

Berry curvature [Eq. (44)] and the orbital magnetic moment
[Eq. (47)]. Figure 4(a) shows an effect of the tilt on the planar
Hall magnetoconductivity. It is seen that the total planar Hall
conductivity is suppressed when the orbit magnetic moment
is present. Figure 4(b) shows the planar Hall magnetoconduc-
tivity as a function of the THz incident light at φ = π/4, we
find that σ (B2 )

xy (ω) is about three orders of magnitude greater
than σ (0)(ω).

The B2 dependence of the magnetoconductivity has been
observed experimentally in the materials such as GdPtBi and
TaP [28,29]. Recently, it is also shown that in the materials
GdPtBi, a very strong planar Hall effect has been reported,
which is due to the Berry curvature and chiral anomaly
contributions [28]. Besides chiral anomaly, the planar Hall
effect may be induced by the orbital magnetic moment [see
Eq. (47)]. For the magnetic field B ∼ 2 T, the dephasing rate
γ ∼ 1 meV, and μ ∼ 30 meV, we obtain the planar Hall re-

FIG. 4. (a) The dependence of planar Hall conductivity σ (B2 )
xy (ω)

on the tilt t+ [see Eqs. (44) and (47)]. (b) The frequency dependence
of optical conductivity at t+ = 0.5, φ = π/4, and B = 1 T. The other
parameters are the same as those of Fig. 1.

sistivity ρ (B2 )
xy (ω) ∼ 1.0 m	 cm at ω = 2 THz. These results

are in agreement with the recent experimental findings [29],
where a giant planar Hall effect is revealed in a nonmagnetic
Weyl semimetal TaP with the large anisotropic orbital magne-
toresistance.

D. Hall conductivities σ
(H,0)
ab and σ

(H,B)
ab

The intrinsic Hall effect is engendered by the Berry curva-
ture, as presented by the second term of Eq. (15), for which
the further calculation gives

σ H
ab = σ

(H,0)
ab + σ

(H,B)
ab , (48)

where

σ
(H,0)
ab = −e2

h̄
εabc

∫
[dk]	s

c f s
0 , (49)

σ
(H,B)
ab = e2

h̄
εabc

∫
[dk]	s

c

(
ms

k · B
)∂ f s

0

∂εs
k

, (50)

where εabc is the Levi-Civita symbol with a, b, c,∈ {x, y, z}.
The first term σ

(H,0)
ab in Eq. (48), referring to the anomalous

Hall effect, is not equivalent to zero only in the system with
broken time-reversal symmetry [17,18]. While the second
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term σ
(H,B)
ab stands for the ordinary Hall conductivity linear in

B, which is counterpart to a semiclassical description related
to Landau level formation in the quantum limit [61].

We take the magnetic field B = (B sin θ cos φ,

B sin θ sin φ, B cos θ ) with θ = arccos(Bz/B) and φ =
arctan(By/Bx ). For a single Weyl node, the B-linear
contribution to the Hall conductivity is expressed as

σ (H,B)

=
⎛
⎝ 0 σ H

1 cos θ −σ H
1 sin θ sin φ

−σ H
1 cos θ 0 σ H

1 sin θ cos φ

σ H
1 sin θ sin φ −σ H

1 sin θ cos φ 0

⎞
⎠,

(51)

where

σ H
1 = −e2

h̄

eB

h̄

h̄vF

24π2μ
. (52)

Clearly, the B-linear contribution to the Hall conductivity of
Weyl semimetals does not depend on the tilt and the chirality
of the valley, and is obtained by summing over all the Weyl
nodes.

Besides, it is also emphatically mentioned that in the case
of the weak magnetic field, a semiclassical description re-
lated to Landau level formation in the quantum limit shows
that the Hall responses of Weyl semimetals under B is tied
to the monopole physics in the momentum space described

by the Berry curvature. Due to the linear dispersion relation
in the Weyl semimetals, the Berry curvature is divergent at a
Weyl node. Therefore, this leads to an inverse dependence of
the linear Hall responses on μ, i.e., a divergence as μ goes to
zero. Such a divergence of the Hall responses can be cut off
by the energy broadening due to the nonzero relaxation time
τ [61], which will incorporate a lower bound on the Fermi
energy. A similar dependence on μ is also observed in the
second-order nonlinear Hall responses (see below).

IV. SECOND-ORDER NONLINEAR RESPONSE
OF WEYL SEMIMETALS

Next, we move on to the investigation for the second-order
nonlinear magneto-optical response of Weyl semimetals. Sub-
stituting Eq. (7) into Eq. (8), neglecting the Lorentz force
term, and retaining terms up to second order in E, we obtain

1

h̄D

[
−eE − e2

h̄
(E · B)�s

k

]
· ∂ f̃ s

1

∂k
− iω f̃ s

2 = − f̃ s
2

τ
. (53)

A straightforward calculation results in

f̃ s
2 = τ

1 − 2iωτ

1

h̄D

[
eE + e2

h̄
(E · B)�s

k

]
· ∂ f̃ s

1

∂k
. (54)

Inserting Eq. (13) into Eq. (54), and expanding it to first order
in B, we obtain

f̃ s
2 = eτ 2

h̄(1 − 2iωτ )(1 − iωτ )

{
E · ∂

∂k

[(
eE + e2

h̄
(E · B)�s

k − e2

h̄

(
B · �s

k

)
E

)
· vs

k
∂ f s

0

∂εs
k

− e

h̄
E · ∂

∂k

(
ms

k · B
∂ f s

0

∂εs
k

)]

+
[

e2

h̄
(E · B)�s

k − e2

h̄

(
B · �s

k

)
E

]
· ∂

∂k

(
E · vs

k
∂ f s

0

∂εs
k

)}
. (55)

Now the electric current density at the frequency 2ω is given
by

j2 = −e
∫

[dk]
[
ṽs

k + e

h̄

(
ṽs

k · �s
k

)
B

]
f̃ s
2 − e2

h̄

∫
[dk]E × �s

k f̃ s
1 .

(56)

According to the definition of second harmonic conductivity,
this equation should be written in the form

j(2ω) = σ (2ω)E(ω)E(ω), (57)

where σ (2ω) is the second harmonic conductivity.

A. The second harmonic conductivity σ
(0)
abc in

absence of magnetic field

In this subsection, we calculate the second harmonic cur-
rent of the Weyl semimetals system in absence of magnetic
fields. When B = 0, substituting Eq. (55) into the first term
of Eq. (56), the second harmonic conductivity tensor can be
obtained:

σ
(0)
abc(2ω) = e3τ 2

h̄(1 − 2iωτ )(1 − iωτ )

∫
[dk]

∂va

∂kc
vb

∂ f s
0

∂εs
k

, (58)

we find that the aaz, aza, and zaa (a = x, y, z) components of
the second harmonic conductivity tensor are nonzero and all
other components equal to zero [77]:

σ (0)
zzz (2ω) = 2σDL

[−6 + 4t2
s

t3
s

− 3
(
1 − t2

s

)
t4
s

δs

]
, (59)

σ (0)
xxz (2ω) = σDL

[
6

t3
s

+ 3 − t2
s

t4
s

δs

]
, (60)

where the Drude-like frequency dependent complex conduc-
tivity is

σDL = e3τ 2μ

8π2h̄3(1 − 2iωτ )(1 − iωτ )
. (61)

The second harmonic conductivity tensor satisfies the relation
σ (0)

zxx (2ω) = σ (0)
zyy (2ω) = σ (0)

xzx (2ω) = σ (0)
yzy (2ω) = σ (0)

xxz (2ω) =
σ (0)

yyz (2ω), and it does not depend on the chirality of Weyl
node. The total second harmonic conductivity in tilted Weyl
semimetals is the sum of a pair of Weyl nodes. For the case
with tilt inversion symmetry (t+ = −t−), σ

(0)
abc(2ω) = 0. For

the case with broken tilt inversion symmetry (t+ = t−), the
conductivity σ

(0)
abc(2ω) 	= 0.

From Fig. 5(a), it is important to see that the σ
(0)
abc(2ω)

becomes exactly zero when ts → 0. The presence of the tilt
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makes the Weyl semimetals with ellipsoidal Fermi surface,
thus the tilt performs a very important function to get the
second harmonic generation in Weyl semimetals [77]. And
it is clear that σ (0)

zzz (ω) is more sensitive to tilt than σ (0)
xxz (ω)

[see Fig. 5(a)]. Different from the linear response regime
[Figs. 1(b), 2(b), and 4(b)], the real parts of σ

(0)
abc(2ω) exhibit

positive and negative amplitudes because of the complex de-
nominator function σDL contribution to the second harmonic
generation processes [Fig. 5(b)]. Adopting a laser frequency
ω ∼ 2 THz, the electric field strength ∼104 V/m, and a laser
spot size of 50-μm diameter in a Weyl semimetal, we ob-
tain the nonlinear current ∼10−5 A. The nonlinear optical

polarizability χ (0)(2ω) for the process of the second harmonic
generation is given by χ (0)(2ω) = σ (0)(2ω)/2iωε0, where ε0

is vacuum permittivity, we find χ (0)(2ω) ∼ 103 pm/V. These
results are consistent with the experimental results [47].

B. B-linear contribution to the second
harmonic conductivity σ

(B)
abc

In the presence of the magnetic field, inserting Eq. (55) into
the first term of Eq. (56), we derive the B-linear contribution
to the second harmonic conductivity

σ
(B)
abc (2ω) = e3τ 2

h̄(1 − 2iωτ )(1 − iωτ )

∫
[dk]

{
∂vs

a

∂kc

[
−eBb

h̄

(
vs

k · �s
k

) + evs
b

h̄

(
B · �s

k

)] − eBc

h̄

∂

∂k
· (

vs
a�

s
k

)
vs

b

+ e

h̄

∂
[
vs

a

(
B · �s

k

)]
∂kc

vs
b − eBa

h̄

∂
(
vs

k · �s
k

)
∂kc

vs
b + ∂2

(
ms

k · B
)

h̄∂ka∂kc
vs

b − ∂2vs
a

h̄∂kb∂kc

(
ms

k · B
)}(

−∂ f s
0

∂εs
k

)
. (62)

The analysis of Eq. (62) is carried out by considering the
following two different cases:

FIG. 5. (a) The nonlinear conductivities for the process of second
harmonic generation as a function of the tilt t+ [see Eqs. (59) and
(60)]. (b) The frequency dependence of optical conductivities at t+ =
0.5. Here the relaxation rate γ = h̄/τ . The other parameters are the
same as those of Fig. 1.

(i) In the case of B ‖ ts, for a single Weyl node, we obtain
the magnetoconductivity components

σ (B)
xzx (2ω) = s 2

3σ
(B)
2 , (63)

σ (B)
zxx (2ω) = −s 2

3σ
(B)
2 , (64)

where

σ
(B)
2 = e3τ 2

8π2h̄(1 − 2iωτ )(1 − iωτ )

eB

h̄

v2
F

μ
. (65)

We note that the other nonzero second harmonic conduc-
tivity components satisfy the relations: σ (B)

xzx (2ω) = σ (B)
yzy (2ω),

σ (B)
zxx (2ω) = σ (B)

zyy (2ω).
(ii) In the case of B ⊥ ts, we get the nonzero conductivity

components

σ (B)
zxz (2ω) = s 2

3σ
(B)
2 cos φ, (66)

σ (B)
xzz (2ω) = −s 2

3σ
(B)
2 cos φ, (67)

σ (B)
zyz (2ω) = s 2

3σ
(B)
2 sin φ, (68)

σ (B)
yzz (2ω) = −s 2

3σ
(B)
2 sin φ. (69)

The above equation shows that the B-linear contribution to
the second harmonic conductivity is dependent of the chirality
but independent of the tilt. Summing the conductivity over the
Weyl cones with opposite chirality cancels each other, leading
to the disappearance of the total B-linear contribution to the
second harmonic conductivity.

C. The second-order nonlinear Hall conductivity σ
(H,0)
abc in

absence of magnetic field

In this subsection, we study the second-order nonlinear
Hall effect of Weyl semimetals in absence of magnetic field.
Inserting Eq. (14) into the second term in Eq. (56) and taking
B = 0, we obtain the nonlinear Hall conductivity.

σ
(H,0)
abc = εacd

e3τ

h̄2(1 − iωτ )
Dbd (70)
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which is determined by the so-called Berry dipole [48]

Dbd =
∫

[dk]	s
d h̄vs

b

(
−∂ f s

0

∂εs
k

)
. (71)

The further calculation shows that the nonzero components of
the Berry dipole moment are

Dxx = Dyy = −s
1

16π2

(
2

t2
s

+ 1 − t2
s

t3
s

ln
1 − ts
1 + ts

)
, (72)

Dzz = −s
1

8π2

t2
s − 1

t3
s

(
2ts + ln

1 − ts
1 + ts

)
. (73)

From the above equations, One can notice that the Berry
dipole moment is dependent of the chirality, and an even
function of the tilt. Therefore, contributions from a pair of
Weyl nodes with opposite chirality exactly cancel each other
[55,56]. However, several Weyl semimetals without spatial
inversion symmetry are accompanied by the enhancement of
the Berry curvature dipole, which allows to measure the finite
second-harmonic Hall voltage [49–54].

From Eqs. (72) and (73), the Berry dipole moment is in-
dependent of the chemical potential μ. The reason for this is
that due to the intrinsic properties of the electronic structure of
the Weyl semimetals, the Berry curvature becomes dependent
of 1/k2. Accordingly, the integral over the momentum k in
Eq. (71) is only determined by the topology of the Weyl nodes,
which leads to this result unrelated to μ [55].

D. B-linear contribution to the second-order
nonlinear Hall conductivity σ

(H,B)
abc

Now, we focus on the second-order nonlinear Hall effect in
a weak magnetic field. Inserting Eq. (14) into the second term
of Eq. (56), the B-linear dependent complex nonlinear Hall
conductivity is then given by

σ
(H,B)
abc = εacd

e3τ

h̄2(1 − iωτ )

[
D	

bd + Dm
bd

]
. (74)

with

D	
bd =

∫
[dk]e	s

d

[
Bb

(
�s

k · vs
k

) − vs
b

(
B · �s

k

)](−∂ f s
0

∂εk

)
,

(75)

Dm
bd =

∫
[dk]

∂	s
d

∂kb
(ms

k · B)

(
−∂ f s

0

∂εk

)
, (76)

where D	
bd and Dm

bd are the contributions induced by the Berry-
curvature and the orbital magnetic moment, respectively.

(i) In the case of B ‖ ts, the nonzero components are

D	
xx = D	

yy = −tsD
(B)
2 , (77)

D	
zz = 2tsD

(B)
2 , (78)

and

Dm
xx = Dm

yy = 2tsD
(B)
2 , (79)

Dm
zz = −4tsD

(B)
2 . (80)

where

D(B)
2 = 1

8π2

eB

h̄

h̄2v2
F

15μ2
. (81)

(ii) In the case of B ⊥ ts, we obtain

D	
zx = −6tsD

(B)
2 cos φ, (82)

D	
xz = 9tsD

(B)
2 cos φ, (83)

D	
zy = −6tsD

(B)
2 sin φ, (84)

D	
yz = 9tsD

(B)
2 sin φ, (85)

and

Dm
zx = −3tsD

(B)
2 cos φ, (86)

Dm
zy = −3tsD

(B)
2 sin φ. (87)

It is noted that Dm
zx = Dm

xz and Dm
zy = Dm

yz, and all other com-
ponents equal to zero.

The nonlinear Hall effect can be modulated by the polariza-
tion of the incident light, as discussed below. Using Eq. (74),
the electric current is rewritten in the form of

j(2ω) = e3τ

h̄2(1 − iωτ )
(D̂ · E ) × E. (88)

Here it is assumed that an electromagnetic wave travels in the
x direction:

E(r, t ) = |E(ω)|Re[|ψ〉e−iωt+iqx], (89)

where

|ψ〉 def=
(

ψy

ψz

)
=

(
sin θeiαy

cos θeiαz

)
(90)

is the Jones vector in the y − z plane with phases αy, αz, and
the amplitudes Ey = |E| sin θ and Ez = |E| cos θ . Substituting
Eq. (89) in Eq. (88), we obtain the nonlinear Hall current

jx(2ω) = e3τ

h̄2(1 − iωτ )

D(B)
yy − D(B)

zz

2
sin 2θei(αy+αz )|E|2,

(91)

whose real and imaginary parts are related to the phases
of incident light [see Eq. (91)]. For simplicity, we take
αy = αz = 0. Equation (91) is rewritten as σxzy through jx =
σxEyEz = σxyzEyEz + σxzyEyEz ∼ (Dyy − Dzz )EyEz. Whence,
for one Weyl node we have

σ (H,B)
x (2ω) = e3τ

h̄2(1 − iωτ )

3ts
2

D(B)
2 sin 2θ. (92)

In contrast to the case of B = 0, the B-linear contribution to
the nonlinear Hall conductivity is independent of the chirality,
and the odd function of ts. Only in the system with broken
tilt inversion symmetry (t+ = t−), the conductivity σx(2ω) 	=
0. From Eq. (92), evidently, σx(2ω) reaches its maximum
when the polarization direction θ = ±π/4 and vanishes at
θ = 0, π/2, as further reflected in Fig. 6(b). Taking the pa-
rameters ω ∼ 5 THz, |E| ∼ 104 V/m, and a laser spot size
of 50-μm diameter in a Weyl semimetal, we estimate the
nonlinear current jx(2ω) ∼ 1.65 × 10−3 A, and the nonlinear

165307-9



GAO, ZHANG, JIANG, AND DING PHYSICAL REVIEW B 105, 165307 (2022)

(a)

(b)

FIG. 6. (a) The nonlinear Hall conductivity σx (2ω) for the pro-
cess of second harmonic generation as a function of the incident
photon frequency at t+ = 0.5, B = 1 T, and θ = π/4 [see Eq. (92)].
(b) The angle dependence of the nonlinear Hall conductivity at
ω = 5 THz. The other parameters are the same as those of Fig. 1.

optical polarizability χ (B)(2ω) ∼ 104 pm/V. It is suggested
that the Weyl semimetals is an interesting nonlinear optical
media in a wide range of frequency.

V. CONCLUSION

We have presented a systematic investigation of the lin-
ear and nonlinear magneto-optical responses in tilted Weyl
semimetals, derive an analytic expression for the magnetocon-
ductivity by using the Boltzmann equation method, and find
that: (i) In the linear response regime, there is a Drude-type
conductivity from each Weyl node. In the absence of a mag-
netic field, the optical conductivity is sensitive to the tilt owing
to the anisotropy of the drift velocities in the Weyl semimet-
als. When the magnetic field is applied, in the tilted Weyl
node, the B-linear conductivity consists of two contributions,
one from the Berry curvature and the other from the orbital
magnetic moment. These two contributions partly cancel each
other, leading to the suppression of the total conductivities.
(ii) In the second-order nonlinear response regime, without a
magnetic field, an analytical formula for the second harmonic
conductivity is derived, showing chirality independence. In
the presence of the magnetic field, the B-linear second har-
monic conductivities in a single Weyl cone neither vanish,

nor rely on the tilt. But the diagonal conductivities from two
Weyl nodes with opposite chirality cancel each other, while
the off-diagonal (Hall) conductivities are also derived, where
these two contributions of Berry-curvature and orbital mag-
netic moment partly cancel.
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APPENDIX A: SOME USEFUL FORMULAS

In this Appendix we present the formulas used in the main
text. The semiclassical expression of the velocity for the band
energy εs

k, and its differentiation are listed as follows:

vs
k = 1

h̄

∂εs
k

∂k
= vF

(
tsêz + k

k

)
, (A1)

∂vs
a

∂kb
= vF

k2δab − kakb

k3
, (A2)

∂vs
a

∂kb∂kc
= vF

(
3kakbkc

k5
− kaδbc + kbδac + kcδab

k3

)
. (A3)

The Berry curvature and the differentiation are given by

	s
a = −s

ka

2k3
, (A4)

∂	s
a

∂kb
= s

3kakb − k2δab

2k5
. (A5)

The orbital magnetic moment and the differentiation are ex-
pressed as

ms
a = −s

evF ka

2k2
, (A6)

∂ms
a

∂kb
= sevF

2kakb − k2δab

2k4
, (A7)

∂ms
a

∂kb∂kc
= sevF

(
kaδbc + kbδac + kcδab

k4
− 4kakbkc

k6

)
. (A8)

APPENDIX B: DETAILS OF THE CALCULATIONS USING
SPHERICAL POLAR COORDINATES

In this paper, we focus on the n-doped Weyl semimetals
with a positive chemical potential μ. In general, one can
decompose the momentum k into parallel and perpendicular
parts:

kx = k sin θ cos φ, (B1)

ky = k sin θ sin φ, (B2)

kz = k cos θ. (B3)
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As an example, we calculate the second harmonic conductiv-
ity component σ (0)

zzz (2ω) in absence of a magnetic field,

σ (0)
zzz (2ω) = − e3τ 2

h̄(1 − 2iωτ )(1 − iωτ )

∫
[dk]

∂vz

∂kz
vz

(
−∂ f s

0

∂εk

)

= − e3τ 2

h̄(1 − 2iωτ )(1 − iωτ )

∫
[dk]vF

k2
x + k2

y

k3

× vF

(
ts + kz

k

)(
−∂ f s

0

∂εk

)

= − e3τ 2

8π3h̄(1 − 2iωτ )(1 − iωτ )

∫
k2 sin θdkdθdφ

× vF
sin2 θ cos2 φ + sin2 θ sin2 φ

k
vF (ts + cos θ )

× δ[h̄vF k(1 + ts cos θ ) − μ]

= σDL

∫
sin θdθ

− sin2 θ

(1 + ts cos θ )2
(ts + cos θ )

= σDL

∫ 1

−1
dx

−(1 − x2)(ts + x)

(1 + tsx)2

= 2σDL

[−6 + 4t2
s

t3
s

− 3
(
1 − t2

s

)
t4
s

ln
1 − ts
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where the Drude-like frequency dependent complex conduc-
tivity is

σDL = e3τ 2μ

8π2h̄3(1 − 2iωτ )(1 − iωτ )
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