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Dynamically screened ladder approximation: Simultaneous treatment of strong electronic
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Dynamical screening is a key property of charged many-particle systems. Its theoretical description is based
on the GW approximation that is extensively applied for ground-state and equilibrium situations but also for
systems driven out of equilibrium. The main limitation of the GW approximation is the neglect of strong
electronic correlation effects that are important in many materials as well as in dense plasmas. Here we derive
the dynamically screened ladder (DSL) approximation that self-consistently includes, in addition to the GW
diagrams, also particle-particle and particle-hole T -matrix diagrams. The derivation is based on reduced-density-
operator theory and the result is equivalent to the recently presented G1-G2 scheme [N. Schlünzen et al., Phys.
Rev. Lett. 124, 076601 (2020); J.-P. Joost et al., Phys. Rev. B 101, 245101 (2020)]. We perform extensive
time-dependent DSL simulations for finite Hubbard clusters and present tests against exact results that confirm
excellent accuracy as well as total-energy conservation of the approximation. At strong coupling and for long
simulation durations, instabilities are observed. These problems are solved by enforcing contraction consistency
and applying a purification approach.

DOI: 10.1103/PhysRevB.105.165155

I. INTRODUCTION

The ultrafast dynamics of many-particle systems following
a rapid excitation are of high interest in many fields, including
dense plasmas, correlated electrons in solids, femtosecond
laser pulse excited atoms and molecules, or fermionic atoms
in optical lattices. Among the key properties of these systems
(most importantly, in case of long-range Coulomb interaction
between the particles) are dynamical screening, plasmonic,
and excitonic effects. A theoretical treatment of these effects
is possible within the GW approximation [1] that has allowed
one to achieve excellent ground-state and equilibrium results
for model systems and real materials, e.g., Refs. [2,3]. In
situations where the system is out of equilibrium, GW sim-
ulations are much more challenging. Early approaches have
been derived in kinetic theory of plasmas by Balescu [4],
Lenard [5], and others who replaced, in the collision integral,
the pair potential V (q) by a dynamically screened interac-
tion V (q)/ε(q, ω), where the dielectric function ε takes into
account the screening behavior of the surrounding charged
particles. These results were extended to optically excited
semiconductors by Binder et al. [6]. However, the Balescu-
Lenard collision integral does not conserve total energy and
neglects the formation of the plasmon spectrum.

These problems can be solved within nonequilibrium
Green functions (NEGF) theory with the GW self-energy,
and first self-consistent time-dependent GW simulations were
reported by Banyai et al. [7] who applied, in addition, the
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generalized Kadanoff-Baym ansatz (GKBA) [8] (see be-
low). These results were extended to plasmas in strong laser
fields in Ref. [9]. However, NEGF simulations with the GW
approximation exhibit an unfavorable cubic scaling of the
computation time with the number of time steps Nt, both for
two-time and for GKBA simulations, which restricts the sim-
ulations to very short times. The situation radically changed
with the introduction of the G1-G2 scheme by Schlünzen
et al. [10] which solves coupled time-local equations for the
one-particle and two-particle Green functions. This scheme
eliminates all memory integrals and, therefore, scales linearly
with Nt. Interestingly, this favorable scaling is achieved al-
ready after a small number of time steps and for all common
self-energies, including the second-order Born approximation,
the T -matrix approximation, and GW , as was demonstrated
by Joost et al. [11]. The G1-G2 scheme was recently ap-
plied to the photoionization of organic molecules [12] and
ultrafast electron-boson dynamics [13]. In particular, G1-G2
simulations with the GW self-energy were reported for the
simulation of ultrafast carrier and exciton dynamics in two-
dimensional (2D) materials by Perfetto et al. [14].

However, GW simulations apply only to weakly and mod-
erately coupled many-particle systems.1 The reason is that
the self-energy is only of first order in the screened po-
tential and, therefore, neglects multiple scattering effects
that become increasingly important in strongly correlated

1In this work, we quantify the coupling strength in terms of the
coupling parameter � = Eint/Ekin leading to the regimes of weak
(� � 1), moderate (� ≈ 1), and strong coupling (� � 1).
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materials, a modern example being transition-metal dichalco-
genides (TMDCs) or twisted bilayers of graphene or TMDCs,
e.g., [15–18]. On the other hand, strong-coupling effects are
well captured with the particle-particle and particle-hole T -
matrix self-energies, e.g., [19]. But these approximations are
available only in combination with a static pair potential.
Therefore, a self-consistent combination of strong coupling
and dynamical screening effects remains a major open prob-
lem which is in the focus of this paper.

There have been various approximate methods to com-
bine strong coupling and dynamical screening. These include
combinations of GW with (extended) dynamical mean-field
theory, e.g., [20–22], the fluctuating-exchange approximation
(FLEX), e.g., [19,23], and the Gould-DeWitt approximation
[24,25]. A perturbation theory approach is the third-order
approximation (TOA) [26] which we discuss below. We note
that, more systematically, dynamical screening effects have
been analyzed in detail for electron-hole plasmas and excitons
in equilibrium within the Bethe-Salpeter equation by Zim-
mermann et al. [27,28] where also the dynamically screened
ladder approximation (DSL) was introduced (for a textbook
discussion see Ref. [29]). Especially the plasma effects on
excitonic and atomic bound states as well as exciton-plasmon
coupling remain a topic of high current interest for semicon-
ductors, TMDCs, and dense plasmas (see, e.g., [29–34] and
references therein).

Only recently, a nonequilibrium treatment of dynamical
screening and strong correlations on the level of FLEX has
been reported [35,36]. While in FLEX the diagrammatic
series of the ladder and polarization diagrams are in-
cluded, the approximation does not capture the self-consistent
combination of these contributions. So, the question of a self-
consistent nonequilibrium simulation of particle-particle and
particle-hole ladder and polarization diagrams to all orders, as
done in DSL, has remained open in NEGF theory. On the other
hand, DSL-type equations for the pair-correlation operator
have been presented within a reduced-density-operator ap-
proach in Ref. [37] and were analyzed in Ref. [11]. However,
the resulting equations did not include all exchange contribu-
tions, and the relation to NEGF remained unclear. Here, we
reanalyze the G1-G2 scheme on the DSL level, starting from
a density operator approach [37].

In fact, the theory of single-time reduced density operators
(RDO, Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy) has emerged independently of the NEGF approach
in a variety of fields including quantum gases [38], nuclear
matter [39–41], dense plasmas [42], semiconductor optics
(semiconductor Bloch equations), and transport [43–46]. The
DSL approximation emerges naturally in this approach when
three-particle correlations are neglected. Extensive develop-
ments for the ground state of correlated electrons have also
occurred in atomic and molecular physics [47–49] where
the approach is known under the name two-particle reduced
density matrix (2RDM) method. Recently, extensions to time-
dependent electron dynamics have lead to the time-dependent
2RDM (TD2RDM) method [49,50] which is conceptionally
equivalent to the BBGKY hierarchy for the reduced density
operators. A particular problem, when applied to finite sys-
tems such as atoms, is that the solution of the RDO (2RDM)
equations may become unstable during the time propagation.

A solution was presented by Lackner et al. [49,50] by en-
forcing contraction consistency, e.g., [51,52] and applying a
purification scheme.

In this paper we present a detailed derivation of the
DSL–G1-G2 equation within RDO (2RDM) theory paying
particular attention to a complete account of the exchange
contributions. The resulting DSL–G1-G2 equations are then
compared to the results following from known self-energy
approximations of NEGF theory. Furthermore, we present
numerical DSL results for the ultrafast electron dynamics
in finite Hubbard clusters and demonstrate excellent agree-
ment with exact results. We verify time-linear scaling and
demonstrate that long propagation times can be achieved by
enforcing contraction consistency and applying an improved
purification scheme for the two-particle Green function.

The structure of this paper and its main goals are as fol-
lows:

(1) In Sec. II we recall the second quantization scheme
and introduce the NEGF approach.

(2) In Sec. III we introduce the self-energy approxima-
tions that are of interest for our analysis and for comparison
with the DSL approximation.

(3) Section IV is devoted to the G1-G2 scheme that was in-
troduced in Refs. [10,11]. We present the explicit form of the
G2 equations for the self-energies of Sec. III and pay special
attention to the correct treatment of the exchange diagrams in
the T -matrix and GW approximations.

(4) In Sec. V we introduce the alternative approach to
many-particle dynamics that is based on reduced density op-
erators. There we derive the DSL approximation and present
a detailed term-by-term comparison to the G1-G2 equa-
tions that were derived from nonequilibrium Green functions
above, which is summarized in Table I.

(5) In Sec. VI we apply the G1-G2 scheme to the ultrafast
dynamics of finite Hubbard clusters. There we also discuss
the issues of contraction consistency and discuss how to deal
with intrinsic instabilities of the dynamical equations via a
purification scheme.

(6) Numerical benchmarks of the DSL–G1-G2 approxi-
mation for finite Hubbard clusters against exact results are
presented in Sec. VII.

II. THEORETICAL FRAMEWORK

The goal of this section is to provide the basis to link
the NEGF formalism to the G1-G2 scheme. The equations of
motion for the NEGF are the Keldysh-Kadanoff-Baym equa-
tions that contain a single input quantity: the self-energy �.
For each approximation to � we will identify a counterpart in
the G1-G2 scheme below.

A. Keldysh-Kadanoff-Baym equations

Even though we will present numerical results for a Hub-
bard system below, it is instructive to start from a formulation
of the nonequilibrium many-body problem with the general
Hamiltonian in second quantization

Ĥ (t ) =
∑

i j

h(0)
i j (t )ĉ†

i ĉ j + 1

2

∑
i jkl

wi jkl (t )ĉ†
i ĉ†

j ĉl ĉk . (1)
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FIG. 1. Keldysh “round-trip” time contour that is used in NEGF
theory to treat initial correlations via “adiabatic switching” of the pair
interaction, starting from an uncorrelated state in the remote past (for
more details, see Refs. [11,63–65]).

Here, h(0) is the single-particle contribution and w the
pair interaction. Note the twofold time dependencies of the
Hamiltonian. The time dependence of the single-particle con-
tribution h(0) accounts for the interaction of the particles
with external electromagnetic fields, e.g., [53,54], charged
particle impact (stopping) [55–57], or the rapid variation
(quench) of system parameters such as the confinement poten-
tial [26,58,59]. Similarly, quenches of the pair interaction w

have been studied [60–62]. There is a second type of time de-
pendence in w that is not related to the coupling to an external
excitation but that results from the numerical preparation of
a correlated initial state. In many cases an efficient procedure
is to start from an uncorrelated initial state and to build up
correlations dynamically via “adiabatic switching,” e.g., [19].
This approach will also be used in some of our simulation
results below. Therefore, in the derivations, we will retain the
full time dependence of w(t ) throughout this paper.

The matrix indices and summations in the Hamiltonian of
Eq. (1) refer to an arbitrary complete orthonormal system of
single-particle orbitals |i〉 for which we define creation (ĉ†

i )
and annihilation (ĉi) operators that obey Bose or Fermi statis-
tics. Using the standard Heisenberg procedure, these operators
are made time dependent and are used to define the one-body
nonequilibrium Green function where all time arguments z, z′
are defined on the Keldysh contour C [19] (see Fig. 1):

Gi j (z, z′) = 1

ih̄
〈TC{ĉi(z)ĉ†

j (z
′)}〉,

where TC is the time-ordering operator on the contour, and
the averaging is performed with the correlated unperturbed N-
particle density operator of the system.

The equations of motion for the NEGF are the Keldysh-
Kadanoff-Baym equations (KBE)2 [66,67]

∑
k

[
ih̄

d

dz
δik − h(0)

ik (z)

]
Gk j (z, z′) − δi jδC (z, z′) (2)

= ±ih̄
∑
kl p

∫
C

dz̄ wikl p(z, z̄)G(2)
l p jk (z, z̄, z′, z̄+)

=
∑

k

∫
C

dz̄ �ik (z, z̄)Gk j (z̄, z′), (3)

∑
k

Gik (z, z′)

⎡
⎣−ih̄

←
d

dz′ δk j − h(0)
k j (z′)

⎤
⎦ − δi jδC (z, z′) (4)

2Throughout this work, “±” refers to bosons/fermions.
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FIG. 2. Self-energy diagrams for the perturbative (with respect
to powers of the interaction) approach up to order three. Hartree-
Fock (HF) contains contributions of first order in w, the second-order
self-energy (SOA) contains second-order diagrams (together with the
first order), whereas the third-order approximation (TOA) contains
all diagrams up to order w3. Note that the second diagrams of order
w1 and w2 describe exchange processes, respectively. For order w3,
exchange processes are included in the latter six diagrams.

= ±ih̄
∑
kl p

∫
C

dz̄ G(2)
ikl p(z, z̄−, z′, z̄)wl p jk (z̄, z′)

=
∑

k

∫
C

dz̄ Gik (z, z̄)�k j (z̄, z′), (5)

where z± := z ± ε with ε → +0, and we introduced a two-
time version of the interaction potential using the delta func-
tion on the Keldysh contour wi jkl (z, z′) = δC (z, z′)wi jkl (z)
(see, e.g., Refs. [19,63,68]).

Note that we have presented two forms of the right-hand
side of the KBE. The first lines contain the two-particle Green
function G(2), Eq. (18), that will be discussed in detail below.
The second form of the right-hand side contains the self-
energy � which is introduced in NEGF theory to eliminate
the two-particle Green function. Below, in Sec. III, we will
consider several approximations for �. Here we already no-
tice that the dependence of the single-particle Green function
on two time arguments, combined with the time integral on
the right-hand side of Eqs. (3) and (5), gives rise to a cubic
scaling N3

t of the computing time with the number of time
steps Nt . It is the main achievement of the G1-G2 scheme that
this scaling can be reduced to N1

t , regardless of the choice of
the self-energy [10,11]. In this scheme, the two-particle Green
function is restored and propagated. This will be introduced in
Sec. IV. But first, we introduce and briefly discuss the relevant
approximations for the self-energy.

III. SELF-ENERGY APPROXIMATIONS

A graphical overview of the most important self-energy
approximations in terms of Feynman diagrams is presented
in Figs. 2 and 3. A main selection criterion is that each of the
approximations is conserving, i.e., conserves particle number,
momentum, and total energy. To shorten the presentation we
only provide the results for the > and < components �≷(t, t ′)
which follows from �(z, z′) by taking the time arguments on
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FIG. 3. Self-energy diagrams for the three resummation ap-
proaches starting from the second-order contributions. Dots indicate
continuation of the sums to infinite order. Note that for TPP it is pos-
sible to also include the corresponding exchange diagrams (second
line).

different branches of the contour in Fig. 1 (for details see
Refs. [19,63]).

A. Single-particle Green functions

Equations (2) and (4) for the one-particle NEGF are for-
mulated on the Keldysh contour (cf. Fig. 1) and are equivalent
to equations for Keldysh Green function matrices of real-time
arguments, where the matrix components differ by the loca-
tion of the time arguments on the contour [65,67]. This gives
rise to the correlation functions G≷(t, t ′) and the retarded and
advanced functions GR/A(t, t ′):

G<
i j (t, t ′) = ± 1

ih̄
〈ĉ†

j (t
′)ĉi(t )〉, G>

i j (t, t ′) = 1

ih̄
〈ĉi(t )ĉ†

j (t
′)〉,

GR/A
i j (t, t ′) = ±�[±(t − t ′)]{G>

i j (t, t ′) − G<
i j (t, t ′)} (6)

(for details see the textbooks [63,64]).
Let us summarize a few important properties of the corre-

lation functions. First, on the time diagonal the < component
of the NEGF can be written as

G<
i j (t, t ) ≡ G<

i j (t ) = G>
i j (t ) − 1

ih̄
δi j = ± 1

ih̄
ni j (t ), (7)

where ni j is the single-particle density matrix. Thus, G≷ have
a clear physical meaning and are directly related to observ-
ables. We, therefore, provide the self-energy approximations
in terms of these functions.

B. Hartree-Fock self-energy

The first-order terms of the self-energy describe particle
interaction on the mean-field level. They are combined in the
so-called Hartree-Fock (HF) self-energy, which for a time-
diagonal interaction tensor only has a single-time-dependent
(delta) component for the real time t :

�HF,δ
i j (t ) = ± ih̄

∑
kl

w±
ik jl (t )G<

lk (t, t ). (8)

For this reason, the first-order terms are easily accounted for
by including �HF,δ into an effective single-particle Hamilto-
nian of the form

hHF
i j (t ) = h(0)

i j (t ) ± ih̄
∑

kl

w±
ik jl (t )G<

lk (t, t ). (9)

In Eqs. (8) and (9) we introduced the (anti)symmetrized ma-
trix element of the pair potential,

w±
i jkl (t ) := wi jkl (t ) ± wi jlk (t ) = wi jkl (t ) ± w jikl (t ), (10)

which has the symmetries

w±
i jkl (t ) = ±w±

i jlk (t ) = ±w±
jikl (t ), (11)

and, for fermions, in particular, w±
i jkk (t ) = w±

iikl (t ) = 0.

C. Second-order Born self-energy (SOA)

The simplest self-energy that includes correlations and,
thus, allows to describe dissipation and relaxation effects
(self-energy beyond Hartree-Fock) is given by the second-
order Born approximation [68]

�
≷
i j (t, t ′) = ±(ih̄)2

∑
kl pqrs

wikl p(t )w±
qr js(t

′)

× G≷
lq (t, t ′)G≷

pr (t, t ′)G≶
sk (t ′, t ). (12)

We will use the notation “SOA” for the self-energy that in-
cludes all terms up to second order (including HF). SOA
provides the starting point for all following approximations.
Note that the potential w±, Eq. (10), gives rise to two contri-
butions, the direct SOA and the associated exchange diagram,
which are shown in Fig. 2.

D. Third-order approximation (TOA)

The third-order approximation for the self-energy allows to
significantly improve the accuracy of simulations, compared
to SOA. It contains all diagrams that include up to three inter-
action lines (cf. Fig. 2). There exist 10 skeletonic diagrams
that are of order w3 and which are also part of the GW ,
particle-particle T -matrix (TPP), and partice-hole T -matrix
(TPH) approximations (cf. Fig. 3). Thus, TOA contains the
starting terms of the ladder and bubble sums. TOA was first
introduced and tested in Ref. [26] and was found to be very
accurate for weak and moderate coupling, independently of
the filling (density) [19].

E. Infinite series summations: Dynamical screening
and strong coupling

After considering perturbation theory results for the self-
energy we now turn to another class of approximations that
result from summation of an infinite series of diagrams. The
first example is the polarization approximation (summation of
bubble diagrams, GW approximation) that allows to include
dynamical screening effects which are important, in partic-
ular, for charged particles in plasmas, condensed matter, or
in macromolecules. GW is a weak coupling approximation,
but includes a self-consistently screened pair potential W . To
account for strong coupling effects, the second example is the
particle-particle T matrix that results from summing up the
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entire Born series. Finally, we will consider the second flavor
of the T matrix, the particle–hole T -matrix approximation.
These approximations use a static potential as an input. Since
these are standard approximations, a derivation is not neces-
sary, e.g., [19,68]. Instead, we list the compact final result,
together with the associated diagrams in Fig. 3.

A compact notation is achieved by introducing the follow-
ing products of single-particle Green functions:

GH,≷
i jkl (t, t ′) := G≷

ik (t, t ′)G≷
jl (t, t ′), (13)

GF,≷
i jkl (t, t ′) := G≷

il (t, t ′)G≶
jk (t ′, t ). (14)

We will see in Sec. IV A that GH,≷
i jkl is just the Hartree part of

the two-particle Green function whereas GF,≷
i jkl is the Fock part.

F. Dynamical screening: GW self-energy

The self-energy in GW approximation (GWA) is defined in
terms of the dynamically screened potential W ,

�
GWA,≷
i j (t, t ′) = ih̄

∑
kl

W ≷
ilk j (t, t ′)G≷

kl (t, t ′), (15)

that obeys the following integral equation (Dyson equation):

W ≷
i jkl (t, t ′)

= ±ih̄
∑
pqrs

wipkq(t )wr jsl (t
′)GF,≷

qspr (t, t ′) ± ih̄
∑
pqrs

wipkq(t )

×
{∫ t

t0

dt̄
[
GF,>

qspr (t, t̄ ) − GF,<
qspr (t, t̄ )

]
W ≷

r jsl (t̄, t ′)

+
∫ t ′

t0

dt̄ GF,≷
qspr (t, t̄ )[W <

r jsl (t̄, t ′) − W >
r jsl (t̄, t ′)]

}
.

Here, the first term on the right coincides with the second-
order direct Born diagram (SOA) whereas the integral term
gives rise to an infinite sum of additional diagrams that follow
iteratively, starting by inserting the second-order terms for W ,
under the integral. The first diagrams are sketched in Fig. 3.
Note that here we did not use the (anti)symmetrized potential
w±. Finally, the dependence of W on two times and the time
integral on the right-hand side imply that the computational
effort for evaluating the GW self-energy scales cubically with
the simulation duration.

G. Strong coupling: Particle-particle T -matrix
self-energy (TPP)

The definition of the TPP self-energy has a similar struc-
ture as GW , but the screened potential is replaced by the
particle-particle T matrix,

�
TPP,≷
i j (t, t ′) = ih̄

∑
kl

T pp,≷
ik jl (t, t ′)G≶

lk (t ′, t ), (16)

which obeys a slightly different integral equation,

T pp,≷
i jkl (t, t ′)

= ±ih̄
∑
pqrs

wi j pq(t )GH,≷
pqrs (t, t ′)w±

rskl (t
′) + ih̄

∑
pqrs

wi j pq(t )

×
{∫ t

t0

dt̄
[
GH,>

pqrs(t, t̄ ) − GH,<
pqrs(t, t̄ )

]
T pp,≷

rskl (t̄, t ′)

+
∫ t ′

t0

dt̄ GH,≷
pqrs (t, t̄ )

[
T pp,<

rskl (t̄, t ′) − T pp,>

rskl (t̄, t ′)
]}

.

The main difference to the Dyson equation for the screened
potential W is the replacement of the Fock Green function by
the Hartree Green function GF,≷ → GH,≷. Furthermore, the
first term (which again reproduces the SOA diagram) here
contains the potential w±, thus it includes the exchange di-
agram. As a consequence, each diagram of the iteration series
is complemented by an exchange diagram (cf. Fig. 3, second
and third line, respectively).

H. Particle-hole T -matrix self-energy

The particle-hole T matrix is defined analogously to the
particle-particle T matrix,

�
TPH,≷
i j (t, t ′) = ih̄

∑
kl

T ph,≷
ik jl (t, t ′)G≷

lk (t, t ′), (17)

with the main difference given by the appearance of GF,≷ in
the Lippmann-Schwinger equation

T ph,≷
i jkl (t, t ′)

= ±ih̄
∑
pqrs

wiqpl (t )GF,≷
psqr (t, t ′)wr jks(t

′) + ih̄
∑
pqrs

wiqpl (t )

×
{∫ t

t0

dt̄
[
GF,>

psqr (t, t̄ ) − GF,<
psqr (t, t̄ )

]
T ph,≷

r jks (t̄, t ′)

+
∫ t ′

t0

dt̄ GF,≷
psqr (t, t̄ )

[
T ph,<

r jks (t̄, t ′) − T ph,>

r jks (t̄, t ′)
]}

.

Note that, in contrast to the particle-particle T matrix, in this
definition no exchange contributions are included. While it
is possible to sum up an additional diagram series by using
the (anti)symmetrized w±, instead of w, this would lead to a
violation of physical conservation laws [69].

I. Combining strong coupling and dynamical screening

An important task of many-body theory, in particular for
systems with long-range Coulomb interaction, is to com-
bine strong coupling and dynamical screening effects. There
exist several approximate solutions. One is the third-order
approximation (TOA) that was discussed above in Sec. III D
which contains diagrams from both approximations, up to
the third order. Another approximate solution is provided
by the FLEX (fluctuating exchange) scheme, e.g., [19,35].
A combination of strong coupling and dynamical screening
(the dynamically screened ladder approximation, DSL) for the
case of excitons in thermal equilibrium has been formulated
in terms of a Bethe-Salpeter equation [27,28]. However, a
fully self-consistent nonequilibrium expression for the DSL
self-energy is still missing. At the same time, as we will show
in Sec. V, a G1-G2 scheme on the level of the nonequilib-
rium DSL approximation is straightforwardly derived using
reduced density operator theory. This also allows to incorpo-
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rate exchange diagrams into the particle-hole T -matrix and
GW approximations in a conserving manner.

IV. THE G1-G2 SCHEME

Instead of solving the full two-time equations (3) and
(5), from now on we will concentrate on an approximation
scheme that considers the solution along the time diagonal
only. This is based on the generalized Kadanoff-Baym ansatz
(GKBA), that will be introduced in Sec IV C, and its refor-
mulation in terms of coupled time local equations for the
single-particle and two-particle Green functions, leading to
the G1-G2 scheme (cf. Secs. IV D and IV E). But, first we
introduce two-particle Green functions on the real-time axis
which we will need, in addition to the the single-particle
Green functions G≷ that we discussed in Sec. III A.

A. Two-particle Green function

We start with formulating the two-particle NEGF on the
Keldysh contour

G(2)
i jkl (z1, z2, z3, z4) = 1

(ih̄)2
〈TC{ĉi(z1)ĉ j (z2)ĉ†

l (z4)ĉ†
k (z3)}〉,

(18)

which, similar to the self-energy, can be divided into a
mean-field [Hartree (H) plus Fock (F)] and a correlation con-
tribution,

G(2)
i jkl (z1, z2, z3, z4)

= G(2),H
i jkl (z1, z2, z3, z4) ± G(2),F

i jkl (z1, z2, z3, z4)

+ G(2),corr
i jkl (z1, z2, z3, z4).

Our G1-G2 scheme involves the special case of two-particle
functions that depend either on one or two times and their
real-time components, that we define as follows:

GH
i jkl (z, z′) := G(2),H

i jkl (z, z, z′, z′) = Gik (z, z′)Gjl (z, z′),

GF
i jkl (z, z′) := G(2),F

i jkl (z, z′, z, z′) = Gil (z, z′)Gjk (z′, z),

Gcorr
i jkl (z, z′) := G(2),corr

i jkl (z, z, z′, z+).

For the derivation of the G1-G2 scheme it will be sufficient
to consider the >/< components of the Hartree, Fock, and
correlated parts of G(2) on the real-time diagonal,

GH,≷
i jkl (t ) := GH,≷

i jkl (t, t ), GF,≷
i jkl (t ) := GF,≷

i jkl (t, t ),

Gi jkl (t ) := Gcorr,<
i jkl (t, t ). (19)

where GH,≷
i jkl (t, t ) and GF,≷

i jkl (t, t ) were defined in Eqs. (13)
and (14).

The time-diagonal correlated two-particle Green function
G(t ), defined by Eq. (19), is the central quantity of the G1-G2
scheme. The exact solution G(t ) and the one corresponding to
the self-energy approximations considered in this work obey
the following (pair-) exchange symmetries:

Gi jkl (t ) = G jilk (t ), Gi jkl (t ) = [Gkli j (t )]∗,

Gi jkl (t ) = ±G jikl (t ) = ±Gi jlk (t ),

which exactly agree with the symmetries of the
(anti)symmetrized potential w± [cf. Eqs. (11)].

B. Time-diagonal KBE for G<(t )

In the following we concentrate on the dynamics of the cor-
relation function G≷

i j (t ) := G≷
i j (t, t ) on the real-time diagonal.

The corresponding equation of motion follows from adding
the two KBE and taking the limit of equal times, e.g. [68],3

ih̄
d

dt
G<

i j (t ) − [hHF, G<]i j (t ) = [I + I†]i j (t ),

with [hHF, G<]i j =
∑

k

{
hHF

ik G<
k j − G<

ikhHF
k j

}
,

(20)

where I (t ) = I (t ) + I IC(t ) is the collision integral of the
kinetic equation that, in general, consists of the dynamical
collision integral I and the initial-correlation contribution I IC

which includes pair correlations existing in the system at the
initial time t = t0. The treatment of initial correlations in the
G1-G2 scheme was discussed in detail in Ref. [11]. Therefore,
these results will not be repeated here, hence, we consider
the case I IC(t ) = 0. For a general discussion of initial cor-
relations in NEGF theory, see Refs. [63,70] and references
therein. In the numerical applications, below, initial correla-
tions will be properly included.

The collision integral in Eq. (20) has the following general
form:

Ii j (t ) = ±ih̄
∑
kl p

wikl p(t )Gl p jk (t ) (21)

=
∑

k

∫ t

t0

dt̄[�>
ik (t, t̄ )G<

k j (t̄, t ) − �<
ik (t, t̄ )G>

k j (t̄, t )],

(22)

where the first line follows directly from the right-hand side
of Eqs. (2) and (4) (the time integral has been taken with the
help of the delta function in the two-time potential). In the
second line the two-particle Green function has been elimi-
nated by introducing the correlation self-energy functions �≷

(we retain the notation � for the correlated part). Note that
for the approximations studied in this paper, the correlation
self-energies �≷(t, t ′) are nonsingular functions. This means
the collision integral Ii j (t ) in Eq. (21) vanishes for t → t0 (at
this point, only the initial correlation term may be present).

C. Generalized Kadanoff-Baym ansatz (GKBA)

Even in the time-diagonal case, the collision integral (22)
involves Green functions and self-energies away from the
real-time diagonal. Thus, the equation for G<(t ), Eq. (20), is
not closed. The generalized Kadanoff-Baym ansatz [8] pro-
vides a useful approximation for the reconstruction of the
time off-diagonal elements of the < and > NEGF from their

3The commutator of two single-particle quantities A(t ) and B(t ) is
defined as [A, B]i j (t ) = ∑

k[Aik (t )Bk j (t ) − Bik (t )Ak j (t )].
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time-diagonal value via [68]

G≷
i j (t, t ′) = ih̄

∑
k

[
GR

ik (t, t ′)G≷
k j (t

′) − G≷
ik (t )GA

k j (t, t ′)
]
,

(23)

where the retarded and advanced Green functions were de-
fined in Eq. (6) with GR(t, t ′) [GA(t, t ′)] being nonzero only
for t � t ′ (t � t ′). Thus, G≷

i j (t, t ′) are expressed via their val-
ues on the time diagonal, i.e., the density matrix [cf. Eq. (7)].
Alternatively, the individual functions GR/A can be eliminated
in favor of their difference

Ui j (t, t ′) = GR
i j (t, t ′) − GA

i j (t, t ′),

with the following value on the time diagonal:

Ui j (t, t ) = G>
i j (t ) − G<

i j (t ) = 1

ih̄
δi j .

U (t, t ′) is a time-evolution operator that does not contain a �-
function and allows us to rewrite the GKBA in the following
form:

G≷
i j (t ′ � t ) = ih̄

∑
k

G≷
ik (t ′)Uk j (t

′, t ), (24)

G≷
i j (t � t ′) = ih̄

∑
k

Uik (t, t ′) G≷
k j (t

′). (25)

On the other hand, the retarded and advanced functions in
Eq. (23) and U are still depending on two time arguments. We
solve this problem by using the Hartree-Fock approximation

Ui j (t, t ′) = 1

ih̄
exp

{
− 1

ih̄

∫ t

t ′
dt̄ hHF(t̄ )

}∣∣∣∣
i j

, (26)

which gives rise to the Hartree-Fock–GKBA [64,71,72]. On
the other hand, using the Hartree-Fock result (26), expres-
sions (24) and (25) solve the time-diagonal KBE (20) in the
collisionless limit I → 0. Using the HF-GKBA allows us to
solve the time-diagonal KBE (20) with collisions included in
a perturbative manner: in the collision integral all functions
G≷(t, t ′) are replaced by G≷(t, t ′)|HF-GKBA, using Eqs. (24)–
(26).

The HF-GKBA has a number of attractive properties
[37,72]. It retains total-energy conservation and time re-
versibility. Correlation effects are fully included in the
time-diagonal values of the Green function G<(t ), but cannot
be recovered from the off-diagonal components G<(t �= t ′).
Finally, restricting the time propagation to the diagonal re-
duces the computational effort to N2

t because the memory
integration in the collision integral (22) has still to be carried
out at each time step.

In the following we demonstrate how this memory integra-
tion can be eliminated which leads to the G1-G2 scheme that
scales as N1

t .

D. G1-G2 scheme for the second-order Born self-energy

We start by considering the simplest self-energy beyond
Hartree-Fock, the second-order Born approximation (SOA)
(cf. Sec. III C). Then, the collision integral of the time-

diagonal equation (21) transforms into

ISOA
i j (t ) = ±(ih̄)2

∑
kl pqrsu

wikl p(t )
∫ t

t0

dt̄ w±
qrsu(t̄ )

× [G>
lq(t, t̄ )G>

pr (t, t̄ )G<
uk (t̄, t )G<

s j (t̄, t )

− G<
lq(t, t̄ )G<

pr (t, t̄ )G>
uk (t̄, t )G>

s j (t̄, t )]

= ±(ih̄)2
∑

kl pqrsu

wikl p(t )
∫ t

t0

dt̄ w±
qrsu(t̄ )

× [
GH,>

l pqr (t, t̄ )GH,<
su jk (t̄, t ) − GH,<

l pqr (t, t̄ )GH,>
su jk (t̄, t )

]

= ±(ih̄)2
∑

kl pqrsu

wikl p(t )
∫ t

t0

dt̄ w±
qrsu(t̄ )

× [
GF,>

l jqs(t, t̄ )GF,<
urkp(t̄, t ) − GF,<

l jqs(t, t̄ )GF,>
urkp(t̄, t )

]
,

where, in the second and third expressions, we used the two-
particle Hartree and Fock Green functions defined in Eqs. (13)
and (14), respectively.

Using Eq. (21) we can identify the correlated part of the
two-particle Green function G in SOA:

GSOA
i jkl (t ) = ih̄

∑
pqrs

∫ t

t0

dt̄ w±
pqrs(t̄ )

× [
GH,>

i j pq (t, t̄ )GH,<
rskl (t̄, t ) − GH,<

i j pq (t, t̄ )GH,>
rskl (t̄, t )

]
.

(27)

Now, we apply the HF-GKBA, using Eqs. (24) and (25), for
the Green functions [taking into account that in the collision
integral only G>(t � t̄ ) and G<(t̄ � t ) appear], we reformu-
late Eq. (27) for the two-particle Green function on the time
diagonal within the HF-GKBA [11],

GSOA
i jkl (t ) = (ih̄)3

∑
pqrs

∫ t

t0

dt̄ U (2)
i j pq(t, t̄ )�±

pqrs(t̄ )U (2)
rskl (t̄, t ),

(28)
where we introduced the short notations for the two-particle
evolution operators U (2) and the occupation factors �±, for
which we give two equivalent expressions

U (2)
i jkl (t, t ′) = Uik (t, t ′)U jl (t, t ′) = U (2)

jilk (t, t ′),

�±
i jkl (t ) = (ih̄)2

∑
pqrs

w±
pqrs(t )

{
GH,>

i j pqG
H,<
rskl − (>↔<)

}
t

= (ih̄)2
∑
pqrs

w±
pqrs(t )

{
GF,>

irkpG
F,>
jslq − (>↔<)

}
t .

(29)

The superscript “±” indicates that exchange effects are in-
cluded which enter via the (anti)symmetrized potential w±.
The function �±(t̄ ) has the meaning of pair correlations
produced in the system at time t̄ via two-particle scattering
per unit time. These correlations are time evolved from t̄
to t by the evolution operators U (2)

i jkl [cf. expression (28)].
The appearance of two propagators indicates that GSOA

i jkl (t )
does not obey a Schrödinger-type equation but a commutator
(Heisenberg–von Neumann) equation, that we present in the
following.

Indeed, a straightforward calculation reveals [10,11,37]
that the time-diagonal two-particle Green function (28) in
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SOA obeys the following ordinary differential equation:

ih̄
d

dt
GSOA

i jkl (t ) − [h(2),HF(t ),GSOA(t )]i jkl = �±
i jkl (t ),

h(2),HF
i jkl (t ) = hHF

ik (t )δ jl + hHF
jl (t )δik . (30)

Equations (30) and (20) constitute a closed system of time-
local differential equations, for which the computational effort
of a numerical implementation scales linearly with time. The
present result is obtained for a general single-particle basis.
Special cases, such as the Hubbard basis or a momentum
basis, were discussed in detail in Ref. [11].

In similar manner as for the SOA self-energy, a time-local
equation for G corresponding to more advanced self-energies
can be derived for which the speedup of the G1-G2 scheme is
even larger. This is discussed in the next section.

E. G1-G2 equations for self-energies beyond the second-order
Born approximation

Starting from improved correlation self-energies beyond
SOA, as were presented in Sec. III, the derivation of the
G1-G2 scheme can be repeated. This was done in great de-
tail in Ref. [11], so here we summarize the results for the
particle-particle T matrix (including exchange diagrams), the
particle-hole T matrix, and for the GW approximation. For
the latter two no conserving exchange self-energies are avail-
able. At the same time, this problem can be solved within
the alternative reduced density operator formalism, as will be
demonstrated in Sec. V.

1. Particle-particle T-matrix self-energy

Starting from the T -matrix approximation for the selfen-
ergy, Eq. (16), the equation for the time-diagonal two-particle
Green function becomes (we suppress the time dependencies)
[11]

ih̄
d

dt
GTPP

i jkl − [h(2),HF,GTPP]i jkl

= �±
i jkl + Li jkl ,

Li jkl :=
∑

pq

{
hL

i j pqGTPP
pqkl − GTPP

i j pq

[
hL

kl pq

]∗}
,

hL
i jkl := (ih̄)2

∑
pq

[
GH,>

i j pq − GH,<
i j pq

]
wpqkl . (31)

This equation differs from the SOA case by the ladder term L
which can be further transformed, using the identities

(±ih̄)2(GH,>
i jrs − GH,<

i jrs

) = (δir ± nir )(δ js ± n js) − nirn js

= δirδ js ± δ jsnir ± δien js

:= Ni jrs (32)

with the result for the ladder term

Li jkl =
∑

rs

∑
pq

{Ni jrswrspqGpqkl − Gi j pqwpqrsNrskl}. (33)

Note that, while the inhomogeneity �± involves the
(anti)symmetric potential w±, the ladder term contains the
bare interaction potential w.

2. Particle-hole T-matrix self-energy

Starting from the particle-hole T -matrix approximation for
the self-energy, Eq. (17), the equation for the time-diagonal
two-particle Green function becomes [11]

ih̄
d

dt
GTPH

i jkl − [h(2),HF,GTPH]i jkl = �i jkl + 	PH
i jkl ,

	PH
i jkl :=

∑
pq

{
h	

ipql GTPH
q jkp − GTPH

ipql

[
h	

kpq j

]∗}
,

Compared to the particle-particle T -matrix case, the ladder
term L is replaced by the term 	PH and the inhomogeneity
� is defined with the original interaction matrix element [as
opposed to the (anti)symmetrized w± of Eq. (29)].

3. GW self-energy

The equation for the time-diagonal Green function in GW
approximation is [11]

ih̄
d

dt
GGW

i jkl − [h(2),HF,GGW]i jkl = �i jkl + 
i jkl , (34)


i jkl :=
∑

pq

{
h


q j pl GGW
ipkq − GGW

q j pl

[
h


qkpi

]∗}
, (35)

h

i jkl := ±(ih̄)2

∑
pq

wqipk
[
GF,>

j plq − GF,<
j plq

]
, (36)

where 
 denotes the polarization terms (ring diagrams). Note
that, in contrast to the SOA case, this equation contains the
inhomogeneity � without (anti)symmetrization (as in the case
of TPH), which is a consequence of the starting diagrams in
Fig. 3. It is interesting to note that Eqs. (35) and (36) can be
reformulated by transforming the difference of Fock Green
functions:

(±ih̄)2
(
GF,>

j plq − GF,<
j plq

) = (δ jq ± n jq)npl − n jq(δpl ± npl )

= δ jqnpl − δpln jq := Mj plq. (37)

Using Eq. (37) the effective Hamiltonian (36) and the polar-
ization term (35) become

h

i jkl =

∑
pq

wiqkpMj plq,


i jkl =
∑
pqrs

{
wqsprMjrls GGW

ipkq − GGW
q j pl Mslrkwprqs

}
. (38)

4. Combining GW and T-matrix self-energy contributions

An important task in many-body physics is to combine
strong coupling (all T -matrix contributions) and dynamical
screening (GW with exchange) which corresponds to the
dynamically screened ladder approximation (DSL), as we dis-
cussed in Sec. III I. Within nonequilibrium Green functions
this would require to combine the respective self-energies. For
this problem, two perturbative solutions have been reported:
the third-order approximation (TOA) that includes ladder and
polarization diagrams up to third order in the interaction, as
was discussed in Sec. III D, and the FLEX approximation
[23,35]. However, beyond this perturbative result, at the mo-
ment no closed self-energy approximation that corresponds to
DSL and includes diagrams of all orders is known. Further-
more, there is significant asymmetry in the approximations:
while for the particle-particle T matrix exchange diagrams are
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known, no such terms are available for the particle-hole and
GW self-energies.

We, therefore, will proceed differently and approach this
problem from the side of the reduced density operator the-
ory which provides an independent approach to the G1-G2
scheme. As we will see, this approach provides answers to the
questions above.

V. COMPARISON OF THE G1-G2 SCHEME TO REDUCED
DENSITY OPERATOR THEORY

In this section we recall the basic ingredients of nonequi-
librium reduced density operator (density matrix, TD2RDM)
theory [37]. Thereby we will retain the compact operator no-
tation as it allows one to more easily understand the physical
meaning of the individual terms in the equations of motion.
We start by introducing the N-particle nonequilibrium density
operator ρ̂N and by defining the reduced density operators F̂1,
F̂12, F̂123, etc., in Sec. V A. There we summarize the equa-
tions of motion of the latter: the BBGKY hierarchy. After this,
in Sec. V B we introduce the cluster (or cumulant) expansion
of the density operators and the binary (ternary) correlation
operators ĝ12 (ĝ123), and we present the equation of motion of
ĝ12. The resulting equation allows us to directly identify the
terms that correspond to the self-energy approximations of
NEGF theory that were introduced in Sec. III, including the
T -matrix and GW approximations. Finally, we perform the
(anti)symmetrization of the reduced density and correlation
operators and of their equations of motion (cf. Sec. V E).
In the concluding Sec. V F we establish the correspondence
between the quantities of reduced density matrix theory and
of NEGF and compare their equations of motion.

A. Definitions of reduced density operators: The case of spinless
particles

We consider a generic quantum many-particle system with
the Hamiltonian ĤN that is subject to external baths and, thus,
requires a mixed-state description. This is done with the N-
particle density operator that is composed from solutions of
the N-particle Schrödinger equation

ih̄
∂

∂t

∣∣ψ (a)
N

〉 = ĤN

∣∣ψ (a)
N

〉
, ĤN =

N∑
i=1

Ĥi + 1

2

∑
i �= j

V̂i j,

ρ̂N =
∑

a

pa

∣∣ψ (a)
N (t )

〉〈
ψ

(a)
N (t )

∣∣, Tr1...N ρ̂N = 1,

where pa are real non-negative probabilities. From the N-
particle density operator one computes s-particle reduced
density operators (s = 1, 2, . . . , N − 1)

F̂1,...,s = N!

(N − s)!
Trs+1,...,N ρ̂N , Tr1,...,sF̂1,...,s = N!

(N − s)!
,

(39)

where, in the following, we will skip the “hat” of the opera-
tors. From the equation of motion for ρ̂N , the von Neumann
equation, with the initial condition ρ0

N ,

ih̄
d

dt
ρN − [HN , ρN ] = 0,

ρN (t0) = ρ0
N ≡

∑
k

pa |ψ (a)(t0)〉〈ψ (a)(t0)|,

one readily derives the equations for the reduced density op-
erators, the quantum BBGKY hierarchy [37],

ih̄
d

dt
F1,...,s − [H1,...,s, F1,...,s] = Trs+1[V (1,...,s),s+1, F1,...,s+1],

V (1,...,s),s+1 =
s∑

α=1

Vα,s+1, (40)

Here, H1,...,s is the s-particle Hamilton operator which follows
from H1,...,N by substituting N → s. The equations of the hier-
archy differ from the von Neumann equation due to the terms
on the right-hand side, which contain the coupling of the s
particles to the remainder of the system via all possible binary
interactions. The complete hierarchy is, obviously, equivalent
to the von Neumann equation and, therefore, has the same
properties. In particular, the system (40) is time reversible and
conserves the total energy.

B. Cluster expansion: Correlation operators

To derive approximations and decouple the hierarchy, it is
useful to introduce correlation operators that are defined via
the cluster expansion

F12 = F1F2 + g12,

F123 = F1F2F3 + g23F1 + g13F2 + g12F3 + · · · + g123, (41)

In Eq. (41) we have introduced the pair-correlation operator
g12, which is the deviation of the two-particle density operator
from its uncorrelated (Hartree) part F1 F2. Note that exchange
corrections will be recovered from an (anti)symmetrization
procedure in Sec. V E. Similarly, g123 is the three-particle
correlation operator.

We now rewrite the equation of motion for F1 in terms of
g12 and also derive the equation of motion for g12(t ), starting
from the BBGKY hierarchy [Eq. (40) for s = 2] and subtract-
ing the first equation for F1 F2 [37],

ih̄
d

dt
F1 − [H̄1, F1] = I0

1,DO, (42)

ih̄
d

dt
g12 − [

H̄0
12, g12

] = �0
12,DO + L0

12,DO

+ 
0
12,DO + Tr3[V (12),3, g123]. (43)

Here we have introduced the one- and two-particle mean-field
Hamilton operators H̄1 and H̄0

12 and the operator of the Hartree
mean-field energy U H

1 :

H̄1 = H1 + U H
1 , U H

1 = Tr2V12F2,

H̄12 = H̄0
12 + V12, H̄0

12 = H̄1 + H̄2.

The other notations are as follows:

I0
1,DO = Tr2[V12, g12], (44)

�0
12,DO = [V12, F1F2], (45)

L0
12,DO = [V12, g12], (46)


0
12,DO = 


0(1)
12,DO + 


0(2)
12,DO, (47)



0(1)
12,DO = Tr3[V13, F1g23], (48)
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where 

0(2)
12,DO follows from 


0(1)
12,DO by exchanging (1 ↔ 2).

Furthermore, I0
DO denotes the operator form of the collision

integral, �0
DO is the inhomogeneity in the g12 equation, L0

DO
denotes the ladder terms, and 
0

DO the polarization terms. A
detailed discussion of the physics behind each of these terms
can be found in Ref. [37].

In expressions (44)–(47) we deliberately chose notations
resembling those of the G1-G2 scheme. The subscript “DO”
stands for density operator approach and superscript “0” for
the spinless limit.

C. Many-body approximations

Equations (42) and (43) have a one-to-one correspondence
to the G1-G2 equations that were derived within NEGF theory
for given self-energy approximations, if three-particle cor-
relations are neglected, in the limit of spinless particles. In
particular, note the following:

(i) I0
DO → 0 recovers the time-dependent Hartree approxi-

mation.
(ii) L0

12,DO = 
0
12,DO → 0 is equivalent to the second-

order approximation (30).
(iii) 
0

12,DO → 0 and L0
12,DO �= 0 is equivalent to the

particle-particle T -matrix approximation (31).
(iv) L0

12,DO → 0 and 
0
12,DO �= 0 is equivalent to the GW

approximation, Eq. (34).
(v) L0

12,DO �= 0 and 
0
12,DO �= 0 is equivalent to the DSL

approximation.
Note that, without (anti)symmetrization, density operator

theory does not yield the particle-hole T -matrix terms of
NEGF theory. On the other hand, including both the lad-
der and polarization terms, i.e., 
0

12,DO �= 0 and L0
12,DO �=

0 simultaneously, yields the DSL approximation (so far,
without exchange terms) for which no NEGF correspon-
dence exists. These issues will be discussed in detail for the
(anti)symmetrized RDO equations. There we also will estab-
lish an exact correspondence between the respective terms of
the two approaches.

D. Energy conservation and trace consistency

The exact solution of the BBGKY hierarchy (40) conserves
density, momentum, and total energy. Approximate solutions
to the hierarchy should, therefore, also satisfy these con-
straints, so we briefly discuss this issue in the following. The
approximations that were discussed in Sec. V C correspond to
the Hartree, second-order Born, T -matrix, and GW approxi-
mations of NEGF theory (this correspondence will be shown
explicitly in Sec. V F) which are all known to be conserving,
e.g., [73]. Upon reducing the two-time equations of NEGF
theory to single-time equations via the Hartree-Fock GKBA
these conservation properties are maintained, as was shown
by Hermanns et al. [72]. Therefore, the independent reduced
density operator approach, within approximations (i)–(iv) of
Sec. V C should also be conserving. Indeed, this is straight-
forward to show [37], and we reproduce the criterion for
a conserving approximations in Appendix B. This criterion
consists in the permutation symmetry of the three-particle
reduced density operator,

F123(t ) = F132(t ) = · · · for all times. (49)

From this it is easy to see that also approximation (v), the
dynamically screened ladder approximation, is conserving as
well because it is equivalent to neglecting three-particle cor-
relations g123 → 0 which obey the symmetry (49).

Another important property of the above approximations
is that they preserve time-reversal invariance of the exact
BBGKY hierarchy [74] and of the underlying hierarchy of
the nonequilibrium Green functions [75]. Reversibility is lost
only if the Markov limit is enforced (Fermi’s golden rule). For
more details and a discussion of the relevant time scales, we
refer to Refs. [37,74,76].

Aside from conservation properties there exist additional
constraints on the solution of the many-body problem. If this
solution is expressed via the reduced density operators F1, F12,
F123, and so on, there exist consistency constraints between
them. The reason is that they are all derived from the same
N-particle density operator ρN obeying the BBGKY hierarchy
(40) that is equivalent to the von Neumann equation for ρN .
From the definition of the reduced density operators, Eq. (39)
immediately follow relations between any pair of RDO, in
particular,

F1 = 1

N − 1
Tr2F12, (50)

F12 = 1

N − 2
Tr3F123. (51)

The related issues of contraction consistency and
N-representability have been studied in detail in
Refs. [51,52,77,78]. One readily verifies that relation (50) is
a consequence of Eq. (51) if, in addition, the three-particle
density operator obeys permutation symmetry, i.e., Eq. (49)
is fulfilled.

It is straightforward to show that approximations (i)–(v)
are not trace consistent. Consider, as an example, the Hartree
approximation F12 = F1 F2. Inserting this into Eq. (50) yields

N
N−1 F1, on the right-hand side, violating this relation. Even
though the correct results are recovered if exchange is restored
(Hartree-Fock approximation) (cf. Sec. V E), this holds only
for fermions in the ground state when the one-particle density
matrix is idempotent. Similar behavior is observed for the
other many-particle approximations. To restore trace consis-
tency, we will consider modified approximations in Sec. VI B.

E. (Anti)symmetrization of the reduced density operators

Until now, we have used, as a starting point for constructing
the density operators, the solution of the Schrödinger equa-
tion without (anti)symmetrization. Of course, this completely
neglects spin and exchange effects, including Pauli blocking.

We now restore the spin statistics, in all expressions, by
applying an (anti)symmetrization procedure to all density op-
erators that was proposed by Boercker and Dufty [79] (for
details see Ref. [37]). The result is that all two- and three-
particle operators are (anti)symmetrized according to

F12 → F±
12 = F12λ

±
12, g12 → g±

12 = g12λ
±
12,

F123 → F±
123 = F123λ

±
123, g123 → g±

123 = g123λ
±
123,

and so on, where the (anti)symmetrization operators λ± are
expressed in terms of pair permutation operators P̂i j , with (1,
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2, 3, i, j are particle indices)

P̂12|12〉 = |21〉, λ±
12 = 1̂ + εP̂12,

λ±
123 = λ±

12(1̂ + εP̂13 + εP̂23),

where ε = +1 for bosons, ε = −1 for fermions, and ε = 0
for spinless particles. A number of important properties of the
operators P̂i j and λ± are presented in Appendix A.

We now perform the (anti)symmetrization of the first hier-
archy equation with the result [37,79]

ih̄
d

dt
F1 − [

H1 + U HF
1 , F1

] = Tr2[V12, g±
12] = I1,DO. (52)

Here we introduced the (anti)symmetrized versions of the
collision integral and of the Hartree mean field, i.e., the
Hartree-Fock potential energy operator

U H
1 → U HF

1 = Tr2V
±

12F2, (53)

V12 → V ±
12 = V12λ

±
12. (54)

As we will see below, the operator (53) is directly related to
the Hartree-Fock self-energy whereas the (anti)symmetrized
pair potential (54) coincides with the previously intro-
duced w±.

Let us now turn to the (anti)symmetrization of the equa-
tion of motion for the pair-correlation operator g±

12. We start
by introducing the following definitions:

H̄0
12 = H1 + H2 + U HF

1 + U HF
2 , V̂12 = N12 V12, (55)

V̂ ±
12 = N12 V ±

12 , N12 = 1̂ + εF1 + εF2. (56)

H̄0
12 is the (anti)symmetrized generalization of the previous

definition, and N12 is the familiar two-particle Pauli blocking
(Bose enhancement) factor. Note that, while the operators
V12, F1, F12, g12, and so on are Hermitian, the potential V̂12 is
not: V̂ †

12 = V12N12.
To derive the equation of motion for g±

12 we start from
the (anti)symmetrized version of the second hierarchy equa-
tion where we introduced the cluster expansions of F12 and
F123 and factorized the operator λ±

123:

ih̄
d

dt
(F1F2λ

±
12 + g±

12) − [
H0

12 + V12, F1F2λ
±
12 + g±

12

]
= Tr3{[V13 + V23, F1F2F3] + [V13 + V23, F1g23]

+ [V13 + V23, F2g13] + [V13 + V23, F3g12]

+ [V13 + V23, g123]}(1 + εP13 + εP23)λ±
12. (57)

The transformation of Eq. (57) was performed in Refs. [37,79]
where it was observed that each term contains a factor λ±

12
that was canceled. However, this is incorrect, as it neglects
important terms. Here, we restore this factor and present the
complete derivation.

From Eq. (57) we subtract the equation of motion for
F1F2λ

±
12, using the first hierarchy equation (52), with the result

[the main steps involved in the derivation of Eq. (58) are
provided in Appendix A]

ih̄
d

dt
g±

12 − [
H̄0

12, g±
12

] = �±
12,DO + L12,DO

+P±
12,DO + Tr3[V (12),3, g±

123], (58)

�±
12,DO = V̂ ±

12F1F2 − F1F2V̂
±†

12 , (59)

L12,DO = V̂12 g±
12 − g±

12 V̂ †
12, (60)

P±
12,DO = (



±(1)
12,DO + 


±(2)
12,DO

)
λ±

12, (61)



±(1)
12,DO = Tr3[V ±

13 , F1g±
23], (62)

where 

±(2)
12,DO follows from 


±(1)
12,DO by exchanging (1 ↔ 2).

Let us discuss the terms in this equation. The operators
�±

12,DO and L12,DO are generalizations of the spinless results
for the inhomogeneity (�12,DO) and the ladder terms (L0

12,DO),
respectively. Instead of the bare potential V12 of the spin-
less case, they now involve the pair potential (55), (56),
that is modified by Pauli blocking effects of the surrounding
medium. Furthermore, 


±(1)
12,DO, Eq. (62), is the polariza-

tion contribution that generalizes the previous spinless result



0(1)
12,DO, Eq. (48). This generalization is twofold: first, the pair-

correlation operator g23 is replaced by its (anti)symmetrized
generalization g±

23. Second, the pair potential V13 is replaced
by the (anti)symmetrized potential V ±

13 where the additional
contribution involving P̂13 gives rise to exchange corrections
to the polarization terms which have no classical counterpart.
Finally, note that the full polarization term, Eq. (61), contains
an additional factor λ±

12 = 1̂ + εP̂12. While the contribution of
the 1̂ directly yields Eq. (62) which has the same form as in the
spinless case, as discussed above, the additional contributions



±(1)
12,DOεP̂12 and 


±(2)
12,DOεP̂12 are new, without a counterpart

in the BBGKY hierarchy of classical or spinless quantum
systems.

The physical nature of these new terms will become clear
from a comparison to the G1-G2 scheme, in Sec. V F: taking
advantage of the connection of all terms in the G1-G2 scheme
to self-energy diagrams of NEGF theory we will establish
that these additional terms correspond to particle-hole ladder
diagrams.

The conserving many-body approximations that can be
used to decouple the (anti)symmetrized BBGKY hierarchy are
the same as discussed in Sec. V C where only now the properly
(anti)symmetrized terms have to be used:

(i) IDO → 0 recovers the time-dependent Hartree-Fock ap-
proximation.

(ii) L12,DO = P±
12,DO → 0 is equivalent to the second-order

approximation with exchange, Eq. (30).
(iii) P±

12,DO → 0 and L12,DO �= 0 is equivalent to the
particle-particle T -matrix approximation with exchange,
Eq. (31).

(iv) L12,DO → 0 and P±
12,DO �= 0 corresponds to a com-

bination of the GW approximation with exchange and the
particle-hole T matrix with exchange that also includes the
respective cross-coupling terms.

(v) L12,DO �= 0 and P±
12,DO �= 0 is equivalent to the DSL

approximation with exchange contributions.

F. Comparison of the density operator results
to the G1-G2 scheme

Let us start the comparison of the two approaches by relat-
ing the definitions of the one-particle reduced density operator
F1 and the (anti)symmetrized pair-correlation operator g±

12
[37] to the Green functions (correlation functions) on the time
diagonal. Since the Green functions are given in a matrix rep-
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resentation, we also transform the reduced density operators
into matrix form with respect to a complete orthonormal set
of single-particle orbitals {|i〉}. For two-particle states we use
a product form {|i j〉} = {|i〉| j〉}.

The relevant relations between the quantities in reduced
density operator theory and nonequilibrium Green functions
on the time diagonal are

(F1)i j = Fi j = F ∗
ji = ni j = ±ih̄G<

i j, (63)

(g±
12)i jkl = (ih̄)2Gi jkl , (64)

(V12)i jkl = wi jkl = w jilk = w∗
kli j, (65)

(V ±
12 )i jkl = (V12λ

±
12)i jkl = w±

i jkl = wi jkl + ε wi jlk,

w±
i jkl = w±

jilk = w±∗
kli j = ±w±

i jlk, (66)

Gi jkl = G jilk = G∗
kli j = ±Gi jlk = ±G jikl . (67)

Thus, the matrix of the single-particle density operator,
Eq. (63), coincides with the one-particle density matrix ni j

and, up to the factor ±ih̄, with the single-particle Green func-
tion. Similarly, the matrix of the correlation operator, Eq. (64)
coincides, up to the factor (ih̄)2 with the time-diagonal corre-
lated part of the two-particle Green function.

Note that the (anti)symmetrized pair potential and, with it
also the two-particle functions G and g±

12, obey a number of
additional symmetries, compared to the original pair potential
V12 and the nonsymmetrized operator g12, that are listed in
Eqs. (66) and (67).

In the following we compare, term by term, the first and
second equations of the (anti)symmetrized BBGKY hierarchy
to the equations of the G1-G2 scheme.

1. First equation

Comparison of Eqs. (52) and (20) reveals that both are
identical, up to a factor (±ih̄) that follows from relation (63).
This follows from the equivalence of the mean-field terms and
collision integrals, in Eqs. (52) and (22),

(
U HF

1

)
i j =

∑
kl

V ±
ik jl Flk = ±ih̄ �HF

i j ,

(
H1 + U HF

1

)
i j = hHF

i j , (I1,DO)i j = ±(ih̄)(I + I†)i j .

We now turn to a comparison of the second hierarchy equa-
tion, Eq. (58), and the equations for the two-particle Green
function that were derived, separately, for the SOA, TPP, TPH,
and GW self-energies. Due to the relation (64) both versions
of the equations differ by an overall factor (ih̄)2.

2. Inhomogeneity �± in the second equation

We start from the comparison of the two inhomogeneities
�±

12,DO [Eq. (59)] in the equation for the pair-correlation
operator to �±

i jkl , in the equation of G, for SOA and TPP self-
energies. Straightforward transformations confirm that both
are identical:

(�±
12,DO)i jkl = {

V̂ ±
12F1F2 − F1F2V̂

±†
12

}
i jkl

= {(1 ± F1)(1 ± F2)V ±
12F1F2

− F1F2V
±

12 (1 ± F1)(1 ± F2)}i jkl

≡ (ih̄)2�±
i jkl .

3. Particle-particle ladder term L

Let us consider now the particle-particle ladder contribu-
tions L12,DO [Eq. (60)] and Li jkl [Eq. (33)]. With this we can
transform the ladder term of the G1-G2 scheme

Li jkl =
∑

rs

∑
pq

{Ni jrswrspqGpqkl − Gi j pqwpqrsNrskl}.

Using the relation between the two-particle Pauli blocking
factors, in the G1-G2 scheme, Eq. (32), and, in the density
operator equations, Eq. (56), (N12)i jkl = Ni jkl , and the relation
of the two bare interaction potentials, Eq. (65), the matrix
summations can be performed giving rise to products of
operators

Li jkl =
∑

pq

{V̂i j pqGpqkl − Gi j pqV̂ †
pqkl}

= 1

(ih̄)2 {V̂12 g±
12 − g±

12 V̂ †
12}i jkl = 1

(ih̄)2 (L12,DO)i jkl .

Furthermore, we identify the effective ladder Hamiltonian
with the screened potential

hL
12 ≡ V̂12.

In both cases, the screened potential V̂ appears, without ex-
change corrections.

4. Polarization terms: GW and exchange corrections

Let us now transform the polarization term 
±. It is con-
venient to start from Eq. (38) where we replace w → w± and
perform the summations


±
i jkl =

∑
pqr

{[w±
jqr pnrl − n jrw

±
rql p]Gipkq

− G jql p[nirw
±
r pkq − w±

iprqnrk]}
=

∑
pq

{[w±
23, n2] jql pGipkq + [w±

13, n1]ipkqG jql p}

= (ih̄)−2Tr3{[V ±
13 , F1]g±

23 + [V ±
23 , F2]g±

13}i jkl

Thus, we have demonstrated agreement with the density op-
erator result (61) if exchange diagrams are taken into account
in the GW self-energy, i.e., 
 → 
±. This means also the
Green functions result can be brought into a compact, basis-
independent operator notation. Finally, we note another useful
connection of the two approaches. The effective polarization
Hamiltonian (36) can be rewritten using the definition (37) in
the following way, again including exchange diagrams:

h
 ±
i jkl = ±

∑
pq

w±
iqkp[δ jqnpl − δpln jq]

= ±
∑

p

[w±
i jkpnpl − n j pw

±
ipkl ]

= ±[V ±
12 , F2]i jkl ,

where, in the last line, we again introduced the density opera-
tor theory notation.
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5. Particle-hole ladder terms with exchange

What is left is to analyze the correspondence between the
particle-hole T -matrix contributions and the density opera-
tor result. We consider the effective particle-hole T -matrix
Hamiltonian, and again include exchange terms via the re-
placement w → w±. This leads to the replacement h	 →
h	±, which is related to the polarization Hamiltonian with
exchange h
± by an exchange of the first two matrix indices.
We rewrite this relation in terms of a permutation operator
acting either on the left or right pair of matrix indices,

	PH ±
i jkl = ±
±

jikl ≡ ±(
±
12) jikl = ±P̂12(
±

12)i jkl

= ±
±
i jlk ≡ ±(
±

12)i jlk = ±(
±
12)i jkl P̂12.

On the other hand, consider the term (61) in the density op-
erator equation (58). It contains a factor λ±

12 = 1̂ + εP̂12. The
term with the 1̂ is just the polarization term (with exchange)
for which we established agreement with the G1-G2 scheme
in Sec. V F 4. Thus, the remaining terms for which we have
not yet established a counterpart in the G1-G2 scheme are

(



±(1)
12,DO + 


±(2)
12,DO

)
i jkl

εP̂12.

Since the term in the parentheses was shown to be equal to
(ih̄)2
±

i jkl , we immediately conclude that

(



±(1)
12,DO + 


±(2)
12,DO

)
i jkl

εP̂12 = (ih̄)2	PH ±
i jkl .

Thus, we have identified these remaining terms in the density
operator equation with the terms derived from the particle-
hole ladder self-energy including exchange, in the G1-G2
scheme.

6. Dynamically screened ladder approximation: Neglect of
three-particle correlations

So far we have obtained perfect agreement between the
G1-G2 scheme for two of the considered self-energy approx-
imations, SOA with exchange and TPP with exchange, with
the corresponding density operator results. We further have
identified the particle-hole T -matrix terms with exchange and
GW terms with exchange which appear in the density operator
equations only simultaneously.

On the other hand, the density operator result confirms
that all these terms can also be included at the same time,
as follows from Eq. (58) which, therefore, self-consistently
contains strong coupling (TPP) and dynamical screening (po-
larization and TPH) effects, including the proper exchange
diagrams. The corresponding many-body approximation,
thus, corresponds to the nonequilibrium dynamically screened
ladder approximation (DSL).

Finally, Eq. (58) contains an additional term involving g±
123.

Via this term, the second hierarchy equation couples to the
rest of the hierarchy and, with its full inclusion, the equa-
tion would be exact. In this paper we will only consider the
case g±

123 → 0, focusing on extensive numerical tests of the
DSL approximation (cf. Sec. VII).

G. Summary of conserving many-body approximations
in the G1-G2 scheme

Let us summarize the many-body approximations that
are available in the G1-G2 scheme. The first group of
approximations is derived from conserving (�-derivable) ap-
proximations of Green functions theory, i.e., from common
self-energy approximations that were introduced in Sec. III,
to which subsequently the Hartree-Fock GKBA is applied,
and which coincide with standard approximations of reduced
density operator theory:

(i) The Hartree-Fock self-energy � = �HF, Eq. (8), is
equivalent to setting IDO → 0 in the RDO approach.

(ii) The second-order self-energy with exchange (SOA),
i.e., � = �SOA + �SOA

x , Eq. (12), is equivalent to setting
L12,DO = P±

12,DO → 0, in the RDO approach.
(iii) The particle-particle T -matrix self-energy with ex-

change � = �TPP, Eq. (16), is equivalent to setting P±
12,DO →

0 and L12,DO �= 0, in the RDO approach.
In addition, there are a number of conserving many-body

approximations which straightforwardly follow from one of
the two approaches whereas their correspondence in the other
approach is not known or not straightforward:

(iv) Setting L12,DO → 0 and P±
12,DO �= 0 in the RDO ap-

proach leads to a consistent combination of all particle-hole
ladder contributions [Eq. (17)] and dynamical-screening terms
[Eq. (15)] from Green function theory that also includes
mixed terms going beyond the direct sum.

(v) Setting L12,DO �= 0 and P±
12,DO �= 0 in the RDO ap-

proach is equivalent to the DSL approximation with exchange
contributions. At the same time, this approximation can-
not be derived from a direct combination of �GW, �TPP,
and �TPH, as one could have expected. At the moment, no
nonequilibrium DSL self-energy that includes all orders in the
self-energy is known.

(vi) The third-order self-energy � = �TOA Fig. 2 corre-
sponds to an iteration of the DSL self-energy that includes
all diagrams up to third order in the interaction In the RDO
approach this approximation is not straightforward. It can
be recovered by treating the ladder and polarization terms
iteratively, by using g± → gSOA [69].

(vii) Neglecting exchange diagrams in common �-
derivable self-energies also gives rise to conserving approx-
imations. In the RDO approach this amounts to replacing the
antisymmetrized terms by the spinless versions, e.g., �± →
�0 and, similarly, for the other terms (for details see Table I).

The correspondence between NEGF self-energies and the
RDO approximations is summarized in Table I.

Our main result is the dynamically screened ladder ap-
proximation (DSL) because it self-consistently combines
dynamical screening and strong coupling effects. It arises
naturally in the RDO approach by simultaneously includ-
ing particle-particle ladder, polarization, and particle-hole
ladder terms. This means it contains all two-particle correla-
tion contributions and neglects only three-particle correlations
g±

123 → 0.
This approximation was also studied in detail for nuclear

matter by Wang and Cassing [39]. It has also been derived by
Valdemoro et al. [47] without introducing correlation opera-
tors, by exploiting symmetries between the two-particle and
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TABLE I. Correspondence of many-body approximations of
Green functions (correlation self-energies) and reduced density op-
erators (terms in the G2 equation) and their defining equations.

Approximation RDO notation Def. Self-energy Def.

SOA �0 (45) �SOA (12)

�± (59) �SOA + �SOA
x (12)

TPP �0 + L0 (46) �TPP (16)

�± + L (60) �TPP + �TPP
x (16)

GW �0 + 
0 (47) �GW (15)

�± + 
± (62)

DSL �0 + 
0 + L0

�± + 
± + L

TOA �± + 
±[GSOA
2 ]+ �TOA Fig. 2

+L[GSOA
2 ]

two-hole reduced density matrix. The present RDO approach
that uses the cluster expansion including the pair-correlation
operators has the advantage that it allows one to separate lad-
der and polarization terms that describe very different physical
effects which are important in different situations. Note that
all these approximations conserve total energy, as was dis-
cussed in Sec. V D.

VI. SOLVING THE G1-G2 EQUATIONS FOR HUBBARD
SYSTEMS: CONTRACTION CONSISTENCY AND

PURIFICATION

A. G1-G2 equation in the Hubbard basis

The numerical tests of the time-linear DSL approximation
in Sec. VII are performed within the Hubbard model [80].
This model is well established in condensed-matter physics,
as it allows for semiquantitative analysis of strong elec-
tronic correlations and phase transitions in solids. Besides,
it has been used extensively in experiments with ultracold
fermionic and bosonic atoms in optical lattices [81] in particu-
lar, to study time-dependent correlation phenomena (see, e.g.,
Refs. [58,72,82,83]). For the Fermi-Hubbard model, the gen-
eral pair-interaction matrix element becomes (δ̄αβ := 1 − δαβ)

w
αβγ δ

i jkl (t ) = U (t )δi jδikδilδαγ δβδδ̄αβ,

with the onsite interaction U and the spin projection labeled
by greek indices. Recall that we allow for a time depen-
dence of the interaction to capture the adiabatic-switching
protocol of initial correlations (see Sec. IV B), as well as
nonequilibrium processes such as an interaction quench [cf.
the discussion of Eq. (1) above]. The kinetic energy matrix is
replaced by a hopping Hamiltonian

h(0)
i j = −δ〈i, j〉J,

which includes hopping processes between nearest-neighbor
sites 〈i, j〉 with amplitude J . Thus, the total Hamiltonian is
given by

Ĥ (t ) = −J
∑
〈i, j〉

∑
α

ĉ†
iα ĉ jα + U (t )

∑
i

n̂↑
i n̂↓

i + F̂ (t ), (68)

with a general single-particle excitation F̂ (t ).4 Extensions to
more complicated models, going beyond the nearest-neighbor
single-band case, are straightforward (see, e.g., Ref. [84]), but
will not be considered here.

In this work we are assuming spin symmetry of the sys-
tem. In that case, a single spin component of the single and
correlated two-particle Green functions is sufficient to com-
pletely describe the dynamics of the system: G<,↑ and G↑↓↑↓,
respectively. All other components can be expressed via these
functions. The time-diagonal equation of motion (EOM) for
the single-particle Green function, Eq. (20), takes the follow-
ing form:

ih̄
d

dt
G<,↑

i j (t ) = [hHF,↑, G<,↑]i j (t ) + [I + I†]↑i j (t ),

I↑
i j (t ) = −ih̄U (t )G↑↓↑↓

ii ji (t ). (69)

The Hartree-Fock Hamiltonian in Eq. (69) becomes, in the
Hubbard basis [cf. Eq. (9)],

hHF,↑
i j (t ) = h(0)

i j − ih̄δi jU (t )G<,↓
ii (t ),

with G<,↓ = G<,↑, due to spin symmetry. The equation for
the time-diagonal two-particle Green function, Eq. (58), now
reads as

ih̄
d

dt
G↑↓↑↓

i jkl (t ) − [h(2),HF
↑↓ (t ),G↑↓↑↓(t )]i jkl

= �
↑↓↑↓
i jkl (t ) + L↑↓↑↓

i jkl (t ) + 

↑↓↑↓
i jkl (t ) + 	

ph,↑↓↑↓
i jkl (t ),

with the two-particle Hartree-Fock Hamiltonian

h(2),HF
i jkl,↑↓(t ) = δ jl h

HF,↑
ik (t ) + δikhHF,↓

jl (t ),

the inhomogeneity

�
↑↓↑↓
i jkl (t ) := (ih̄)2U (t )

∑
p

[G>,↑
ip (t )G>,↓

j p (t )G<,↑
pk (t )G<,↓

pl (t )

− G<,↑
ip (t )G<,↓

j p (t )G>,↑
pk (t )G>,↓

pl (t )],

the particle-particle T -matrix (ladder) term

L↑↓↑↓
i jkl (t ) = (ih̄)2U (t )

∑
p

[G>,↑
ip (t )G>,↓

j p (t )

− G<,↑
ip (t )G<,↓

j p (t )]G↑↓↑↓
ppkl (t ),

the particle-hole T -matrix (ladder) term

	
ph,↑↓↑↓
i jkl (t ) = (ih̄)2U (t )

∑
p

[G>,↑
ip (t )G<,↓

pl (t )

− G<,↑
ip (t )G>,↓

pl (t )]G↑↓↑↓
p jkp (t ),

and the GW contribution



↑↓↑↓
i jkl (t ) = −(ih̄)2U (t )

∑
p

[G>,↓
j p (t )G<,↓

pl (t )

− G<,↓
j p (t )G>,↓

pl (t )]G↑↑↑↑
ipkp (t ),

4Note that from the Hamiltonian of Eq. (68), the coupling param-
eter follows as � ∼ U/J . For completeness, we mention that the
coupling strength in the Hubbard model is sometimes quantified in
relation to the system’s bandwidth.
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FIG. 4. Illustration of the instability of the G1-G2 scheme for a
half-filled six-site Hubbard system at moderate coupling U/J = 4.
Sites 1–3 are initially doubly occupied and sites 4–6 are empty.
At time t = 0 the confinement potential is removed (confinement
quench). In contrast to the exact (full black line) and DSL* solu-
tions (dashed-dotted yellow line), the TOA (dashed green line) and
DSL solutions (dashed-dotted red line) become unstable already at
time tJ/h̄ ≈ 4 and tJ/h̄ ≈ 6, respectively. (a) Occupation n of site
1. (b), (c) Correlation and kinetic energy, respectively. (d) Largest
eigenvalue of the two-particle Green function.

where G↑↑↑↑
i jkl = G↑↓↑↓

i jkl − G↑↓↑↓
i jlk , due to spin symmetry. We

emphasize that conservation of particles and energy that is
inherent to the two-time self-energy approximations listed in
Sec. III, including the DSL approximation, also holds for the
HF-GKBA [37,72] and the respective time-linear versions (for
an analysis see Sec. V D).

However, despite fulfilling these important conservation
laws and advantageous scaling behavior which allows for long
propagation times, in many cases, the G1-G2 scheme exhibits
unstable dynamics. A typical example is shown in Fig. 4.
There, the time evolution of various observables in a moder-
ately coupled six-site Hubbard chain with U/J = 4, following
a confinement quench, is presented. We compare solutions
of the G1-G2 equations for the TOA (green) and the DSL
(brown) approximation to the exact dynamics (black). While
the latter shows a stable dynamics, the G1-G2 solutions be-
come unstable already after a short time interval of about 6 (4)
time units for DSL (TOA). Note that this is not a consequence
of the numerical scheme (such as a too large time step).

The reason for this behavior is the violation of contrac-
tion consistency and N-representability [51,52,77] (see our
discussion in Sec. V D). It has been shown, however, that
contraction consistency can be enforced a posteriori upon any
reconstruction functional of the three-particle RDO [49,77],
and (ensemble) N-representability can be partially restored
[49,50,77]. We present, in the following, both concepts for the
two-particle Green function.

For this purpose it is convenient to introduce the full two-
and three-particle Green functions which include the Hartree-
Fock contribution alongside the correlation part. Due to spin
symmetry, again, only a single spin component has to be
considered for each quantity:

G(2),↑↓↑↓
i jkl = G<,↑

ik G<,↓
jl + G↑↓↑↓

i jkl

and

G(3),↑↑↓↑↑↓
i jkl pq = G<,↑

il G<,↑
j p G<,↓

kq − G<,↑
ip G<,↑

jl G<,↓
kq

+ G<,↑
il G↑↓↑↓

jkpq − G<,↑
ip G↑↓↑↓

jklq

+ G<,↑
j p G↑↓↑↓

iklq − G<,↑
jl G↑↓↑↓

ikpq

+ G<,↓
kq G↑↑↑↑

i jl p + G (3),↑↑↓↑↑↓
i jkl pq .

Applying the above-mentioned methods to guarantee con-
traction consistency and partially restore (ensemble) N-
representability to DSL leads to a stable variant which we call
DSL*, which is also included in Fig. 4 and shows much better
agreement with the exact solution. Details of this approach
are outlined in Sec. VI B, and further numerical results will be
presented in Sec. VII.

B. Enforcing contraction consistency

The general definition of the reduced s-particle density
operators in terms of the full N-particle density operator,
Eq. (39), implies trace relations between the reduced density
operators of different orders. Consequently, similar consis-
tency relations have to be fulfilled by the time-diagonal Green
functions. In particular, the two- and three-particle Green
functions have to satisfy

N

2
G↑↑

i j = −ih̄
∑

p

G(2),↑↓↑↓
ip j p , G↑↑

i j = −ih̄
∑

p

G(2),↑↓↑↓
ipp j

and (N

2
− 1

)
G(2),↑↓↑↓

i jkl = −ih̄
∑

p

G(3),↑↑↓↑↑↓
ip jkpl ,

N

2
G(2),↑↑↑↑

i jkl = −ih̄
∑

p

G(3),↑↑↓↑↑↓
i j pkl p ,

G(2),↑↑↑↑
i jkl = −ih̄

∑
p

G(3),↑↑↓↑↑↓
ip jkl p ,

G(2),↑↑↑↑
i jkl = −ih̄

∑
p

G(3),↑↑↓↑↑↓
i j pkpl , (70)

respectively. Despite the clear physical nature of the DSL
approximation, which was established in Sec. V F 6, it is
known to violate the trace consistency relations between the
three- and the two-particle Green function since the neglected
three-particle correlation part is not trace free, i.e., Tr G (3) �= 0
(see the discussion in Sec. V D).

A method to restore contraction consistency of the approxi-
mate three-particle reduced density matrix that is independent
of the applied reconstruction functional was presented by
Lackner et al. [49]. The general idea is to construct an ad-
ditional correction term for the two-particle EOM in such a
way that it restores the trace of the neglected three-particle
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correlation part G (3). This scheme is based on the unitary de-
composition (cf. Ref. [52]), which will be illustrated with the
following simple example for a two-particle quantity. Let Yi jkl

be a two-particle quantity with two contraction relations to the
single-particle level Xi j = ∑

k Ykik j and Xi j = ∑
k Yik jk . Now,

one can construct a second two-particle quantity Y CC, which
possesses the same trace relations as Y , without knowledge
of the latter. This is done by expanding the single-particle
property X using Kronecker deltas to obtain

Y CC
i jkl = 1

N
δikXjl + 1

N
δ jlXik − 1

N2
δikδ jl

∑
p

Xpp,

where N is the basis size. The first (second) term on the
right-hand side directly reproduces the first (second) trace
relation while the third term negates the respective redundant
contribution for each case.

In the G1-G2 scheme contraction consistency is enforced
by adding a similar correction term to the EOM of the two-
particle correlation Green function

ih̄
d

dt
G↑↓↑↓

i jkl (t ) − [h(2),HF
↑↓ (t ),G↑↓↑↓(t )]i jkl

= �
↑↓↑↓
i jkl (t ) + L↑↓↑↓

i jkl (t )

+ 

↑↓↑↓
i jkl (t ) + 	

ph,↑↓↑↓
i jkl (t ) + CCC

i jkl (t ),

with the symmetrized correction

CCC
i jkl (t ) = Ci jkl (t ) + Cjilk (t ) + C∗

kli j (t ) + C∗
lk ji(t ),

where in the Hubbard model the correction part is given by

Ci jkl (t ) = ±ih̄U
(
G(3),CC

ii jkil (t ) + G(3),CC
jiilik (t )

)
.

In the case of a general basis, Eq. (58), it has the form

Ci jkl (t ) = ±ih̄
∑
pqr

wipqrG(3),CC
qr jkpl (t ).

Following Lackner et al. [49] the contraction consistent cor-
rection to the three-particle Green function (with arbitrary
symmetry) G(3),CC can be constructed as

G(3),CC
i1i2i3 j1 j2 j3

=
6∑

k=1

∑
τ∈S3

ak
τ δiτ (1) j1 δiτ (2) j2 δiτ (3) j3

kM (0)

+
18∑

k=1

∑
σ,τ∈S3

σ (1)<σ (2)

bk
τσ δiτ (1) jσ (1) δiτ (2) jσ (2)

kM (1)
iτ (3) jσ (3)

+
9∑

k=1

∑
σ,τ∈S3

ck
τσ δiτ (1) jσ (1)

kM (2)
iτ (2)iτ (3) jσ (2) jσ (3)

, (71)

where S3 denotes the permutation group of three elements.
The general structure of this reconstruction follows the above
example for Y CC with the terms in the last line mainly ensur-
ing the correct trace relations and the terms in the first two
lines negating abundant contributions. The main contributions
to the correction are the zero-, one-, and two-particle quanti-
ties M (0), M (1), and M (2), respectively, which are expanded to
three-particle quantities using Kronecker deltas. They are con-
structed by (partial) traces over M (3) = G (3) = G(3) − G(3),DSL

which are known functions of G(2), to guarantee that trace

consistency is restored. Their specific form and more details
on the coefficients a, b, and c are given in Appendix C.

C. Purification

Beyond contraction consistency the general trace rela-
tion (39) leads to the issue of N representability [51,52].
Since the N-particle density matrix is directly connected to
an N-particle wave function, the reduced density matrices
have to obey certain positivity conditions demanding positive
semidefiniteness of the respective density matrices [52]. For
the Green functions the according conditions on the single-
particle level become

±ih̄G<
i j = ±ih̄Gp

i j = 〈�| ĉ†
i ĉ j |�〉 � 0

±ih̄Gh
i j = 〈�| ĉiĉ

†
j |�〉 � 0.

On the two-particle level there are three necessary but not suf-
ficient conditions that have to be fulfilled by the two-particle,
two-hole, and particle-hole Green function, respectively:

(ih̄)2G(2)
i jkl = (ih̄)2Gpp

i jkl = 〈�| ĉ†
i ĉ†

j ĉl ĉk |�〉 � 0,

(ih̄)2Ghh
i jkl = 〈�| ĉiĉ j ĉ

†
l ĉ†

k |�〉 � 0,

(ih̄)2Gph
i jkl = 〈�| ĉ†

i ĉ j ĉ
†
l ĉk |�〉 � 0. (72)

A similar issue is known for two-time Green functions
where the self-energy has to be positive semidefinite to guar-
antee a positive spectral function and a stable numerical
propagation [85,86]. Note that without the factor of (ih̄)2

all two-(quasi)particle Green functions have to be negative
semidefinite. In Fig. 4(d) the instability of TOA and DSL
is accompanied by an increasing, positive largest eigenvalue,
indicating that N representability is violated in these cases.

Like contraction consistency the issue of N representabil-
ity is well studied for two-particle density matrices and the
developed method to enforce the few necessary positivity con-
ditions is called purification [52]. In contrast to the procedure
for restoring contraction consistency, purification does not
lead to an additional term in the equation of motion but in-
stead is applied subsequently, after the numerical propagation
step is completed.5 As a consequence, the various purification
schemes developed for the equilibrium setting [52] can lead to
the violation of conservation laws when applied for nonequi-
librium dynamics. Therefore, the goal of the procedure used in
this work is to enforce the N-representability conditions while
still preserving contraction consistency, and the conservation
of particles and energy. A detailed description of the purifica-
tion procedure is given in Appendix D.

VII. NUMERICAL RESULTS

In our recent benchmark study [26] against DMRG re-
sults we could verify that HF-GKBA simulations with rather
sophisticated self-energies, including TPP and TOA, are a
powerful numerical method: these results are very close to
the “exact” DMRG calculations, even for moderate to strong

5For completeness, we mention recent developments [91], in which
the purification procedure is integrated into a modified equation of
motion.
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interactions (U ∼ 4J). Moreover, NEGF simulations are not
restricted to one-dimensional systems like DMRG but are
easily extended to higher dimensions. Despite this remarkable
potential, in practice the method turned out to be restricted to
rather short timescales because of both its cubic scaling with
the propagation time and its inherent (not numerical) instabil-
ity observed for long propagations. The G1-G2 scheme, being
an exact reformulation of the HF-GKBA inherits all positive
properties observed in our previous paper. On top of that it
provides, in principle, access to much longer timescales due
to its reduced numerical complexity (linear time scaling). To
achieve these long times, we have to remove intrinsic instabil-
ities by enforcing contraction consistency and performing a
purification. In this paper we apply this procedure to our most
advanced approximation: DSL. These results will be called
DSL∗ below. We also present comparisons with TOA results
because its validity range is independent of the particle density
(filling factor) [19].

The numerical results presented below confirm both state-
ments: The results of the G1-G2–DSL∗ simulations are, for
short times, qualitatively comparable with the best results we
could achieve previously using TPP and TOA with the stan-
dard HF-GKBA, e.g., in Ref. [26]. Here we present numerical
tests for small to medium size one-dimensional (1D) Hub-
bard clusters (because here exact and DMRG benchmarks are
available), for small to moderate coupling strength. Moreover,
we study different excitation conditions by varying how far
the system is driven out of equilibrium.

Influence of deviation from equilibrium

For the detailed characterization of the time-dependent dy-
namics in excited lattice systems, we use the total energy and
its individual contributions,

E (t ) = Ekin(t ) + Eint(t ), with

Eint(t ) = EHF(t ) + Ecorr(t ). (73)

Here, the kinetic part, the HF energy, and the correlation
energy are explicitly given as

Ekin(t ) = −J
∑

i j

δ〈i, j〉n ji(t ), (74)

EHF(t ) = U (t )
∑

i

n↑
ii (t )n↓

ii (t ),

Ecorr(t ) = (ih̄)2U (t )
∑

i

G↑↓↑↓
iiii (t ). (75)

As a first test setup we consider a finite six-site Hubbard
chain that is excited by an instantaneous interaction quench.
This type of excitation retains spatial homogeneity and keeps
the system close to equilibrium. A particularly interesting
observable for this setup is the time-dependent interaction
energy Eint of the system [cf. Eq. (73)], which is shown in
Fig. 5 for two different electronic filling ratios [Fig. 5(a):
n = 1

6 , Fig. 5(b): n = 1
3 ]. The exact benchmark results (black)

reveal a sudden jump to an energy maximum at t = 0, fol-
lowed by unsteady, intermittent oscillations. This behavior
results from the energy transfer between Eint and the kinetic
energy, overlayed by finite-size effects. Previous simulations
with the TOA self-energy (green) capture the general trends

0.0

0.1

0.2

0.3

E
in

t
/
J

(a) n = 1/6

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time tJ/h̄

0.2

0.4

0.6

0.8

E
in

t
/
J

(b) n = 1/3

Exact TOA DSL*

FIG. 5. Evolution of the interaction energy following an interac-
tion quench. The ideal ground state is prepared for a six-site Hubbard
chain after which the interaction is instantaneously switched from
U = 0 to U = J at t = 0. (a) Corresponds to a filling of n = 1

6 and
(b) to n = 1

3 . Exact results are shown in black. The green (orange)
curves correspond to the TOA (DSL*) results.

of the dynamics, but fail to predict the correct oscillation
amplitudes, eventually leading to unreasonably pronounced
energy peaks (cf. 15 � tJ/h̄ � 20 for both fillings). With our
DSL* scheme (orange), we find a close agreement with the
exact benchmark data with only slight derivations towards the
end of the propagation. The approach produces consistently
accurate results for both considered filling ratios.

Next, in Fig. 6 we consider a setup with a stronger spatial
perturbation. Here, the finite Hubbard cluster is propagated
from the half-filled interacting ground state and excited by a
sudden increase of the onsite potential at the first site accord-
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FIG. 6. Density dynamics on the first site of a six-site Hubbard
system following a sudden switch on of an external potential, for
(a) U = 1 and (b) U = 2. The dynamics start from the interacting
ground state (generated by the adiabatic switching) and, at t = 0, a
constant local potential of w0 = J is applied to the first site. Exact
results are shown in black. The green (orange) curves correspond to
the TOA (DSL*) results.
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FIG. 7. Same setup as in Fig. 4 but for various interactions from
U = J to U = 4J . (a), (b) Correlation and kinetic energy of the sys-
tem, respectively. Each curve beyond U = J is shifted vertically by
2J with respect to the previous one. The TOA results (dashed green
line) become increasingly unstable (diverge earlier) for increasing
interaction strength.

ing to [cf. Eq. (68)]

F̂ (t ) = w0�(t )(n̂↑
1 + n̂↓

1 ),

with w0 = J . This procedure induces density oscillations
throughout the finite system. The density on the first (excited)
site is shown for U = 1J [Fig. 6(a)] and U = 2J [Fig. 6(b)].
Clearly, the DSL* results (orange) again exhibit a far superior
accuracy in comparison to the exact benchmark data (black)
than the TOA calculations (green). For U = 2J , however,
we observe growing deviations that indicate that the omitted
many-body correlations gain importance in the intermediate
to strong coupling regime. It should be noted that the TOA
calculation for this case becomes unstable and reaches un-
physical values, which is successfully overcome by the DSL*
approach.

We now analyze the performance of our approach under the
influence of strong nonequilibrium conditions. To this end, we
return to the confinement setup discussed in Fig. 4. We again
consider a six-site Hubbard chain with all particles initially
confined in the left half of the system, but now for different
choices of the interaction strength. Interesting methodological
insights can be gained from the individual energy contribu-
tions [cf. (74)–(75)] which are shown in Fig. 7. For the
correlation energy [Fig. 7(a)] the exact calculations (black)
show an initial energy increase followed by broad oscillations
that become more pronounced, but significantly slower for
larger values of U . While the TOA calculations (green) exhibit
severe instability problems especially for strong coupling, the
DSL* results (orange) show the correct trends of the dynam-
ics. However, our approach seems to consistently overestimate
the oscillation frequencies. At the same time, the exact kinetic
energy [Fig. 7(b)] exhibits high-frequency oscillations around
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FIG. 8. Relaxation of a CDW state of doublons. Shown is the
interaction energy for U/J = 1, 2, 3 and L = N = 20. The present
DSL results with contraction consistency and purifciation (DSL*,
orange) are compared to the DMRG benchmark (black) and to G1-
G2–TOA (green) simulations.

a characteristic constant base level. While our DSL* calcu-
lations capture the oscillations, they show an unreasonable
drift towards increasing base levels. Both effects are possibly
caused by the applied contraction-consistency and purifica-
tion procedures. For the description of such complex states
featuring an intricate interplay between strong nonequilibrium
effects and higher-order many-body correlations, these small
gradual corrections inevitably start to alter the intrinsic con-
sistency of the propagations. On the other hand, these side
effects appear on a tolerable scale, especially in comparison
with the numerically unstable TOA results.

As a final example, we study the relaxation of a system
being initially in a charge-density wave (CDW) state. In this
extreme nonequilibrium setup, the electrons are initially con-
fined in an alternating chain of empty and fully occupied
lattice sites. To establish the properties of such a state in a
Hubbard system, we use a larger chain of L = 20 lattice sites.
At this scale, benchmark data by exact-diagonalization meth-
ods are no longer available. For this reason, we use quasiexact
DMRG results for comparison (see Ref. [26] for details of the
approach). In Fig. 8 we show results for the interaction energy
for three different coupling strengths. The overall behavior
features a sudden decrease of Eint, as part of the energy is
transferred to particle motion, i.e., to Ekin, after which small
oscillations appear, decaying into a prethermalized steady
energy level. Again, we find increasing deviations between
the DMRG data (black) and the DSL* scheme (orange) with
larger interaction strengths, due to the higher complexity of
the dynamical many-body state. Surprisingly, we observe that
the TOA approach (green) exhibits a better agreement with
the DMRG results. At the moment, no strict explanation for
this behavior is known. A possible reason could be the high
symmetry between the dynamics of the electrons and holes
in the system. Due to cancellation effects of higher-order
scattering diagrams, the TOA scheme might already be quite
accurate whereas the DSL* approximation involves partial
resummations of the respective higher-order terms.

We conclude that, overall, the DSL* scheme provides
excellent results in the regime of weak to moderate
coupling and significantly improves the reach of the NEGF
method in comparison to previous approaches. Under strong
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nonequilibrium conditions (such as a CDW state) we find a
slightly decreased accuracy which we hypothesize is due to
the increased complexity of the corresponding nonequilibrium
many-body states.

VIII. DISCUSSION AND OUTLOOK

In this paper we discussed the nonequilibrium dynam-
ically screened ladder approximation (DSL) which fully
self-consistently combines all particle-particle, particle-hole
ladder (T -matrix) diagrams, and polarization (bubble) dia-
grams. This allows one to take dynamical screening and strong
coupling effects into account simultaneously without addi-
tional approximations such as in TOA or in FLEX. Our work
extends earlier ground-state and equilibrium results that have
been obtained in the frame of the Bethe-Salpeter equation by
Zimmermann et al. [27], Kremp et al. [29], and others to
systems driven out of equilibrium by an external excitation to
ultrafast processes and strong fields [9]. The most important
applications are correlated electrons and excitons in graphene
and TMDC monolayers and bilayers exposed to laser fields or
the impact of ions.

A direct extension of the Bethe-Salpeter approach of Green
functions theory turned out to be unsuccessful so far; the
question of a nonequilibrium DSL self-energy is still open.
However, the independent approach of reduced density op-
erators (RDO) or, equivalently, density matrices (TD2RDM)
provided a direct solution for DSL. Performing a cluster ex-
pansion of the RDO and neglecting three-particle correlations
g±

123 → 0, we obtained the equation of motion for the pair-
correlation operator and, correspondingly, for the two-particle
Green function G12. The results are the equations of the G1-
G2 scheme on the DSL level [10,11]. In contrast to earlier
versions of the equations, the present result fully includes
exchange effects, also in the particle-hole T -matrix and GW
diagrams.

Our DSL–G1-G2 simulations for finite Hubbard systems
confirmed the previously reported linear scaling with the sim-
ulation duration [10], paving the way to long simulations
that are needed to simulate pump-probe experiments and to
produce accurate energy spectra. However, when the coupling
strength was increased the simulations were found to become
unstable even though all conservation laws are accurately
satisfied. The reason turned out to be the missing contraction
consistency between the two-particle and three-particle re-
duced density operator. Enforcing contraction consistency, by
including additional contributions from the three-particle cor-
relations, improved the behavior of the solution. However, for
a stabilization of the simulations it was necessary to apply, in
addition, a purification scheme that eliminates positive eigen-
values of the two-particle Green function, thereby partially
restoring N representability. Our solution improves previous
purification schemes [49,50] by maintaining total-energy con-
servation.

The resulting DSL* simulations were tested against ex-
act benchmark results (CI and DMRG) and showed very
good accuracy. Best performance was observed in weak to
intermediate nonequilibrium situations, whereas for extreme
nonequilibrium conditions, such as a charge-density-wave ini-
tial state, the accuracy was slightly worse.

For future developments of NEGF theory it will be very
interesting to derive a self-energy that is equivalent to the
DSL–G1-G2 approximation. Furthermore, for the improve-
ment of the G1-G2 scheme it will be important to test more
advanced approximations of reduced-density-operator theory
that go beyond DSL and partially include three-particle cor-
relation effects, i.e., contributions to g±

123, such as the the
Nakatsuji-Yasuda approximation [87,88], approximations by
Maziotti [89,90], the self-consistent RPA [41], or the Fadeev
approximation [12].

ACKNOWLEDGMENT

This work was supported by the Deutsche Forschungsge-
meinschaft via Grant No. BO1366/16, Grant No. shp00026
for CPU time at the Norddeutscher Verbund für Hoch-
und Höchstleistungsrechnen (HLRN), WWTF Grant No.
MA14-002, the International Max Planck Research School
of Advanced Photon Science (IMPRSAPS), and the FWF
doctoral school Solids4Fun.

APPENDIX A: SUMMARY OF USED ABBREVIATIONS

Here we summarize the most important abbreviations used
in this paper. For the correspondence of the RDO and NEGF
theory approximations see also Table I.

Symbol Definition Explanation

CC Sec. VI B contraction consistency
DSL dynamically screened ladder approx.
DSL* DSL with CC and purification
ε 0, ±1 spin statistics parameter
F1 one-particle RDO, (F1)i j = ±ıh̄G<

i j

g12 Eq. (41) pair correlation operator,
g±

12 Eq. (52) (anti-)symmetrized pair correlation
operator (g±

12)i jkl = (ıh̄)2Gi jkl

GWA Fig. 3 GW approximation
Li jkl Eq. (33) particle-particle ladder term
L0

12,DO Eq. (46) spinless density operator version of Li jkl

L12,DO Eq. (61) density operator version of Li jkl

λ±
12 1̂ ± P̂12 (anti-)symmetrization operator

P̂12 pair permutation operator

i jkl Eq. (38) polarization term

0

12,DO Eq. (47) spinless density operator version of 
i jkl

P±
12,DO Eq. (62) RDO version of 
i jkl with

(anti-)symmetrization, w → w±,
and PH ladder terms

�±
i jkl Eq. (29) (anti-)symmetrized source term

�i jkl �i jkl with w± → w

�0
12,DO Eq. (45) density operator version of �i jkl

�±
12,DO Eq. (60) density operator version of �±

i jkl

RDM reduced density matrices
RDO reduced density operators
SOA Fig. 2 second-order approximation
TOA Fig. 2 third-order approximation
TPH Fig. 3 particle–hole T -matrix approximation
TPP Fig. 3 particle–particle T -matrix approximation
V ±

12 V12λ
±
12 (anti-)symmetrized pair potential operator

w±
i jkl Eq. (10) (anti-)symmetrized pair potential

2RDM two-particle RDM
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APPENDIX B: DERIVATION OF THE
(ANTI)SYMMETRIZED EQUATION FOR THE

PAIR-CORRELATION OPERATOR

In this Appendix we provide the main steps that lead to
Eq. (58). We start by summarizing the main properties of the
permutation operators P̂i j and (anti)symmetrization operators
λ± that will be needed for the derivations below.

(1) The permutation operator obeys

P̂2
i j = 1̂, Tr j P̂i j = TriP̂i j = 1̂, (B1)

P̂i jAi j = AjiP̂i j, (B2)

where Ai j is an arbitrary two-particle operator.
(2) Pair permutations of different particles do not com-

mute, i.e., P̂i j P̂jk �= P̂jkP̂i j . For the case of three-particle states,
the three different permutations, labeled by α, β, γ (denoting
12, 13, and 23), have the properties

P̂β P̂γ = P̂αP̂β,

P̂γ P̂β = P̂β P̂α.

(3) Important properties of λ± are

(1̂ − εP̂i j )λ
±
12 = 0, ε �= 0,

λ±
12(1̂ + εP̂12 + εP̂13) = (1̂ + εP̂12 + εP̂13)λ±

12,

P̂23λ
±
13 = λ±

12P̂23, (λ±
1,...,s)2 = s!λ±

1,...,s,

All these relations are easily proven by direct calculation.
Now we turn to hierarchy equations. Recall the

(anti)symmetrized first hierarchy equation (52) of the main
text:

ih̄
d

dt
F1 − [

H1 + U HF
1 , F1

] = Tr2[V12, g±
12] = I1,DO, (B3)

with the (anti)symmetrized version of the collision integral
and the Hartree-Fock potential energy operator

U HF
1 = Tr2V

±
12F2,

V ±
12 = V12λ

±
12.

For the derivation of the equation for g±
12 we start from the

second hierarchy equation, Eq. (40), where for all density
operators we use their (anti)symmetrized versions and insert
the cluster expansion (41) for F12 and F123:

ih̄
d

dt
(F1F2λ

±
12 + g±

12) − [
H0

12 + V12, F1F2λ
±
12 + g±

12

]
= Tr3{[V13 + V23, F1F2F3] + [V13 + V23, F1g23]

+ [V13 + V23, F2g13] + [V13 + V23, F3g12]

+ [V13 + V23, g123]}(1 + εP̂13 + εP̂23)λ±
12.

From this we subtract the equation of motion of F1F2λ
±
12 that

directly follows from Eq. (B3) by multiplying with F2λ
±
12.

Now, we group terms and perform the following transforma-
tions:

(1) The commutator [V12, F1F2λ
±
12], in the second term

on the left of Eq. (57), is not canceled by subtracting the
equation of motion for F1F2λ

±
12. It contributes to the inhomo-

geneity �±
12,DO, Eq. (59). The remaining Pauli blocking terms

in �±
12,DO arise from the terms involving the product F1F2F3,

on the right-hand side of Eq. (57). Consider the transformation
for a typical term:

Tr3V13F1F2F3P̂23λ
±
12 = F2Tr3V13F1F3P̂23λ

±
12

F2Tr3P̂23V12F1F2λ
±
12 = F2Tr3P̂23V12λ

±
12F1F2

= F2V
±

12F1F2,

where, in the last step, we used property (B1). There is an
analogous term following from interchanging 1 ↔ 2. Col-
lecting all terms, and also the first part of the commutator
[V12, F1F2λ

±
12], we obtain

V12F1F2λ
±
12 + Tr3(V13 + V23)F1F2λ

±
12F3(1 + εP̂13 + εP̂23)

= (
HHF

1 + HHF
2

)
F1F2λ

±
12 + V̂ ±

12F1F2,

where V̂ was defined in Eq. (55). Similarly, the second part of
the commutators is transformed into

F1F2λ
±
12V12 + Tr3F1F2F3λ

±
12(1 + εP13 + εP23)(V13 + V23)

= F1F2λ
±
12

(
HHF

1 + HHF
2

) + F1F2V̂
±†

12 ,

where the Hartree-Fock terms are canceled when the equa-
tion for F1F2λ

±
12 is subtracted.

(2) We now consider the ladder term, Eq. (60). In addi-
tion to the spinless contribution L0

DO, it also involves Pauli
blocking terms that arise from terms on the right-hand side
of Eq. (57) of the following form:

Tr3V13F2g13P̂23λ
±
12 = F2Tr3P̂23V12F2g12λ

±
12 = F2V12g±

12,

where we used relations (B2) and (B1). Collecting all terms
that contribute to the first parts of the commutators, we obtain

V12g±
12 + εTr3{V13F2g13P̂23 + V23F1g23P̂13}λ±

12 = V̂12g±
12.

Similarly, the second parts of the commutators lead to

g±
12V12 + εTr3{F2g13V13P̂23 + F1g23V23P̂13}λ±

12 = g±
12V̂

†
12,

which gives the complete ladder term, Eq. (60).
(3) The three-particle correlation term on the right-hand

side of Eq. (58) follows by applying the three-particle
(anti)symmetrization operator directly to g123 which yields
g±

123 instead of g123. But otherwise this term has the same form
as for the spinless case [cf. Eq. (43)].

(4) We now consider all the remaining terms that contain
products of one- and two-particle density operators:

Tr3V13F3g12(εP̂13 + εP̂23)λ±
12

+ Tr3V23F2g13(1 + εP̂13 + εP̂12 + P̂13P̂12) + 1 ↔ 2,

(B4)

and, similar for the second parts of the commutators. The one
in the second parentheses leads to the classical polarization
term, Eq. (48). When, in addition, the term εP̂13 is included,
we obtain Tr3V23F2g13(1 + εP̂13) = Tr3V23F2g±

13, the classical
result with g replaced by g±.

Let us now analyze the remaining six terms in Eq. (B4).
We start by transforming the first two contributions from the
first term (of the total of four terms):

Tr3V13F3g12εP̂13 = Tr3V13εP̂13F1g23,

Tr3V13F3g12εP̂23εP̂12 = Tr3V13εP̂13F1g23εP̂23,
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where, in the second expression, we used P̂23P̂12 = P̂13P̂23.
Adding these two expressions and the classical polarization
term discussed above (where we exchange 1 ↔ 2) yields



±(1)
12,DO = Tr3[V ±

13 , F1]g±
23, (B5)

thus, the previous result was “upgraded” once more, by re-
placing V12 → V ±

12 . This is the result that was derived in
Refs. [79] and [37] and describes polarization effects includ-
ing exchange effects (in the Green functions language this
corresponding to GW with exchange).

There are four terms left from Eq. (B4) which we trans-
form such that an (anti)symmetric pair correlation operator is
produced (note that we have to retain the index change 1 ↔ 2
in the second term):

R(1)x = Tr3V13F3g12(P̂13P̂12 + εP̂23)

+ Tr3V13F1g23(P̂23P̂12 + εP̂12). (B6)

We now transform the two parentheses,

P̂13P̂12 + εP̂23 = εP̂13εP̂12 + ε3P̂2
13P̂23

= (εP̂13 + ε2P̂13P̂23)εP̂12 = εP̂13λ
±
23 · εP̂12,

P̂23P̂12 + εP̂12 = λ±
23 · εP̂12,

and insert these results into Eq. (B6). Using Eq. (B2), an
overall factor εP̂12 can be taken out to the right, with the result

R(1)x = {Tr3V13εP̂13F1g23λ
±
23 + Tr3V13F1g23λ

±
23} · εP̂12

= Tr3V
±

13F1g±
23 · εP̂12.

Together with the second part of the commutator, this yields
exactly the polarization term, Eq. (B5), times εP̂12. Analo-
gously, the symmetric term arising from exchanging 1 ↔ 2
yields 


±(2)
12,DO · εP̂12. Thus, combining these terms with the

two terms of the form of Eq. (B5) yields

Eq. (4) = (



±(1)
12,DO + 


±(2)
12,DO

)
λ±

12.

Gathering all terms we obtain the final result which coincides
with Eq. (58) of the main text and is reproduced here:

ih̄
d

dt
g±

12 − [
H̄0

12, g±
12

] = �±
12,DO + L12,DO

+ P±
12,DO + Tr3[V (12),3, g±

123],

�±
12,DO = V̂ ±

12F1F2 − F1F2V̂
±†

12 ,

L12,DO = V̂12 g±
12 − g±

12 V̂ †
12,

P±
12,DO = (



±(1)
12,DO + 


±(2)
12,DO

)
λ±

12,

where 

±(2)
12,DO follows from 


±(1)
12,DO by exchanging (1 ↔ 2).

APPENDIX C: ENERGY CONSERVATION
OF THE G1-G2 SCHEME

Here we discuss the question of total-energy conservation
of the G1-G2 equations that were shown, in the main text, to
coincide with the related reduced-density-operator results. We
consider two cases. The first is the system of two equations for
the one- and two-particle density operators F1 and F12 that
follows from the BBGKY hierarchy, Eq. (40), and the second
is the case that contraction consistency between the one- and
two-particle density operators is imposed first.

1. Total-energy conservation of the reduced-density-operator
approach

The energy per particle of a pair is given by

Ĥ12 = Ĥ1 + Ĥ2

2
+ 1

2
V̂12,

which yields the expectation value of the total energy of the
N-particle system

〈Ĥ〉 = Tr1Ĥ1F1 + 1
2 Tr12V̂12F12, (C1)

being completely determined by the single-particle and two-
particle reduced density operators, as introduced in Sec. V A.
Energy conservation is readily derived from Eq. (C1) by time
differentiation [37] and using the equations of motion (40) of
F1 and F12:

ih̄
d

dt
Tr1Ĥ1F1 = Tr1Ĥ1[Ĥ1, F1] + Tr12Ĥ1[V̂12, F12]

= Tr12Ĥ1[V̂12, F12], (C2)

ih̄
d

dt

1

2
Tr12V̂12F12 = 1

2
Tr12V̂12[2Ĥ1, F12]

+ 1

2
Tr12V̂12[V̂12, F12]

+ 1

2
Tr123V̂12[V̂13 + V̂23, F123]

= −Tr12Ĥ1[V̂12, F12]

+ 1

2
Tr123V̂12[V̂13 + V̂23, F123], (C3)

where the cyclic invariance of the trace has been used. As a
result we obtain, by adding Eqs. (C2) and (C3),

ih̄
d

dt
〈Ĥ〉 = 1

2
Tr123V̂12[V̂13 + V̂23, F123]. (C4)

Thus, total energy is conserved if three-particle density op-
erator is symmetric in the particle indices [cf. Eq. (49) and
Refs. [37,78,79]]. This is fulfilled, of course, for the exact so-
lution whereas for approximations it imposes a (rather weak)
symmetry constraint.

2. Total-energy conservation in case of contraction consistency
between F12 and F1

The difference compared to the former case is that the
single-particle density operator is now not an independent
quantity but depends on the two-particle density operator via
the trace consistency condition

F1 = 1

N − 1
Tr2F12.

Therefore, the total energy (C1) is now expressed via F12

alone:

〈Ĥ〉c = 1

2
Tr12Ĥc

12F12, Ĥc
12 = Ĥ1 + Ĥ2

N − 1
+ V̂12
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TABLE II. List of parameters A–E to calculate the values of α, β and γ for Tables III–V using Eq. (C1). Note that the table differs from
the one given in Ref. [77].

α1 α2 α3 β1 β2 β3 β4 β5 β6 β7 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10

A1 1 1 1 −1 −1 −1 −1 1 1 1 −3 3 3 −2 −2 −2 −2 2 2 2

A2 1 1 1 1 1 1 1 1 1 1 3 3 3 2 2 2 2 2 2 2

B1 2 −4 4 0 3 −3 0 −1 1 −2 6 −6 −6 −2 4 1 4 −4 −1 2

B2 2 −4 4 0 −3 3 0 −1 1 −2 −6 −6 −6 2 −4 −1 −4 −4 −1 2

C1 1 4 4 1 −2 −2 4 −2 −2 1 −3 3
2 6 − 5

2
1
2

5
4 − 7

4
1
2 −1 2

C2 1 4 4 −1 2 2 −4 −2 −2 1 3 3
2 6 5

2 − 1
2 − 5

4
7
4

1
2 −1 2

D1 −2 4 4 2 −1 −1 −4 1 1 −2 0 0 0 4 −2 1 −2 2 −1 −4

D2 −2 4 4 −2 1 1 4 1 1 −2 0 0 0 −4 2 −1 2 2 −1 −4

E1 −4 −10 10 0 0 0 0 2 −2 4 0 3 −6 0 0 0 0 −1 2 −4

E2 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 6 3 3 0 0 0

Now, for the time derivative follows

ih̄
d

dt
〈Ĥ〉c = Tr12

2

N − 1
Ĥ1[Ĥ1, F12] + Tr12V̂12[Ĥ1, F12]

+ Tr12
Ĥ1

N − 1
[V̂12, F12] + Tr12V̂12[V̂12, F12]

+ Tr123
Ĥ1

N − 1
[V̂12 + V̂23, F123]

+ 1

2
Tr123V̂12[V̂13 + V̂23, F123], (C5)

where, in the last line, we can identify the contribution of
Eq. (C4) again. Assuming the aforementioned symmetry of
F123 and, using the cyclic property of the trace, we simplify
Eq. (C5) to

ih̄
d

dt
〈Ĥ〉c = Tr12

N − 2

N − 1
[V̂1, Ĥ1]F12

+ Tr123
Ĥ1

N − 1
[V̂12 + V̂23, F123]. (C6)

By using Eq. (49) for the second line of Eq. (C6), we end up
with the following expression:

ih̄
d

dt
〈Ĥ〉c = 1

N − 1
Tr12{[V̂12, Ĥ1][(N − 2)F12 − Tr3F123]}.

This implies that total-energy conservation, in the case of
contraction consistency between F12 and F1, requires fulfilling
the additional condition of contraction consistency between
F123 and F12, i.e. [cf. Eq. (51)],

Tr3F123 = (N − 2)F12.

This result is in line with previous findings (cf. Refs. [49,77]).

APPENDIX D: ENFORCING CONTRACTION
CONSISTENCY BETWEEN G(3) AND G(2)

In the following we outline the derivation of contraction
consistency and unitary decomposition of three-particle ma-
trices and reproduce the procedure presented in detail in
Refs. [49,77]. We point out that slight deviations of Tables II,
IV, V and Eq. (C1) to Ref. [77] are due to typos in Ref. [77].

The zero-, one-, and two-particle quantities M (0), M (1),
and M (2) are crucial for the construction of the three-particle
Green function correction, Eq. (71). They are defined as
(partial) traces over the three-particle quantity M (3) which is
defined as the difference between the correct G(3) and the used
approximation

M (3) = G(3) − G(3),DSL(= G (3) ).

The notation Tr(
1,4
2,5
3,6

) used in the following relations denotes

that contractions are performed over indices in the same line.
For the sake of readability the indices of the M quantities are
neglected:

1M (2) = Tr(3,6)M
(3), 2M (2) = Tr(2,6)M

(3),

3M (2) = Tr(1,6)M
(3), 4M (2) = Tr(3,5)M

(3),

5M (2) = Tr(2,5)M
(3), 6M (2) = Tr(1,5)M

(3),

7M (2) = Tr(3,4)M
(3), 8M (2) = Tr(2,4)M

(3),

9M (2) = Tr(1,4)M
(3),

1M (1) = Tr
(

2,5
3,6

)
M (3), 2M (1) = Tr

(
1,5
3,6

)
M (3),

4M (1) = Tr
(

1,5
2,6

)
M (3), 4M (1) = Tr

(
2,6
3,5

)
M (3),

5M (1) = Tr
(

1,6
3,5

)
M (3), 6M (1) = Tr

(
1,6
2,5

)
M (3),

7M (1) = Tr
(

2,4
3,6

)
M (3), 8M (1) = Tr

(
1,4
3,6

)
M (3),

TABLE III. Parameters ak
τ which enter Eq. (71). The values of α

can be determined using Eq. (D1) and Table II. The numbers in the
header specify k whereas the boldface numbers determine the index
combination of τ for each column as defined in the text.

ak
τ 1 2 3 4 5 6

1 α3 α1 α1 α2 α2 α1

2 α1 α3 α2 α1 α1 α2

3 α1 α2 α3 α1 α1 α2

4 α2 α1 α1 α3 α2 α1

5 α2 α1 α1 α2 α3 α1

6 α1 α2 α2 α1 α1 α3
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TABLE IV. Parameters bk
τ which enter Eq. (71). The values of β

can be determined using Eq. (D1) and Table II. The numbers in the
header specify k whereas the boldface numbers determine the index
combination of τ and σ for each column as defined in the text. Note
that the table differs from the one given in Ref. [77].

bk
τ,σ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1, 1 β4 β5 β5 β3 β2 β6 β5 β4 β2 β6 β5 β3 β3 β6 β6 β1 β3 β7

1, 2 β5 β3 β4 β5 β6 β2 β2 β6 β5 β4 β3 β5 β6 β1 β3 β6 β7 β3

1, 3 β5 β4 β2 β6 β5 β3 β4 β5 β5 β3 β2 β6 β6 β3 β3 β7 β6 β1

1, 4 β3 β5 β6 β2 β4 β5 β6 β2 β3 β5 β5 β4 β1 β6 β7 β3 β3 β6

1, 5 β2 β6 β5 β4 β3 β5 β5 β3 β4 β5 β6 β2 β3 β7 β6 β3 β1 β6

1, 6 β6 β2 β3 β5 β5 β4 β3 β5 β6 β2 β4 β5 β7 β3 β1 β6 β6 β3

2, 1 β5 β2 β4 β6 β5 β3 β3 β6 β6 β1 β3 β7 β5 β4 β2 β6 β5 β3

2, 2 β4 β6 β5 β2 β3 β5 β6 β1 β3 β6 β7 β3 β2 β6 β5 β4 β3 β5

2, 3 β2 β5 β5 β3 β4 β6 β6 β3 β3 β7 β6 β1 β4 β5 β5 β3 β2 β6

2, 4 β6 β4 β3 β5 β5 β2 β1 β6 β7 β3 β3 β6 β6 β2 β3 β5 β5 β4

2, 5 β5 β3 β2 β5 β6 β4 β3 β7 β6 β3 β1 β6 β5 β3 β4 β5 β6 β2

2, 6 β3 β5 β6 β4 β2 β5 β7 β3 β1 β6 β6 β3 β3 β5 β6 β2 β4 β5

4, 1 β3 β6 β6 β1 β3 β7 β5 β2 β4 β6 β5 β3 β2 β5 β5 β3 β4 β6

4, 2 β6 β1 β3 β6 β7 β3 β4 β6 β5 β2 β3 β5 β5 β3 β2 β5 β6 β4

4, 3 β6 β3 β3 β7 β6 β1 β2 β5 β5 β3 β4 β6 β5 β2 β4 β6 β5 β3

4, 4 β1 β6 β7 β3 β3 β6 β6 β4 β3 β5 β5 β2 β3 β5 β6 β4 β2 β5

4, 5 β3 β7 β6 β3 β1 β6 β5 β3 β2 β5 β6 β4 β4 β6 β5 β2 β3 β5

4, 6 β7 β3 β1 β6 β6 β3 β3 β5 β6 β4 β2 β5 β6 β4 β3 β5 β5 β2

9M (1) = Tr
(

1,4
2,6

)
M (3), 10M (1) = Tr

(
2,6
3,4

)
M (3),

11M (1) = Tr
(

1,6
3,4

)
M (3), 12M (1) = Tr

(
1,6
2,4

)
M (3),

13M (1) = Tr
(

2,4
3,5

)
M (3), 14M (1) = Tr

(
1,4
3,5

)
M (3),

15M (1) = Tr
(

1,4
2,5

)
M (3), 16M (1) = Tr

(
2,5
3,4

)
M (3),

17M (1) = Tr
(

1,5
3,4

)
M (3), 18M (1) = Tr

(
1,5
2,4

)
M (3),

1M (0) = Tr
(1,4

2,5
3,6

)
M (3), 2M (0) = Tr

(1,4
2,6
3,5

)
M (3),

3M (0) = Tr
(1,5

2,4
3,6

)
M (3), 4M (0) = Tr

(1,5
2,6
3,4

)
M (3),

5M (0) = Tr
(1,6

2,4
3,5

)
M (3), 6M (0) = Tr

(1,6
2,5
3,4

)
M (3).

In practice the traces over M (3) are taken separately for its
constituents G(3) and G(3),DSL. For the former this can be done
analytically using the relations (70), for the latter the traces
are performed numerically over

G(3),↑↑↓↑↑↓
i jkl pq = G<,↑

il G<,↑
j p G<,↓

kq − G<,↑
ip G<,↑

jl G<,↓
kq

+ G<,↑
il G↑↓↑↓

jkpq − G<,↑
ip G↑↓↑↓

jklq

+ G<,↑
j p G↑↓↑↓

iklq − G<,↑
jl G↑↓↑↓

ikpq

+ G<,↓
kq G↑↑↑↑

i jl p .

The weight parameters ak
τ , bk

τ,σ , and ck
τ,σ of Eq. (71) can be

expressed by a reduced amount of auxiliary parameters α, β

and γ as listed in Tables III, IV and V, respectively. For the
index permutation the following shortened notation is used:

1 = (1, 2, 3), 2 = (1, 3, 2), 3 = (2, 1, 3),

4 = (2, 3, 1), 5 = (3, 1, 2), 6 = (3, 2, 1).

TABLE V. Parameters ck
τ which enter Eq. (71). The values of γ

can be determined using Eq. (D1) and Table II. The numbers in the
header specify k whereas the boldface numbers determine the index
combination of τ and σ for each column as defined in the text. Note
that the table differs from the one given in Ref. [77].

ck
τ,σ 1 2 3 4 5 6 7 8 9

1, 1 γ7 γ1 γ6 γ1 γ8 γ3 γ6 γ3 γ10

1, 2 γ1 γ7 γ2 γ8 γ1 γ5 γ3 γ6 γ4

1, 3 γ1 γ6 γ1 γ8 γ3 γ8 γ3 γ10 γ3

1, 4 γ7 γ2 γ7 γ1 γ5 γ1 γ6 γ4 γ6

1, 5 γ6 γ1 γ7 γ3 γ8 γ1 γ10 γ3 γ6

1, 6 γ2 γ7 γ1 γ5 γ1 γ8 γ4 γ6 γ3

2, 1 γ1 γ8 γ3 γ7 γ1 γ6 γ2 γ5 γ4

2, 2 γ8 γ1 γ5 γ1 γ7 γ2 γ5 γ2 γ9

2, 3 γ8 γ3 γ8 γ1 γ6 γ1 γ5 γ4 γ5

2, 4 γ1 γ5 γ1 γ7 γ2 γ7 γ2 γ9 γ2

2, 5 γ3 γ8 γ1 γ6 γ1 γ7 γ4 γ5 γ2

2, 6 γ5 γ1 γ8 γ2 γ7 γ1 γ9 γ2 γ5

3, 1 γ1 γ8 γ3 γ6 γ3 γ10 γ1 γ8 γ3

3, 2 γ8 γ1 γ5 γ3 γ6 γ4 γ8 γ1 γ5

3, 3 γ8 γ3 γ8 γ3 γ10 γ3 γ8 γ3 γ8

3, 4 γ1 γ5 γ1 γ6 γ4 γ6 γ1 γ5 γ1

3, 5 γ3 γ8 γ1 γ10 γ3 γ6 γ3 γ8 γ1

3, 6 γ5 γ1 γ8 γ4 γ6 γ3 γ5 γ1 γ8

4, 1 γ7 γ1 γ6 γ2 γ5 γ4 γ7 γ1 γ6

4, 2 γ1 γ7 γ2 γ5 γ2 γ9 γ1 γ7 γ2

4, 3 γ1 γ6 γ1 γ5 γ4 γ5 γ1 γ6 γ1

4, 4 γ7 γ2 γ7 γ2 γ9 γ2 γ7 γ2 γ7

4, 5 γ6 γ1 γ7 γ4 γ5 γ2 γ6 γ1 γ7

4, 6 γ2 γ7 γ1 γ9 γ2 γ5 γ2 γ7 γ1

5, 1 γ6 γ3 γ10 γ1 γ8 γ3 γ7 γ1 γ6

5, 2 γ3 γ6 γ4 γ8 γ1 γ5 γ1 γ7 γ2

5, 3 γ3 γ10 γ3 γ8 γ3 γ8 γ1 γ6 γ1

5, 4 γ6 γ4 γ6 γ1 γ5 γ1 γ7 γ2 γ7

5, 5 γ10 γ3 γ6 γ3 γ8 γ1 γ6 γ1 γ7

5, 6 γ4 γ6 γ3 γ5 γ1 γ8 γ2 γ7 γ1

6, 1 γ2 γ5 γ4 γ7 γ1 γ6 γ1 γ8 γ3

6, 2 γ5 γ2 γ9 γ1 γ7 γ2 γ8 γ1 γ5

6, 3 γ5 γ4 γ5 γ1 γ6 γ1 γ8 γ3 γ8

6, 4 γ2 γ9 γ2 γ7 γ2 γ7 γ1 γ5 γ1

6, 5 γ4 γ5 γ2 γ6 γ1 γ7 γ3 γ8 γ1

6, 6 γ9 γ2 γ5 γ2 γ7 γ1 γ5 γ1 γ8

For each α, β, and γ the respective parameter value can
be calculated utilizing Table II and Eq. (D1). Note that
Eq. (D1) differs from the one given in Ref. [77] by a factor
of 1

36 :

X = 1

36

(
A1

Nb − 4
+ A2

Nb + 4
+ B1

Nb − 3
+ B2

Nb + 3

+ C1

Nb − 2
+ C2

Nb + 2
+ D1

Nb − 1
+ D2

Nb + 1
+ E1

Nb
+ E2

N2
b

)
.

(D1)
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APPENDIX E: PURIFICATION

The following purification scheme is based on the one
presented in Ref. [49]. Consequently, of the three positivity
conditions on the two-particle level [cf. Eq. (72)], only the
two-particle and two-hole condition will be considered. In a
first step the full two-particle and two-hole Green functions
are calculated from the two-particle correlation part and the
single-particle Green function

G(2),↑↓↑↓
i jkl = G<,↑↑

ik G<,↓↓
jl + G↑↓↑↓

i jkl ,

Q(2),↑↓↑↓
i jkl = G(2),↑↓↑↓

i jkl + 1

(ih̄)2 δikδ jl

+ 1

ih̄
δikG<,↓↓

jl + 1

ih̄
δ jl G

<,↑↑
ik .

The following steps are outlined for the two-particle Green
function only but have to be performed for the two-hole Green
function in the same way. To purify its eigenvalues the two-
particle Green function can be mapped to a N2

b × N2
b matrix

G(2)
i j,kl → G(2)

x,y in order to perform the eigendecomposition

G(2) = VλV †,

where the bold quantities λ and V are matrices containing
the eigenvalues (on the diagonal) and the eigenvectors of
G(2), respectively. Next, G(2)

pos, the unphysical (positive) part of
the two-particle Green function containing only the positive
eigenvalues, is constructed via

G(2)
pos = VλposV †.

In principle, subtracting this quantity from the full two-
particle Green function would be sufficient to purify its
eigenvalues. However, doing so would violate contraction
consistency, as well as conservation of energy. Contraction
consistency between the two-particle and the one-particle
level can be ensured by calculating the contraction-free
component of G(2)

pos. Starting with the symmetrized and anti-
symmetrized auxiliary quantities

A(1)
i j = 1

2

∑
p

(
G(2),pos

ip j p − G(2),pos
ipp j

)
, A(0) = TrA(1)

S(1)
i j = 1

2

∑
p

(
G(2),pos

ip j p + G(2),pos
ipp j

)
, S(0) = TrS(1)

and

A(2)
i jkl = δik

A(1)
jl

Nb − 2
+ δ jl

A(1)
ik

Nb − 2
− δ jk

A(1)
il

Nb − 2
− δil

A(1)
jk

Nb − 2

− δikδ jl
A(0)

(Nb − 1)(Nb − 2)
+ δilδ jk

A(0)

(Nb − 1)(Nb − 2)
,

S(2)
i jkl = δik

S(1)
jl

Nb + 2
+ δ jl

S(1)
ik

Nb + 2
+ δ jk

S(1)
il

Nb + 2
+ δil

S(1)
jk

Nb + 2

− δikδ jl
S(0)

(Nb + 1)(Nb + 2)
− δilδ jk

S(0)

(Nb + 1)(Nb + 2)
,

the contraction-free part of the positive two-particle Green
function is given by

G(2)
pos,CC = G(2)

pos − A(2) − S(2).

Ensuring contraction consistency from the two-particle to the
single-particle level also guarantees conservation of all single-
particle observables. Therefore, violations to the conservation
of energy can only originate from the correlation energy,
which for a general diagonal basis is given by

Ecorr = (ih̄)2
∑

pq

Vpq(2G↑↓↑↓
pqpq − G↑↓↑↓

pqqp ).

Note that in the Hubbard basis this reduces to Eq. (75). Thus,
conservation of total energy can be ensured by setting

G(2),pos
i jkl = 0 for (i = k and j = l ) or (i = l and j = k)

before calculating G(2)
pos,CC so that the parts of G(2) that en-

ter the correlation energy (∼N2
b of the N4

b entries) are not
modified by the purification procedure. After repeating the
above procedure for the two-hole Green function the purified
two-particle Green function can be constructed as

G(2)
pur = G(2) − G(2)

pos,CC − Q(2)
pos,CC.

Due to the modifications done to G(2)
pos,CC and Q(2)

pos,CC the
above step in general does not eliminate all positive eigen-
values of the two-particle Green function completely. While
the presented purification scheme can be repeated iteratively
to further converge the result, in practice it was found that
one iteration is enough to ensure a stable propagation in all
considered cases. In a final step the correlation part of the
purified two-particle Green function is reconstructed by

G↑↓↑↓
i jkl = G(2),↑↓↑↓

i jkl − G<,↑↑
ik G<,↓↓

jl .

From a numerical point the most demanding part of the purifi-
cation process is the eigendecomposition of a N2

b × N2
b matrix

which scales as O(N6
b ).
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ing Excitons and Plasmons in Monolayer Transition-Metal
Dichalcogenides, Phys. Rev. X 7, 041040 (2017).

[34] A. Steinhoff, T. O. Wehling, and M. Rösner, Frequency-
dependent substrate screening of excitons in atomically thin
transition metal dichalcogenide semiconductors, Phys. Rev. B
98, 045304 (2018).

[35] C. Stahl and M. Eckstein, Electronic and fluctuation dynamics
following a quench to the superconducting phase, Phys. Rev. B
103, 035116 (2021).

[36] C. Stahl, Nonequilibrium fluctuations for the characteriza-
tion of transient states in the three dimensional Hubbard
model, Ph.D. thesis, University Erlangen-Nürnberg, Erlangen-
Nürnberg, 2021.

[37] M. Bonitz, Quantum Kinetic Theory, 2nd ed. (Springer, Cham,
2016).

[38] D. B. Boercker and J. W. Dufty, Degenerate quantum gases in
the binary collision approximation, Ann. Phys. 119, 43 (1979).

[39] Wang Shun-jin and W. Cassing, Explicit treatment of n-body
correlations within a density-matrix formalism, Ann. Phys. 159,
328 (1985).

[40] D. Lacroix and S. Ayik, Stochastic quantum dynamics beyond
mean field, Eur. Phys. J. A 50, 95 (2014).

[41] P. Schuck and M. Tohyama, Self-consistent RPA and the time-
dependent density matrix approach, Eur. Phys. J. A 52, 307
(2016).

[42] M. Bonitz and D. Kremp, Kinetic energy relaxation and correla-
tion time of nonequilibrium many-particle systems, Phys. Lett.
A 212, 83 (1996).

[43] M. Lindberg and S. W. Koch, Effective Bloch equations for
semiconductors, Phys. Rev. B 38, 3342 (1988).

[44] V. M. Axt and A. Stahl, A dynamics-controlled truncation
scheme for the hierarchy of density matrices in semiconductor
optics, Z. Phys. B 93, 195 (1994).

165155-25

https://doi.org/10.1103/PhysRevB.34.6933
https://doi.org/10.1002/ctpp.2150390407
https://doi.org/10.1103/PhysRevLett.124.076601
https://doi.org/10.1103/PhysRevB.101.245101
https://doi.org/10.1103/PhysRevB.104.035124
https://doi.org/10.1103/PhysRevLett.127.036402
https://doi.org/10.1103/PhysRevLett.128.016801
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1038/s41586-021-03874-9
https://doi.org/10.1038/s41586-021-03590-4
https://doi.org/10.1088/1361-648X/ab2d32
https://doi.org/10.1103/PhysRevB.94.201106
https://doi.org/10.1103/PhysRevX.10.041047
https://doi.org/10.1103/PhysRevLett.118.246402
https://doi.org/10.1103/PhysRevLett.62.961
https://doi.org/10.1103/PhysRev.155.68
https://doi.org/10.1103/PhysRevB.95.165139
https://doi.org/10.1002/pssb.2220900119
https://doi.org/10.1002/pssb.2220850219
https://doi.org/10.1088/1742-6596/220/1/012004
https://doi.org/10.1002/pssb.201800216
https://doi.org/10.1103/PhysRevB.100.155204
https://doi.org/10.1103/PhysRevX.7.041040
https://doi.org/10.1103/PhysRevB.98.045304
https://doi.org/10.1103/PhysRevB.103.035116
https://doi.org/10.1016/0003-4916(79)90247-1
https://doi.org/10.1016/0003-4916(85)90116-2
https://doi.org/10.1140/epja/i2014-14095-8
https://doi.org/10.1140/epja/i2016-16307-7
https://doi.org/10.1016/0375-9601(96)00056-4
https://doi.org/10.1103/PhysRevB.38.3342
https://doi.org/10.1007/BF01316963


JAN-PHILIP JOOST et al. PHYSICAL REVIEW B 105, 165155 (2022)

[45] M. Bonitz, D. Kremp, D. C. Scott, R. Binder, W. D. Kraeft,
and H. S. Köhler, Numerical analysis of non-Markovian effects
in charge-carrier scattering: one-time versus two-time kinetic
equations, J. Phys.: Condens. Matter 8, 6057 (1996).

[46] F. Rossi and T. Kuhn, Theory of ultrafast phenomena
in photoexcited semiconductors, Rev. Mod. Phys. 74, 895
(2002).

[47] F. Colmenero, C. Pérez del Valle, and C. Valdemoro, Ap-
proximating q-order reduced density matrices in terms of the
lower-order ones. I. General relations, Phys. Rev. A 47, 971
(1993).

[48] D. A. Mazziotti, Approximate solution for electron correlation
through the use of schwinger probes, Chem. Phys. Lett. 289,
419 (1998).
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