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Optical phonons coupled to a Kitaev spin liquid
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Emergent excitation continua in frustrated magnets are a fingerprint of fractionalization, characteristic of
quantum spin-liquid states. Recent evidence from Raman scattering for a coupling between such continua and
lattice degrees of freedom in putative Kitaev magnets may provide insight into the nature of the fractionalized
quasiparticles. Here we study the renormalization of optical phonons coupled to the underlying Z2 quantum spin
liquid. We show that phonon line shapes acquire an asymmetry, observable in light scattering and originating
from two distinct sources, namely, the dispersion of the Majorana continuum and the Fano effect. Moreover,
we find that the phonon lifetimes increase with increasing temperature due to thermal blocking of the available
phase space. Finally, in contrast to low-energy probes, optical phonon renormalization is rather insensitive to
thermally excited gauge fluxes and barely susceptible to external magnetic fields.
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I. INTRODUCTION

There is an ongoing pursuit of the signatures of the elusive
quantum spin-liquid (QSL) state of matter [1–3]. The diffi-
culty to identify such states is due to the fact that they do
not break any symmetries and lack conventional local order
parameters of magnetic or related nature down to zero tem-
perature. Recently, QSLs with a Z2 gauge structure may have
actually come close to material realization, motivated by the
exact solution of the famous Kitaev spin model (KSM) with
compass exchange on the two-dimensional (2D) honeycomb
lattice [4]. In this model, spins fractionalize into static Z2

gauge fluxes and itinerant Majorana fermions, with a gapless
QSL ground state. In external magnetic fields the KSM opens
a gap and displays chiral Majorana edge modes. Variants
and generalizations of the KSM in 1D [5–11], 2D [12], and
3D [13–15], as well as for spins larger than 1/2 [16–18], have
been considered.

Mott insulators with strong spin-orbit coupling (SOC) are
promising materials to realize the KSM [19–22]. However,
residual non-Kitaev exchange interactions remain an issue,
with all current systems under consideration eventually dis-
playing magnetic order at low temperatures. From a present
perspective [3,23–26], α-RuCl3, either above its ordering
temperature or with magnetic order suppressed by external
magnetic fields, is one of the prime candidates under scrutiny
for Z2 QSL physics. Recent thermal Hall effect measurements
in α-RuCl3 suggest half-integer quantization plateaus [27]
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which are consistent with Majorana edge states, including
a field-angular variation of the topological Chern number
identical to that of the Kitaev QSL [28] and a bulk-boundary
correspondence claimed in specific heat measurements [29].
In addition to edge transport, a multitude of bulk spectro-
scopic probes have been invoked, aiming to identify continua
characteristic of the fractional Majorana excitations. This
pertains to inelastic neutron scattering [30–35] and local res-
onance techniques [36,37], as well as to magnetic Raman
scattering [38–40].

An interesting open question is whether the coupling of
Majorana fermions of the putative KSM to other degrees
of freedom can be used to provide signatures of their exis-
tence. Coupling to phonons [41–44] can induce characteristic
renormalizations, examples of which seem to have been ob-
served recently for acoustic phonons [45]. Regarding optical
phonons, Raman scattering [46–51] has provided early on
evidence for Raman active phonons with Fano line shapes,
overlapping with the magnetic Raman continuum [38,39].
This has been speculated to be a signature of renormalization
of optical phonons by Majorana fermions but up to now a
microscopic description was missing.

Here, we provide a theory of optical phonons coupled to a
KSM. We describe the microscopic details of the coupling and
evaluate the phonon self-energy. The phonon renormalization
versus energy and temperature is studied, the relative impor-
tance of Majorana and flux excitations is discussed, and the
implications for Raman scattering are clarified. We find con-
vincing qualitative agreement with experimental data, which
points to an intriguing interpretation of a Majorana-scattering-
induced optical phonon renormalization in the candidate
material α-RuCl3.

The paper is organized as follows. In Sec. II we develop
our theory of mixing between optical phonons and Majorana
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(a) (b)

FIG. 1. Kitaev hexagons with compass magnetic interactions
Jx,y,z along the directions δ1 = a

2 (+√
3ex + ey ), δ2 = a

2 (−√
3ex +

ey ), and δ3 = −aey, respectively. In addition the lattice vectors of
the triangular Bravais lattice are shown as a1 = a

√
3ex and a2 =

a
√

3
2 (ex + √

3ey ). The distortion of the lattice due to the two optical
modes Eg1 (a) and Eg2 (b) is indicated by the small blue and purple
arrows, respectively, with a dashed shaft.

fermions. In Sec. III we evaluate and discuss the phonon self-
energy, both at low and at elevated temperatures. Section IV
details the resulting phonon spectra. In Sec. V, the Raman
response is analyzed. Several technical details are presented
in Appendices A–D.

II. OPTICAL-PHONON MAJORANA MIXING

Here, we consider phonons of a 2D Honeycomb lattice
coupled magnetoelastically to the Kitaev QSL. The total
Hamiltonian of the system reads H = HP + HK + HKP, where
HP stands for the quadratic free phonon contribution HP =∑

qm(ωmq + 1
2 )b†

mqbmq, with b†
mq and bmq being bosonic cre-

ation and annihilation operators, respectively, at momentum q
for the mode m, and ωmq being the corresponding energy.

The magnetic degrees of freedom are described by the
Kitaev spin Hamiltonian HK = ∑

r,δ JδSdδ
r Sdδ

r−δ
, [4] (see also

Fig. 1). Here, r = l1a1 + l2a2, with l1,2 = 0, 1, . . . , L − 1,
refers to a triangular Bravais lattice of linear dimension L,
and δ sets the location of the basis of the honeycomb lattice,
with N = L2 unit cells and 2N sites. The components dδ of
the spin-1/2 operators S assume the values dδ = x, y, and z
depending on the δ vector, while Jδ are the Kitaev interactions.
We consider the isotropic case Jδ = J and set h̄, kB = 1.

Following the literature [4,6], we map the spin model
onto one of two species of Majorana fermions, c and c̄, with
{ci, c j} = 2δi j = {c̄i, c̄ j} and {ci, c̄ j} = 0. This mapping ren-
ders Majorana fermions of, e.g., c-type itinerant, while the
other type pairs into static Z2 gauge fields η = ±1 along,
e.g., the δ3 direction. The gauge field generates a conserved
flux, equivalent to a macroscopic number of conserved local
operators in the spin language [4,52]. In the Majorana repre-
sentation, HK reads

HK = J
∑
r,δ

hδ(r), hδ(r) = − i

4
ηδ(r)crc̃r−δ, (1)

where the gauge field ηδ acquires the values ηδ1 (r) = ηδ2 (r) =
1 and ηδ3 (r) = ±1. Operators with a tilde reside on the ba-
sis sites. The ground state resides within the uniform gauge
sector, which is separated from other sectors by a gap of
� ≈ 0.065J . At finite temperature T fluxes become thermally

excited and proliferate in a narrow range near a very low
T ∗ ≈ 0.012J . For several observables the emergent disorder
introduced by the visons has been shown to be of physical
significance [8,43,53,54]. For the present case of interest, i.e.,
optical phonons, we show that gauge excitations imply only
negligible quantitative modifications.

We focus on magnetoelastic coupling between spins and
lattice degrees of freedom, i.e., on the leading-order variation
J (ur − ũr−δ) ≈ J + ∇J · (ur − ũr−δ) of the exchange with
respect to lattice deformations ur at site r. The lattice dis-
tortions in Fourier space, uq = 1√

N

∑
r eiq·rur, are quantized

as usual in terms of phonon normal modes with Bmq = bmq +
b†

m,−q comprising the annihilation and creation operators of
mode m at momentum ±q and energy ωmq Using this, the
Majorana phonon coupling reads

HKP =
∑
mq

BmqHm,−q, Hmq =
∑

δ

�δ
mqhδ;q, (2)

where the form factor of the coupling is encoded in �δ
mq (see

Appendix A for details) and hδ;q = 1√
N

∑
r eiq·rhδ(r).

Here, we focus on the Eg1 and Eg2 optical modes observed
in Raman experiments. These are of particular interest since,
allegedly, they overlap with the Majorana continuum. For
Raman scattering it is safe to consider q → 0 only and we
drop all q labels hereafter. In Appendix A we treat also q �= 0,
and moreover we treat weak magnetic fields in Appendix C.
The phonon energies are ω1 ≡ ωg1 ≈ 116 cm−1 ≈ 1.9J and
ω2 ≡ ωg2 ≈ 165 cm−1 ≈ 2.6J , where we assume a Kitaev
coupling of J ≈ 90 K. The vibrational pattern of the two
modes [47] is shown in Fig. 1. In terms of Eq. (2) the lattice
modulations imply �m = �m[1,−1m, λm], with m = 1 and 2,
and λm denotes a possible anisotropy between the δ1,2 and
δ3 directions. The magnitude of �m can be assumed to be
in the perturbative regime [43]. For additional information, a
detailed microscopic derivation of the spin-phonon coupling
including the effect of spin-orbit effects beyond the pure Ki-
taev model is given in the Supplemental Material [55]; see
also Refs. [56–58].

The coupling of the phonons to the fractionalized magnetic
excitations, Eq. (2), induces a renormalization to the phonon
propagators Dmm′ (τ ) = 〈TτBm(τ )B†

m′ 〉 ≡ 〈〈Bm;B†
m′ 〉〉(τ ), with

time ordering T and the double brackets used as shorthand
(see Appendix A). In frequency space the corresponding 2 × 2
Dyson equation reads

D(z) ≈ [
D−1

0 (z) − �(z)
]−1

, �mm′ = 〈〈Hm;H†
m′ 〉〉. (3)

Here, z corresponds to the analytic continuation iωn → z =
ω + i0+ of the Matsubara frequencies. D0(z) comprises the
bare phonon propagators D0

m(z), with [D0(z)]mm′ = δmm′D0
m(z)

and D0
m(z) = 2ωm/(z2 − ω2

m).
The 2 × 2 matrix �(z) in Eq. (3) is the self-energy. A cen-

tral goal of the paper is to evaluate this self-energy. We do this
to leading order in the Majorana-phonon coupling and in two
ways: first, analytically, assuming a uniform gauge field con-
figuration in Eq. (1), and second, numerically, by considering
a numerical random averaging over disordered configurations
of the gauge field η. While the former approach is justified for
T � T ∗, the latter applies to T � T ∗ [43,53,54].
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III. PHONON SELF-ENERGY

A. Uniform gauge

At low temperatures, T � T ∗, it can be assumed, that the
system acquires a uniform gauge configuration, ηδ = 1, allow-
ing for the analytical calculation of the phonon self-energy.
First, the Kitaev terms in Eq. (1) can be brought to a diago-
nal form by going to the reciprocal space k = k1G1 + k2G2,
where G1 = 1

3a (
√

3ex − ey) and G2 = 2
3a ey are the recipro-

cal lattice vectors, i.e., ai · G j = δi, j for i( j) = 1 and 2. The
coefficients k1,2 are set to antiperiodic boundary conditions
k j = 2π (l j + 1

2 )/L, to allow all Majoranas to pair into com-
plex fermions. The Fourier transform of the Majoranas reads
ck = ∑

r e−ik·rcr/
√

2N , such that {ck, c†
k′ } = δk,k′ , and simi-

larly for the c̃ operators.
In the diagonal complex fermion basis, �

†
k = (d†

1,k, d†
2,k ),

HK and Hm of Eqs. (1) and (2) read HK = 1
2

∑
k �

†
kEk�k and

Hm = 1
2

∑
k �

†
kVm;k�k, with

Ek =
(

εk 0
0 −εk

)
, Vm;k =

(
g′

m;k ig′′
m;k

−ig′′
m;k −g′

m;k

)
. (4)

The energy eigenvalues are given by εk = |t̃k| = J
2 [3 +

2 cos k1 + 2 cos k2 + 2 cos(k1 − k2)]1/2, with t̃k = J
∑

δ tδ;k

and tδ;k = − i
2 e−ik·δ. The real part (g′) and imaginary part (g′′)

of the function g of the scattering matrix V are given by
gm;k = (t̃∗

k/εk )
∑

δ �δ
mtδ;k/

√
N .

The evaluation of the self-energy using Eqs. (3) and (4)
is straightforward. In that process and due to c†

k = c−k,
anomalous commutators {d1,k, d2,k′ } = δk,−k′ and their corre-
sponding contractions arise, implying also a time evolution
d j,k(t ) = d j,ke∓iεkt for j = 1 and 2, respectively. Thus, the
self-energy exhibits particle-hole (ph) and particle-particle
(pp) absorption channels, the amplitudes of which are de-
termined via the diagonal and off-diagonal matrix elements
of the matrix V . In the q = 0 limit, considered here, the
ph-channel vanishes. The pp scattering amplitudes acquire
simple forms, and all diagonal and off-diagonal self-energies
are described by a single function (z):

�(z) =
(

a1 b
b a2

)
(z), (z) = 1

N

∑
k

A2
k

1 − 2 fk

2εk − z
, (5)

for ω � 0, and ′(−ω) = ′(ω) and ′′(−ω) = −′′(ω).
As usual, we abbreviate Re(x) = x′ and Im(x) = x′′. The
matrix elements are a1 = �1(3 + λ2

1)/�2, a2 = �2(1 −
λ2)2/�1, and b = λ1(1 − λ2); the scattering amplitude
is Ak = �1�2 cos(

√
3akx/2) sin(3aky/2)/(2εk ); and fk =

1/(eεk/T + 1) is the Fermi-Dirac distribution. We note that for
λ2 = 1 the Eg2 spin-phonon Hamiltonian satisfies H2 ∝ HK ,
leading to no scattering for that mode, and for λ1 = 0, sym-
metry prevents mixing of the Eg1 and Eg2 modes.

B. Random gauge

For temperatures T � T ∗, thermal gauge excitations need
to be taken into account. However, for T � 0.1J  T ∗ a
random averaging over maximally disordered configurations
of ηδ3 (r) is sufficient to describe the fermionic system’s prop-
erties. As this breaks translational invariance, we resort to a
numerical real-space evaluation of the defect-averaged self-
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FIG. 2. Panels (a) and (b): Frequency dependence of ′ and
′ ′, respectively, for two temperatures (T/J = 0.005 and 0.03) in
the uniform gauge field sector, with L = 200 (curves overlap), and
for two temperatures (T/J = 0.25 and 0.65) within random gauge
sectors, on lattices of L = 30, averaged over NR = 200 maximally
disordered configurations. For all cases, i0+ = i0.01J and �1,2/J =
1. Dashed blue (purple) lines at ω j/J = 1.9 (2.6) on both panels
indicate the position of the phonon modes Eg1 (Eg2 ). Panels (c) and
(d): Temperature dependence of ′ and ′ ′, respectively, at the
phonon frequencies ω/J = 1.9 (blue circles) and ω/J = 2.6 (purple
squares). Open (solid) symbols indicate results acquired for uniform
(random) gauge field configurations.

energy �(z). This approach has been detailed in Refs. [43,53]
and is recapitulated in Appendix B.

C. Results

In Fig. 2, we present results for the self-energy  versus
frequency and temperature, for both homogeneous and ran-
dom gauge states. In Figs. 2(a) and 2(b), we plot ′(ω, T ) and
′′(ω, T ), respectively, obtained from the analytical approach
at T = 0.005J < T ∗ and T = 0.030J � T ∗ (curves overlap)
and from the numerical one at T = 0.25J, 0.65J  T ∗. An-
alytical calculations are performed on lattices with L = 200
while numerical ones are performed on lattices with L = 30
and averaged over NR = 200 realizations. Both ′ and ′′
contribute to the renormalization of the Eg1 and Eg2 phonons,
the energy of which is marked with a blue dotted line and a
purple dotted line, respectively. Since ′(ω j, T ) < 0 at both
anticipated phonon energies ω j , a downward renormalization
will occur. Most importantly, however, regarding their life-
time, both phonons reside in a range of negative slope of
′′ versus ω. Therefore, the lifetime will be dispersive, with
phonon spectral functions that display asymmetric line shapes
with enhanced left-broadening.

Regarding the gauge excitations, we observe that the over-
all shape of  displays no qualitative change compared to the
uniform gauge sector with only some additional fine struc-
ture arising from the gauge field excitations. However, there
is a reduction of the bandwidth to <3J , which affects the
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FIG. 3. (a) Frequency dependence of the phonon spectral weight
as evaluated via Eqs. (3) and (5) for �1(2)/J = 0.3(0.9) and λ1,2 = 2.
Solid lines represent the elements of the 2 × 2 phonon propagator
D′′

mn, while dashed lines represent the decoupled phonon modes D′′
m.

(b) Frequency dependence of the total Raman intensity I ′′ (black
solid line), evaluated via Eq. (6) using the phenomenological pa-
rameters rm = −0.3 and Cm = 0.8J and keeping �m as in panel (a).
For comparison, the diagonal phonon spectral weight

∑
m D′′

mm(ω) is
plotted (green dashed line, rescaled by 1/8 for visual reasons), and
the fermionic Raman response, ∼�′′(ω) (gray dashed line), is also
plotted. In both panels, Eq. (5) is used with L = 200, T = 0.01J ,
and i0+ = i0.01J .

scattering of the high-frequency mode Eg2 . Finally, there is
a clearly visible reduction of  with increasing T . This is
dictated by the Fermi-function [as in Eq. (5)] reducing the
available phase space. For the low-T results, this effect is too
small to be observable.

In Figs. 2(c) and 2(d), we scan the temperature dependence
of the real part and the imaginary part of the self-energy,
respectively, at the two frequencies of the phonon modes. In
doing so, we plot results obtained from both the analytical
approach and the numerical approach—even though in princi-
ple the former is applied for temperatures beyond its validity.
This figure clearly demonstrates that, for the renormalization
of optical phonons, gauge field excitations yield only small
quantitative corrections. For the rest of the paper, we therefore
remain in the uniform gauge configuration.

IV. PHONON PROPAGATORS

Next we discuss the renormalized optical phonon modes,
obtained from the 2 × 2 Dyson equation, Eq. (3), using �

from Eq. (5). Since a quantitative theory for the Majorana-
phonon coupling constants is not available, we select a set
of intermediate values of �1(�2) = 0.3J (0.9J ), λ1,2 = 2, to
draw several main conclusions. While these couplings are
chosen to roughly mimic existing experiments [46–51], we
refrain from attempting to “fit” measured data, since an un-
justified fine-tuning could be misleading. The phonon spectra
at T = 0.01J and for L = 200 are shown in Fig. 3(a). First,

and in general, because of b �= 0, phonon mixing by virtue of
the fermionic background will occur, i.e., Dmm �= [[D0

m]−1 −
am]−1 ≡ Dm. However, while staying in the perturbative
regime, b[(ω2 + ω1)/2]/(ω2 − ω1) � 1, the mixing is weak
and can be ignored. This is evident from the figure, where
D′′

12 � D′′
11(22) and D′′

mm ≈ D′′
m, essentially rendering the two

phonon modes decoupled. Second, both diagonal elements
of D exhibit the anticipated downward renormalization with
respect to ωm, largest for Eg2 . In accordance with Fig. 2(c), the
modes’ peaks will shift upwards to ωm as the temperature is
increased. Moreover, in accordance with Fig. 2(d), the width
of the phonon mode shrinks as the temperature is increased;
i.e., in contrast to most conventional excitations in many-body
systems, their lifetime grows with temperature.

Finally, one of the most debated features of the phonon
modes, as observed in Raman experiments, is their asym-
metry, conventionally attributed to the Fano effect [59], i.e.,
the interference of the Majorana continuum with the phonon
modes, suggested to reveal the QSL. However, as can be
seen from Figs. 3(a) and 3(b), already the individual and
the total phonon intensities show a slight asymmetry, due to
the frequency dependence of ′′(ω). While the size of these
asymmetries can certainly be fine-tuned by varying the model
parameters, the main qualitative point is unavoidable, i.e., that
asymmetric phonon lines are not the sole consequence of the
Fano effect.

V. RAMAN RESPONSE AND FANO LINE SHAPE

Finally, we speculate on the Raman cross section I (z).
Light scatters from both the lattice and the magnetic de-
grees of freedom. This forces the Fano effect to occur [59]
and renders the Raman cross section a coupled three-channel
problem, with Raman vertices F and Rm=1,2, encoding the
couplings of incoming (outgoing) light fields to the fermions
and the two phonon modes, respectively. Presently, only the
Loudon-Fleury vertex F is known microscopically [38,39,60],
but has been questioned recently [61]. Therefore, obtaining
I (z) from first principles is infeasible. To make progress, we
resort to phenomenological simplifications. These are detailed
in Appendix D, but essentially amount to the following. (i) We
replace the Raman vertices F and Rm=1,2 by mere constants,
dependent on the scattering geometry. (ii) The three-channel
problem comprises additional types of fermionic two-particle
propagators contracted with the unknown Raman vertices.
We approximate these propagators by (ω), since it mim-
ics the fermionic background (see Appendix D). Comparing
Figs. 2(a) and 2(b) with, e.g., the known magnetic Raman
response [38,39], i.e., the two-particle propagator contracted
with |F |2, this seems acceptable. (iii) We ignore phonon
mixing, justified by Fig. 3(a). This leads to [Eq. (D4) in
Appendix D]

I (z) ≈ �(z) +
∑

m=1,2

[rm + Cm�(z)]2Dmm(z), (6)

where �(z) = (z)[J/(�1�2)]2 and I (z) is normalized to F ,
i.e., I (z) → I (z)/F 2, leaving four free parameters, namely,
rm = Rm/F and the coupling constants Cm, which allow us
to adjust the strength of the Fano effect. I (z) is a retarded
propagator, i.e., its spectrum maps to measurements of a cross
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FIG. 4. Comparison of the total Raman intensity I ′′ (black solid
line), evaluated via Eq. (6) for the phenomenological parameters
r1(2) = −0.18(−0.5) and C1(2)/J = 0.65(1) with experimental data,
taken from Ref. [46] (red points). L = 200, T = 0.01J , and i0+ =
i0.01J were used for numerical evaluations.

section, which has already been corrected by the fluctuation-
dissipation prefactor.

In Fig. 3(b), we plot I ′′(ω), for empirically chosen rm =
−0.3 and Cm = 0.8J , together with �′′(ω), as well as the
rescaled diagonal intensity

∑
m D′′

mm(ω) from Fig. 3(a). The
overall shape of the Raman response I ′′(ω) is clearly dif-
ferent from the diagonal phonon intensity, ∝ ∑

m D′′
mm(ω) ≈∑

m D′′
m(ω), green dashed line in Fig. 3(b), which would ap-

proximate the response if only phonon scattering had been
taken into account but not the Fano effect. A broad contin-
uum due to the fractionalized magnetic excitations is visible,
on top of which two asymmetric phonon line shapes reside.
The optical phonon lines are asymmetrically broadened with
characteristic sharp, almost vertical, drop-off only on the high-
frequency side of the mode. These features can be traced back
to the combination of the asymmetric phonon self-energy,
which has its origin in the frequency dependence of the Majo-
rana density of states, on the one hand and to the Fano effect
on the other hand.

Finally we compare our theory with experiments [46–50].
The experimental data exhibit a behavior very similar to that
of our calculated spectrum, namely, a broad continuum with
two asymmetric phonon line shapes. In order to have a direct
comparison between theoretical and experimental findings,
Fig. 4 displays the Raman spectrum adapted from Ref. [46],
along with Eq. (6), employing a set of r’s and C’s which
reproduces the experimental spectrum best. As is evident from
this figure, our theory provides a very good description of the
experimental data. In fact, the high-energy phonon mode is re-
produced almost quantitatively, while only a slight difference
appears around the low-frequency phonon mode. The latter
could in principle be improved at the expense of additional
fine-tuning of the bare ωg1 energy.

VI. SUMMARY AND DISCUSSION

We have developed a microscopic theory for optical
phonons, coupled to a Kitaev QSL. This comprises pre-
dictions for the impact of the QSL on the frequency

renormalization, on the occurrence of an asymmetric line
shape, and on the temperature variations. Moreover, we have
combined this theory with a phenomenological description of
Raman scattering showing that asymmetric line shapes are not
driven only by the Fano effect and that experimental data are
consistent with our results. Should ab initio calculations pro-
vide the spin-phonon coupling constants in the future, it would
allow for a more accurate and justified theoretical description
of the experimental findings [62]. In addition, it is relevant
to understand the effect of non-Kitaev additional interactions,
either perturbatively (see Ref. [35]) or using J-K-� models.
Finally, the action of a weak magnetic field is briefly discussed
in Appendices A and C, but it needs further theoretical and
experimental attention [27,50], especially beyond the weak
field limit.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with D. Wulferding,
K. Burch, P. Lemmens, S. Bhattacharjee, and R. Moessner.
We are grateful to R. Valentí and S. Biswas for clarifica-
tions on optical phonons, extracted from ab initio methods.
The work of A.M. and W.B. has been supported in part by
the DFG through Project A02 of SFB 1143 (Project No.
247310070), by Nds. QUANOMET, and by the National Sci-
ence Foundation under Grant No. NSF PHY-1748958. W.B.
also acknowledges the kind hospitality of the PSM, Dresden.

APPENDIX A: MAJORANA-PHONON COUPLING WITH
FINITE MAGNETIC FIELD

A magnetic field can be included in the Kitaev spin Hamil-
tonian according to

HK =
∑

r

∑
δ

JδS
dδ

r Sdδ

r−δ
+ gμBB

∑
r

Sr. (A1)

We repeat here the notation conventions: r = l1a1 + l2a2 runs
over one sublattice, with l j = 0, 1, . . . , L − 1, for j = 1 and
2, while δ runs over the three vectors connecting the two
sublattices. The number of unit cells is N = L2. The vectors δ

and a are given by⎡
⎣δ1

δ2

δ3

⎤
⎦ = a

2

⎡
⎢⎣

√
3 1

−√
3 1

0 −2

⎤
⎥⎦[

ex

ey

]
,

⎡
⎣a1

a2

a3

⎤
⎦ = a

√
3

2

⎡
⎢⎣

2 0

1
√

3

−1
√

3

⎤
⎥⎦[

ex

ey

]
. (A2)

Furthermore, the indices dδ of the spin-1/2 operators S ac-
quire the values dδ = x, y, and z depending on the δ vector of
the bond, while the Kitaev interactions Jδ are considered to be
isotropic. The magnetic field is B = (B, B, B), while g = 1 is
the g factor, μB = 1 is the Bohr magneton, and we also set to
unity the Planck and Boltzmann constants, h̄, kB = 1.

Treating the magnetic field perturbatively for B < � en-
ables a rewriting of Hamiltonian (A1) in terms of the
Majorana fermions c and c̃ discussed in the main text [4,63].
In the fermionic representation, the Zeeman term of Eq. (A1)
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results in a next-nearest-neighbor (NNN) hopping. Therefore,
regarding the spin subsystem, the Hamiltonian HK reads

HK = H1 + H2, H1 =
∑
r,δ

Jδhδ(r),

hδ(r) = − i

4
ηδ(r)crc̃r−δ,

H2 = −i
J̃

8

∑
r,a

[ζa(r)crcr−a + ζ̃a(r)c̃r−δ3 c̃r−δ3+a]. (A3)

H1 is identical to that in Eq. (1) of the manuscript, with
ηδ1 (r) = ηδ2 (r) = 1 and ηδ3 (r) = ±1 corresponding to the Z2

gauge field arising from the freezing of the c̄ species of the
Majorana fermions. The tilde on the second Majorana opera-
tor is introduced to discriminate between the two sublattices.
H2 follows from the fermionization of a three-spin term which
arises within third-order perturbation theory from the spin
model. The summation on a runs over the set of three a vectors
described in Eq. (A2). The quantities ζ are given by

ζa1 (r) = 1, ζa2 (r) = −ηδ3 (r),

ζa3 (r) = ηδ3 (r − a1), ζ̃a1 (r) = 1,

ζ̃a2 (r) = −ηδ3 (r − a1), ζ̃a3 (r) = ηδ3 (r). (A4)

J̃ refers to the NNN effective three-spin coupling generated
by the third-order perturbation theory, J̃ ∼ B3

�2 , [4,63]. In or-
der to stay in the perturbative regime, B � B∗ ≈ �, meaning
J̃ ∼ O(10−2J ). It is important to realize that, although J̃/J is
only of the order of 1%, for real materials this corresponds to
relatively strong magnetic fields of up to B∗ ≈ 10 T. As we see
here, weak values of the effective NNN coupling term do not
affect the high-frequency spectrum where the optical phonon
modes lie.

Within the magnetoelastic scheme, lattice modulations in
Fourier space,

uq = 1√
N

∑
r

eiq·rur, ũq = 1√
N

∑
r

eiq·(r+δ2 )ũr, (A5)

are expressed in terms of quantized phonon modes,

uq =
∑

m

1√
2Mωmq

(
γ x

mqêx + γ y
mqêy

)
Bmq,

ũq =
∑

m

1√
2Mωmq

(
γ̃ x

mqêx + γ̃ y
mqêy

)
Bmq. (A6)

The coefficients of the polarization vectors are denoted by γ

and γ̃ for the two sublattices, respectively; M is of the order
of the ruthenium mass; and Bmq = bmq + b†

m,−q comprises the
sum of phonon annihilation and creation operators at momen-
tum ±q and for polarization mode m, while the energy of
the phonon mode is ωmq. This leads to a coupling of the two
subsystems by Eq. (2), i.e.,

HKP =
∑
mq

BmqHm,−q, Hmq =
∑

δ

�δ
mqhδ;q, (A7)

where hδ;q refers only to the nearest-neighbor density, hδ;q =
1√
N

∑
r eiq·rhδ(r), and the finite-momentum couplings are

�δ
m,q = �δ

m

2
(1 + eiq·δ), �δ

m = �m[1,−1m, λm], (A8)

where m = 1 and 2 and λm denotes a possible anisotropy
between the δ1,2 and δ3 directions. The phonon propagator
reads

Dmm′
qq′ (z) = 〈〈Bmq;B†

m′q′ 〉〉(z), (A9)

where the double brackets denote the Green’s function, which
for two operators O1 and O2 reads as follows:

〈〈O1; O2〉〉(τ ) = 〈Tτ O1(τ )O2〉,

〈〈O1; O2〉〉(iωn) = − 1

β

∫ β

0
dτeiωnτ 〈〈O1; O2〉〉(τ ), (A10)

where β = 1/T is the inverse temperature, ωn is the Mat-
subara frequency, ωn = 2πn

β
(for bosonic Green’s functions),

T denotes the time-ordering operator, and O(τ ) is the op-
erator in the Heisenberg picture O(τ ) = eτH Oe−τH , with H
being the (sub)system’s Hamiltonian. After an analytical con-
tinuation in the frequency range, we express the Green’s
functions in terms of the complex frequency z = ω + i0+, i.e.,
〈〈O1; O2〉〉(iωn) = 〈〈O1; O2〉〉(z), with the imaginary broad-
ening being of the order of i0+ = O(0.01J ). In the absence
of scattering from Majorana fermions, the free propagator is
diagonal, in both momentum q and mode index m,[

Dmm′
qq′ (z)

]
0 = δqq′δmm′D0

mq(z), D0
mq(z) = 2ωmq

z2 − ω2
mq

.

(A11)
The phonon propagator in the interacting system can be eval-
uated via Dyson’s equation:

Dmm′
q (z) = [[

D0
mq(z)

]−1 − mm′
q (z)

]−1
,

mm′
q (z) = 〈〈Hmq;H†

m′q〉〉(z). (A12)

In principle, the self-energy mm′
q is not diagonal in the polar-

ization indexes m, leading to a phonon mixing upon inversion
of the right-hand side of the Dyson equation, i.e.,

Dmm
q (z) �= Dm

q (z), Dm
q (z) = [[

D0
mq(z)

]−1 − mm
q (z)

]−1
.

(A13)
To incorporate the magnetic field and the momentum into
the results for the uniform gauge sector ηδ = 1, the analyt-
ical calculations are adapted accordingly. Hamiltonian (A3)
can again be diagonalized by Fourier transformation with
ck = 1√

2N

∑
r e−ik·rcr, with {ck, c†

k′ } = δk,k′ , and similarly for
the c̃ operators, where k = (k1 + π

L )G1 + (k2 + π
L )G2, k j =

2π l j/L, G1 = 1
3a (

√
3ex − ey), and G2 = 2

3a ey. The Hamilto-
nian in reciprocal space reads

HK = 1

2

∑
k

�
†
k

(
εk 0
0 −εk

)
�k, εk =

√
|tk|2 + w2

k,

tk =
∑

δ

tδ;k, tδ;k = − i

2
Jδe

−ik·δ,

wk = J̃

2

3∑
j=1

(−) j sin(k · a j ). (A14)
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The spinor �
†
k = (d†

1,k, d†
2,k ) comprises the two quasiparticle

bands. hδ;q from Eq. (A7) is

hδ;q = 1

2
√

N

∑
k

�
†
k−qṼδ;k−q,k�k,

Ṽ μν

δ;k1,k2
= −1

4
√

εk1εk2

[t∗
δ;k1

tk2ξ
μν

k1k2
+ t∗

k1
tδ;k2ξ

νμ

k2k1
],

ξ
μν

k1k2
= (−1)ν

√
εk1 + (−1)μwk1

εk2 + (−1)νwk2

, (A15)

where the indexes take the values μ, ν = 1 and 2. The
diagonal matrix elements of Ṽ refer to particle-hole (ph)
scattering processes and the off-diagonal matrix elements re-
fer to particle-particle (pp) scattering processes. The former
contribute with a relative plus sign in Ṽ , while the latter
contribute with a minus sign. Complex conjugation results
in Ṽ μν∗

δ;k1,k2
= Ṽ νμ

δ;k2,k1
, leading to h†

δ;q = hδ;−q, which ensures
the Hermiticity of HK and HKP. A straightforward evaluation,
using Eqs. (A7), (A9), and (A15) and Ref. [64], yields

mm′
q (z) = 1

N

∑
k

[
V μμ

kqmV μμ∗
kqm′Lph

k,q(z) − V μμ̄

kqmV μμ̄∗
kqm′Lpp

k,q(z)
]
,

Lph
k,q(z) = fk+q − fk

εk+q − εk − z
+ fk+q − fk

εk+q − εk + z
,

Lpp
k,q(z) = 1 − fk+q − fk

εk+q + εk + z
+ 1 − fk+q − fk

εk+q + εk − z
. (A16)

The scattering amplitude for both contributions is a real
number, determined by the matrix Vkqm = ∑

δ �δ
qmṼδ;k+q,k,

while μ(μ̄) can be chosen as either μ = 1(2) or μ = 2(1).
The particle-hole Lph

i j (z) and particle-particle Lpp
i j (z) Lindhard

functions set the frequency and temperature dependence, with
f j being the Fermi-Dirac distribution f j = 1/(eε j/T + 1). For
q = 0, Lph

k,0(z) is identically zero and only the pp channel
contributes to the self-energy. After some algebra one arrives
at Eq. (5) of the manuscript. For q �= 0 the self-energy cannot
be expressed in terms of a single function only.

APPENDIX B: NUMERICAL METHOD FOR DISORDERED
GAUGE SECTORS

For temperatures T  T ∗, gauge excitations need to be
taken into account. For that, a random averaging over max-
imally disordered configurations is sufficient to describe the
fermionic system’s properties [53]. Since translation invari-
ance is broken, we resort to numerical methods in real space,
while following the same steps as for the analytical calcula-
tion. This means we first set a real-space spinor with the 2N
Majorana operators, C† = (cr1 , . . . , crN , c̃r1−δ3 , . . . , c̃rN −δ3 ),
as the original representation to setup operators, Ô = C†OC.
Next, we change to a Dirac fermion basis D = FC, where
D† = (d†

k1
, . . . , d†

kN
, dk1 , . . . , dkN ) and F is the Fourier trans-

form with its matrix elements being defined as Fi j =
eiki ·R j /

√
2N , with R j = r j or R j = r j − δ3 for 1 � j � N or

N + 1 � j � 2N , respectively. The last step is to switch to the
Hamiltonian’s diagonal basis, E† = (e†

1, . . . , e†
N , e1, . . . , eN ),

with E = UD, where U is a numerical Bogoliubov transfor-
mation. The self-energy from Eq. (A12) is then evaluated by

0 1 2 3 4

ω/J

−0.2

−0.1

0.0

0.1

0.2

0.3

Σ
′ (ω

)

J̃/J =0.00

J̃/J =0.03

J̃/J =0.05

0.0

0.1

0.2

0.3

Σ
′′ (

ω
)

Σ

Σ (a)

0 1 2 3 4

ω/J

−0.1

0.0

0.1

0.2

Σ
′ (ω

)

Σ Σ

J̃/J =0.00

J̃/J =0.03

J̃/J =0.05

0.00

0.06

0.12

0.18

Σ
′′ (

ω
)

(b)

FIG. 5. Phonon self-energy (ω) for various NNN couplings
J̃/J = 0, 0.03, and 0.05. (a) Within the uniform gauge sector at
T/J = 0.01 and for L = 200. (b) For random gauges, averaging over
NR = 200 maximally disordered sectors at T/J = 0.3 and L = 30.

writing operators as

Ô = E†ÕE , with Õ = U †[(2F †)O(2F )]U, (B1)

resulting in an expression similar to Eq. (A16), i.e.,

mm′
q (z) = 2

N∑
i, j=1

{
(H̃mq)ī j̄[(H̃†

m′q) j̄ ī−(H̃†
m′q)i j]Lph

i j (z)

+ (H̃mq)i j̄[(H̃†
m′q) j̄i+(H̃†

m′q)i j̄]Lpp
i j (z)

}
, (B2)

where ī( j̄) = i + N ( j + N ), H̃ is dictated by Eqs. (A7)
and (B1), and the Lindhard functions are given by

Lph
i j (z) = fi − f j

εi − ε j + z
+ fi − f j

εi − ε j − z
,

Lpp
i j (z) = 1 − fi − f j

εi + ε j + z
+ 1 − fi − f j

εi + ε j − z
, (B3)

with εi being the energy eigenvalues and fi being the corre-
sponding Fermi-Dirac distribution.

APPENDIX C: MAGNETIC FIELD DEPENDENCE

In Fig. 5(a), we present results for the effect of the mag-
netic field on the self-energy (ω) at q = 0. Various values
of the NNN coupling J̃ are depicted. This figure clearly
demonstrates that the magnetic field is relevant only for low
frequencies due to the gap opening. This can be important for
acoustic phonons [44]; however, for the optical phonon modes
beyond the gap, magnetic fields play no role. In Fig. 5(b),
we present numerical results for (ω) obtained numerically
after random averaging over NR = 200 maximally disordered
sectors on a system with a linear dimension of L = 30 and
at T = 0.3J . Figure 5(b) illustrates that elevated temperatures
completely conceal the weak effect of the magnetic field, in
the whole frequency range.

The robustness of  at higher frequencies against the mag-
netic field has an important implication regarding the validity
of our results in realistic systems. Material realizations of the
Kitaev model inevitably host additional magnetic interactions
which tend to order the magnetic moments at low tempera-
tures and, therefore, conceal the properties of the quantum
spin-liquid (QSL) phase. A common practice in experiments
is to destroy the ordering by inducing an in-plane magnetic
field and driving the system into the QSL phase. In that re-
spect, our results including the magnetic field show that our
calculations are robust against additional magnetic interac-
tions and external magnetic fields. This becomes even more
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important, since later we approximate the fermionic Raman
response with ; namely, we expect that also this will not
change under a magnetic field.

APPENDIX D: RAMAN CROSS SECTION

Here we explain the steps which lead to phenomeno-
logical Eq. (6) of the main text for the Raman intensities.
First we consider the Raman cross section of a fictitious
system at momentum zero and energy z, comprising two
optical phonons, with bare Green’s functions D0i=1,2(z), cou-
pled to a fermionic background, with a particle-hole Green’s
function �(z).

Both phonons and the fermionic background are assumed
to be Raman active. We proceed by strongly simplifying all
Raman operators F and Ri=1,2 of the fermionic background
and the phonons, as well as the fermion-phonon coupling
matrix elements Ci=1,2, to be real constants. Then, to lead-
ing order in the fermion-phonon coupling, the total cross
section ∝ |Im[I (ω + i0+)]| derives from a trace over the
Dyson equation (apart from the trivial fluctuation-dissipation
prefactor):

I (z) =
⎡
⎣F

R1

R2

⎤
⎦

†[
G−1

0 (z) − V
]−1

⎡
⎣F

R1

R2

⎤
⎦,

G0(z) =
⎡
⎣�(z) 0 0

0 D01(z) 0
0 0 D02(z)

⎤
⎦, (D1)

V =
⎡
⎣ 0 C1 C2

C1 0 0
C2 0 0

⎤
⎦.

This can be written differently as

I (z) = �(z) +
[

r1+�(z)C1

r2+�(z)C2

]T

D(z)

[
r1+C1�(z)
r2+C2�(z)

]
, (D2)

where D(z) is the dressed 2 × 2 phonon Green’s function,

D(z) =
[
D−1

0 (z) −
[

C2
1 C1C2

C1C2 C2
2

]
�(z)

]−1

, (D3)

with D0(z) being the lower 2 × 2 block of G0(z). Henceforth,
we normalize ri = Ri/F , and I (z)/F 2 → I (z). That is, F is set
to unity. Equation (D2) can either be derived by simple algebra
from Eq. (D1) or be visualized by iterating the corresponding
diagrams. The latter is shown in Fig. 6. Note that all entries
of Eq. (D2), i.e., ∝ F 2, ∝ R2, and ∝ FR, are infinite-order
series of RPA type, as can be read off from Fig. 6. Any
additional renormalizations of the Majorana particles, e.g., by
phonon self-energies, or of the phonons by anharmonicities,
are higher-order effects and would require vertex corrections
to be incorporated in all three channels of Eq. (S26) by virtue
the Kadanoff-Baym scheme and vice versa. This is beyond
our study.

Several comments regarding Eq. (D2) are in order. First,
contributions of type �(z)CiDi j (z)r j , Figs. 6(c) and 6(d), from
the second addend on its right-hand side represent interfer-
ence effects between the phononic and the fermionic Raman
scattering, i.e., the Fano effect. Second, the Fano effect is

= +

(a) (b)

(c) (d)

(e)
(f)

FIG. 6. (a)–(e) Diagrams contributing to the Raman cross sec-
tion, Eq. (D2). Dashed line: photons. Eμ: electric field. Solid square
F , cross R, and solid circle C: Raman and fermion-phonon vertices.
Solid steady line: fermions with ellipse � particle-hole Green’s
function. (f) Dyson equation, Eq. (D3), for single (double) wiggly
line: bare (dressed) phonon Green’s function, D0 (D).

intrinsically tied to the renormalization of the bare phonon by
the fermions. Speaking differently, for any C1,2 �= 0 and for
a finite fermionic and phononic Raman vertex r−1

1,2 �= 0, the
Fano effect is unavoidable. Third, for the problem formulated,
the Fano effect is always complete. That is, irrespective of
the particular form of �(z) and the parameters C1,2 and r1,2,
each phonon gives rise to one energy at which the cross
section is strictly zero. Fourth, and as a direct consequence
of the latter, the causality of the cross section is delicate.
For example, simplifying D(z) in Eq. (D3) by discarding
the off-diagonal self-energy, in order to decouple the two
phonons, will inevitably lead to regimes of parameters C1,2

for which the cross section turns negative over certain ranges
of ω. This has to be kept in mind when performing additional
simplifications.

Turning to the coupled phonon-Majorana system of the
present work, evaluating the diagrams of Fig. 6 from first prin-
ciples is infeasible. This is because they involve momentum
summations over unknown form factors which are contained
in F and Ri and actually turn Eq. (D1) into an integral
equation. For the former, i.e., F , the Loudon-Fleury vertex
is a conventional choice [38,39,60]. This, however, is open to
debate [61]. For the latter, i.e., Ri, derivatives of the dielectric
tensor with respect to the normal coordinates need to be used.
These are unknown for any putative/proximate Kitaev QSL
system. In addition to that the amplitudes of F and Ri are
modulated by the scattering geometry. In this situation, and
to make progress, we assume four phenomenological simpli-
fications for our system. (i) We remain with mere constants
for F and Ri. These will differ for different scattering geome-
tries. (ii) The constants C1,2, displayed in Eq. (D2) are used
as free parameters, independent of D(z), in order to adjust
the magnitude of the Fano effect. (iii) Hereafter, we replace
D(z) with the phonon propagator evaluated in the main text,
i.e., D(z), and we approximate it to be diagonal. (iv) Most
important, since the spectrum of the purely magnetic Raman
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cross section of Refs. [38,39,60] is very similar in shape to
the spectrum of the normalized part of phonon self-energy
Im(ω + i0+), we approximate �(z) ≈ (z)[J/(�1�2)]2 on
the right-hand side of Eq. (D1). This is motivated by realizing
that the Loudon-Fleury (LF) Hamiltonian describing the cou-
pling of light, with an incoming polarization vector εin and an
outgoing polarization vector εout, reads HLF = ∑

r,δ Jdδ (εin ·
δ)(εout · δ)Sdδ

r Sdδ

r−δ
, which is of a form identical to that of the

operator Hm for the magnetoelastic coupling. Altogether one

obtains

I (z) ≈ �(z) +
∑

m=1,2

[rm + Cm�(z)]2Dmm(z), (D4)

which is Eq. (6) of the main text.
For completeness, we emphasize, that I ′′(z) corresponds to

the spectrum of a Green’s function. By conventional terminol-
ogy, this corresponds to the cross section, corrected for by the
standard Bose factor of the fluctuation-dissipation theorem.
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