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The photon-assisted tunneling of Majorana bound states in a Majorana nanowire driven by the periodic field
is studied both theoretically and numerically. We find that Majorana bound states exhibit an anomalous photon-
assisted tunneling signal, which is different from an ordinary fermionic state: the height of photonic sidebands
is related to the degree of Majorana nonlocality. Moreover, we show that the Bardeen—Cooper—Schrieffer
(BCS) charge and spin components of subgap states can be well revealed by the local conductance. Our work
illuminates the effect of driving field on Majorana bound states and provides a systematic scheme to directly
measure BCS information of overlapping Majorana bound states.
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I. INTRODUCTION

A Majorana bound state (MBS) is a chargeless quasiparti-
cle whose antiparticle is equal to itself [1–4]. It has attracted a
widespread attention for a long time because of its potential
applications in fault-tolerant quantum computations [5–7].
One way to prepare MBSs is based on an one-dimensional
(1D) hybrid superconducting-semiconducting nanowire in the
presence of spin-orbit coupling and Zeeman splitting (often
dubbed as the Majorana nanowire) [8–10]. MBSs can lead to a
series of novel transport phenomena, such as a quantized zero
bias conductance peak (ZBCP) with a value of 2e2/h through
the resonant Andreev reflection [11], fractional Josephson
effect [2,12], and spin-selective equal-spin Andreev reflection
[13].

Although an isolated zero-energy MBS has no charge and
spin [14], when two MBSs are coupled (i.e., the Majorana
nanowire’s length L is not longer than the Majorana decay
length ξM), a nonzero energy state with nonquantized charge
[Bardeen-Cooper-Schrieffer (BCS) charge] and spin will be
generated [15–17]. This finite BCS charge is related to the
nonlocality of MBSs [18–20], which is of particular signifi-
cance to implement a topological qubit [19]. Recently, both
theory and experiment demonstrated that a three-terminal
setup can be used to extract the local BCS charge of bound
states close to the ends of the wire [21,22]. However, a sys-
tematic scheme to measure this BCS charge (e.g., measure its
spin and spatial information) is still lacking.

Periodically driven systems have been of concern for a
long time [23,24]. One of the key features is that electrons
tunneling through these systems can absorb or emit multiple
photons, causing photonic sideband peaks at harmonics in
the conductance-voltage curves, which is known as photon-
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assisted tunneling (PAT). The study of this phenomenon can
trace back to the early pioneering work by Tien and Gordon
in superconductor-insulator-superconductor films [25]. They
raise a simple relation that the nth PAT peaks is modulated
by a square of Bessel function J2

n (eVf /h̄ω) [26]. Here e is the
charge of the electron, h̄ω is the photon’s energy, and Vf is
the driving amplitude. Until now, periodically driving physics
has been explored in a widespread range including quantum
dots [27,28], the semiconductor superlattice [29], as well as
two-dimensional electron gas [30–32].

The interplay between PAT and MBSs in the topological
superconductor also raises recent common interest. One re-
cent work studied the PAT from ac-driven normal electrodes
into the Majorana nanowire with MBSs and find resulting
nonzero sideband peaks [33]. Another recent work analyzed
the photon-assisted resonant Andreev reflection from ac-
driven superconducting tips or normal electrodes into subgap
states like Yu-Shiba-Rusinov (YSR) states and MBSs, and
argue that it could provide a high-accuracy method to mea-
sure small but nonzero energies of subgap states [34]. But
essentially, these previous studies focused on a case that
complete fermions were driven to absorb and emit photons
tunneling into the subgap states in superconducting system.
But how MBS, as a “half fermion,” responds under the pe-
riodically driving field is still an open question. Moreover,
since the PAT signal is directly connected with the charge
in the tunneling process, we can naturally wonder whether
PAT could give us the BCS charge information of bound
states.

The goal of this paper is to study the PAT signals of
MBSs in the periodically driven Majorana nanowire con-
nected by two normal leads, in proximity to an equilibrium
superconductor, as shown in Fig. 1(a). Both numerically and
analytically, our results illuminate that MBSs show an anoma-
lous PAT signal different from an ordinary fermionic state
in Fig. 1(b): photonic sideband peaks disappear when MBSs
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FIG. 1. (a, b) Schematic representation for (a) MBSs and (b) sin-
gle impurity in periodically driven nanowire, which is in the
proximity to the grounded superconductor. (a) Two MBSs (purple
dots) located at the two ends of the 1D Majorana nanowire, which
is connected to two normal leads. (b) A trivial impurity (green dot)
lies between the normal left lead and the semiconductor nanowire.
(c)–(f) Time-averaged local conductance G as functions of bias V
and relative driving field strength AR for the (c, e) MBSs and (d,
f) for the trivial impurity. Here nanowire length N = 700, static
magnetic field V0 = 400 μeV, chemical potential μ = 0, the photon
energy h̄ω = 20 μeV, corresponding to frequency f ≈ 5 GHz. Other
parameters are given in the text.

are well separated but reappear once MBSs are coupled. This
phenomenon is attributed to the charge-neutral and spinless
properties of Majorana fermions. We further prove that the
height of PAT peaks is relevant to the BCS charge of subgap
states. Based on this, we propose a method to directly extract
both BCS charge and spin components of overlapping MBSs
via the local conductance.

The rest of this paper is organized as follows. In Sec. II,
we give our model and present a low-energy effective model
to describe the MBSs under the periodically driving field. In
Sec. III, we use the nonequilibrium Green’s function method
to calculate current and conductance. We also conduct some
numerical calculations for MBSs and trivial Andreev bound
states (ABSs) induced by hybridized impurity, respectively,
and further compare their results. In Sec. IV, we analyze
the time-averaged conductance of overlapping Majoranas and
point out one way to extract their BCS charge. In Sec. V, we
consider a case where microwave field and harmonic mag-
netic field coexist and discuss how to extract the BCS spin
information along any direction. We put the summary and
some discussions in Sec. VI. Some detailed calculations and
supplementary figures are all concluded in Appendices A to C.

II. MODEL AND HAMILTONIAN

A. Model for periodically driven Majorana nanowire
and single impurity

Specifically, to describe the 1D Majorana nanowires
as shown in Fig. 1(a), the Bogoliubov–de Gennes (BdG)
Hamiltonian in the Nambu basis {ψ↑(z), ψ↓(z), ψ†

↑(z), ψ†
↓(z)}

can be written as [8,9]

HBdG
nw =

(
p2

z

2m∗ − μ + V0σ
z + αR pzσ

y

)
τ z − e�σ yτ y, (1)

where Pauli matrices σ and τ act on the spin and particle-
hole space. m∗ is the effective electronic mass. αR and V0 =
gμBB/2 are the spin-orbit coupling strength and the static
Zeeman field with landé g-factor and magnetic field B, μ

and �̃ represent the chemical potential and proximity-induced
pairing potential. To facilitate numerical calculations, we dis-
cretize this Hamiltonian into tight-binding form and also
include the periodically driving field and coupling between
the left and right leads

HMBS(t ) = Hnw + Hf m(t ) + HT 1 + HL + HR, (2)

where

Hnw =
N∑

i=1,s

(2tN − μ)c†
iscis −

N−1∑
i=1,s

tN (c†
isci+1,s + H.c.)

−
N−1∑

i=1,s,s′

[
αR

2a
c†

is(iσ
y)ss′ci+1,s′ + H.c.

]

+
N∑

i=1,s,s′
V0c†

is(σ
z )ss′cis′ +

N∑
i=1

(e�c†
i↑c†

i↓ + H.c.)

(3)

and

Hf m(t ) =
∑

i,s

A cos(ωt )c†
iscis,

Hα=L/R =
∑
kα,s

εkαa†
kαsakαs,

HT 1 =
∑
kL,s

tLc†
1sakLs +

∑
kRs

tRc†
NsakRs + H.c.

(4)

Here i and s (s =↑,↓ or ±1) label the lattice coordinate
and the spin index, N and a are the number of lattice points
and the lattice constant of the Majorana nanowire, tN is the
nearest hopping energy. Hf m describes the microwave driving
field with the driving amplitude A. Besides the microwave
field, the harmonic magnetic field along the z direction is
also investigated in our following calculations with Hf z(t ) =∑

i,s,s′ Acos(ωt )(σ z )ss′c†
iscis′ . Hα=L/R describes the left/right

normal leads (tL,R can be set as real). HT 1 is the tunneling
Hamiltonian between central Majorana nanowires and the
left/right leads. For simplicity, we made some assumptions.
(i) The external harmonic field is only applied on the 1D
Majorana nanowire and does not affect other parts [35,36].
(ii) The frequency of the external field is much lower than �̃

and the adiabatic approximation holds, thus the harmonic field
only changes the single electron energy [37–39]. In fact, even
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if the frequency reaches to 10 GHz, the energy h̄ω is about
40 μeV. This is usually much smaller than �̃ which is around
200 μeV.

To compare the MBS with an ordinary fermionic state, we
consider another simple case where an impurity is hybridized
with the superconductor [Fig. 1(b)]. These kinds of ABSs can
be described by the impurity Hamiltonian [40]

HABS = Hd + Hsc + HT 2 + HL + Hf m(t ), (5)

where

Hd =
∑

s

E0d†
s ds,

Hsc =
∑
k,s

εsc,kb†
ksbks +

∑
k

�̃b†
k↑b†

−k↓ + H.c.,

Hf m(t ) =
∑

s

Acos(wt )d†
s ds,

HT 2 =
∑

ks

tLd†
s akLs + tscd†

s bks + H.c. (6)

Here Hd is the impurity Hamiltonian. Hsc is the grounded
s-wave superconductor Hamiltonian. Hf m and HT 2 is for
the microwave driving field and tunneling part, respectively
(Hf z is also included in the following). The Hamiltonian
HL for the normal left lead are the same as the first case.
Based on the intrinsic superconducting limit and wide-band
limit [36,41], the superconductor reservoir can be integrated

out to introduce a self-energy term �r
sc = −e


sc

2 d†
↑d†

↓ + H.c.

with e

sc = 2πρs|tsc|2 (ρs is the superconducting density of

states) [36,40]. Similarly, the couplings between the Ma-
jorana nanowire and the normal leads can also introduce

a self-energy term 
r
L,i j,lr = −i

e

L

2 δi jδ j1δlr and 
r
R,i j,lr =

−i
e


R

2 δi jδ jNδlr with e

α=L,R = 2πρα|tα|2 (ρα is the density of

states in the normal lead α). Here the first two indices denote
sites and the other two indices denote the Nambu spinor.

B. Projected Hamiltonian and BCS charge

To analytically investigate how the MBSs are affected by
microwave driving field, by the Bogoliubov transformation
ψ†

n = ∑
i,s u(n)

is c†
is + v

(n)
is cis, the Majorana nanowire Hamilto-

nian Hnm in Eq. (3) can be diagonalized as

Hnw =
∑

n

εnψ
†
n ψn, (7)

where u(n)
is , v

(n)
is are the particle and hole components of the

εn eigenstate at the site i with spin s. In view of the fact
that the energy of concerned subgap states and driving field
frequency ω are both much lower than the induced topolog-
ical gap, the mix between subgap states and quasiparticle
continuum could be ignored. Hence, we can just focus on
the projected Hamiltonians of Majorana nanowire and har-
monic field, H p = H p

nm + H p
f m/z, in the space formed by the

lowest-energy subgap state (ψ†
0 , ψ0) with energy ε0:

P =
(

u(0)∗
1↑ u(0)∗

1↓ v
(0)∗
1↑ v

(0)∗
1↓ · · · u(0)∗

N↑ u(0)∗
N↓ v

(0)∗
N↑ v

(0)∗
N↓

v
(0)
1↑ v

(0)
1↓ u(0)

1↑ u(0)
1↓ · · · v

(0)
N↑ v

(0)
N↓ u(0)

N↑ u(0)
N↓

)
,

H p
nw = PHnwP† =

(
ε0 0
0 −ε0

)
,

H p
f m = PHf mP† =

(
QAcos(wt ) 0

0 −QAcos(wt )

)
,

H p
f z = PHf zP

† =
(

ζzA cos(ωt ) 0
0 −ζzA cos(ωt )

)
. (8)

P is the projection operator on the lowest-energy states. Q and
ζz is the BCS charge and BCS spin polarization along the z
direction for the quasiparticle state ψ

†
0 :

Q =
∑
i,s

(∣∣u(0)
is

∣∣2 − ∣∣v(0)
is

∣∣2),
ζz =

∑
i,s

s
(∣∣u(0)

is

∣∣2 − ∣∣v(0)
is

∣∣2). (9)

In the continuum space, Q or ζ could be generalized as Q =∑
s

∫
(|u(0)

s (z)|2 − |v(0)
s (z)|2) dz or ζz = ∑

s s
∫

(|u(0)
s (z)|2 −

|v(0)
s (z)|2) dz. Equation (8) reveals a fact: the external driving

field on the lowest-energy state of Hnm in our case should be
renormalized by a factor, corresponding to the BCS charge
Q (or BCS spin polarization ζz). It’s natural in view of the
quasiparticles interacting with external fields with charge Qe
rather than e as electrons. For further analysis, we also define
its magnitude as

QBCS =
∣∣∣∣∣
∑

i,s

(∣∣u(0)
is

∣∣2 − ∣∣v(0)
is

∣∣2)∣∣∣∣∣ (10)

and BCS spin component magnitude as

QBCS,s =
∣∣∣∣∣
∑

i

(∣∣u(0)
is

∣∣2 − ∣∣v(0)
is

∣∣2)
∣∣∣∣∣ . (11)

QBCS here is parallel to the definition of δN introduced in
Refs. [16,20]. Its value ranges from 0 to 1.

It is easy to find that Q = 0 and ζz = 0 as long as ψ† = ψ ,
which echoes Majoranas’ charge-neutral and spinless proper-
ties. Thus, isolated MBS itself should not be affected by the
driving field. For a sufficiently long 1D Majorana nanowire in
topological region, the lowest-energy states are nonlocal states
formed by two well-separated MBSs at the ends of the wire,
with zero BCS charge. As a result, PAT signals must disappear
in this case. In contrast, the fermionic trivial ABSs are usually
charged, even though their energy crosses zero. PAT signals
for them should be observed.

The deeper meaning of the BCS charge is related to the
Majorana nonlocality [18–20]. This can be proved as follows.
For any zero-energy ABS, regardless of its topological origin,
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can always be decomposed into two MBSs:

γ1 = ψ
†
0 + ψ0, γ2 = i(ψ†

0 − ψ0). (12)

The spatial wave function of MBS can be written as γi =∑
j,s �

(γi )
js c†

js + (�(γi )
js )∗c js, with

�
γ1
js = u(0)

js + (
v

(0)
js

)∗
,

�
γ2
js = i

[
u(0)

js − (
v

(0)
js

)∗]
. (13)

Without lose of generality, u(0)
is and v

(0)
is can be set as real

and BCS charge magnitude in Eq. (10) could be regulated as
overlap between MBSs’ wave functions

QBCS =
∣∣∣∣∣
∑

js

�
γ1
js ∗ �

γ2
js

∣∣∣∣∣ . (14)

Trivial ABSs are composed of two highly overlapping or par-
tially separated MBSs with finite BCS charge. Usually, when
MBSs are spatially separated (e.g., topological MBSs located
at two ends of the nanowire) or spin-separated (e.g., quasi-
MBSs originating from two spin channels [42,43]), BCS
charge in Eq. (14) can approach zero within a large parameter
range. This kind of well-separated MBSs have potential value
in (parametric) non-Abelian braiding [43,44]. We reveal that
BCS charge information of overlapping MBSs can naturally
appear in Eq. (8). This is one of our main findings.

III. CURRENTS AND CONDUCTANCE UNDER
PERIODICALLY DRIVING FIELD

To demonstrate our argument in Sec. II. In this section,
we try to derive the current and conductance in detail for
periodically driven nanowires and impurity by using the
nonequilibrium Green’s function method [37–39,41]. Along
with Floquet-Landauer formalism [45–47], numerical results
are also performed.

A. Derivation of current and conductance

Assuming the bias voltage is only applied on the left lead
with VL = V and the others are connected to the ground. The
current flowing from the normal left lead into the periodically
driven Majorana nanowire via the time derivative of electron
number operator (NL = ∑

k,s a†
kL,sakL,s) is [37,39]

IL (t ) = −e〈ṄL〉 = 2eRe

{ ∑
k,l (l=1,2)

tLG<
1kL,ll (t, t )

}
. (15)

Here the Green’s functions G<, Gr are defined in the four-
component Nambu basis as

G<
i j (t, t ′) ≡ i

"⎛
⎜⎜⎜⎝

c†
j↑(t ′)

c†
j↓(t ′)

c j↑(t ′)
c j↓(t ′)

⎞
⎟⎟⎟⎠ (ci↑(t ), ci↓(t ), c†

i↑(t ), c†
i↓(t ))

#

,

Gr
i j (t, t ′) ≡ −iθ (t − t ′)

"⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

ci↑(t )
ci↓(t )

c†
i↑(t )

c†
i↓(t )

⎞
⎟⎟⎟⎠ ,

×(c†
j↑(t ′), c†

j↓(t ′), c j↑(t ′), c j↓(t ′))
}
#

,

(16)

where i, j represent the index kL, kR in the normal leads, and
site 1, 2, 3, . . . , N in the Majorana nanowire. Using the Dyson
equation [37,39] and wide-band limit [41], the current can be
formulated as (in units of h̄ = 1)

IL(t ) =
2∑

l=1

(
−2e

∫ t

−∞
dt1

∫
dε

2π
e


L
fL(ε)

Im{e−iε(t1−t )Gr
11,ll (t, t1)} − ee


L
Im

{
G<

11,ll (t, t )
})

,

(17)

with the first two subscripts of the Green’s functions de-
noting sites and the second two subscripts denoting the
Nambu spinor. We introduce level-width function matri-
ces (�L )i j,lr = 2πρLt2

Lδi jδ j1δlr ≡ e

L
δi jδ j1δlr and (�R)i j,lr =

2πρRt2
Rδi jδ jNδlr ≡ e


R
δi jδ jNδlr . To relate G< and Gr , using

the Keldysh equation [41]

G<(t, t ′) =
∫

dt1

∫
dt2Gr (t, t1)�<(t1, t2)Ga(t2, t ′). (18)

Lesser self-energy due to the coupling between
the left/right lead and the Majorana nanowire is
�<(t1, t2) = i

∑
α=L,R

∫
dε
2π

e−iε(t1−t2 )fα (ε)�α with fα (ε) =
diag[ fαe(ε), fαe(ε), fαh(ε), fαh(ε)]. fαe(ε) = (e

ε−eVα
kBT + 1)−1,

and fαh(ε) = (e
ε+eVα

kBT + 1)−1 are Fermi-Dirac distributions of
electrons and holes. Substituting Eq. (18) into Eq. (17), we
can get the current

IL (t ) =
2∑

l=1

{
−2e

∫
dε

2π
e


L
fLe (ε) Im [A11,ll (ε, t )] − e(e


L
)2
∫

dε

2π

[
fLe(ε)

2∑
r=1

|A11;lr (ε, t )|2 + fLh (ε)
4∑

r=3

|A11;lr (ε, t )|2
]

−ee

L
e


R
∫

dε

2π

[
fRe (ε)

2∑
r=1

|A1N ;lr (ε, t )|2 + fRh(ε)
4∑

r=3

|A1N ;lr (ε, t )|2
]}

. (19)

Notation A is defined as

A (ε, t ) =
∫

dt1Gr (t, t1) eiε(t−t1 ). (20)
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If the system is time independent, A actually refers to the Fourier transformation of the retarded Green’s function Gr . In the
case of the time-periodic potential, we can refer to a Fourier transformation defined as [38,48]

G (t, t1) =
∑

n

einωt1

∫
dε

2π
e−iε(t−t1 )Gn(ε). (21)

We can also introduce the notation Gmn(ε) = Gn−m(ε + mω) to relate different Gmn components. Then Gmn(ε) = G0,n−m(ε +
mω). Under this transformation, the current in Eq. (19) can be reworded as

IL(t ) =
2∑

l=1

{
−2e

∫
dε

2π
e


L
fLe(ε)Im

[∑
n

einωt Gr
11,ll;−n0 (ε)

]

− e(e

L

)2
∫

dε

2π

[
fLe(ε)

2∑
r=1

∣∣∣∣∣
∑

n

einωt Gr
11,lr;−n0 (ε)

∣∣∣∣∣
2

+ fLh(ε)
4∑

r=3

∣∣∣∣∣
∑

n

einωt Gr
11,lr;−n0 (ε)

∣∣∣∣∣
2]

−ee

L
e


R
∫

dε

2π

[
fRe(ε)

2∑
r=1

∣∣∣∣∣
∑

n

einωt Gr
1N,lr;−n0 (ε)

∣∣∣∣∣
2

+ fRh(ε)
4∑

r=3

∣∣∣∣∣
∑

n

einωt Gr
11,lr;−n0 (ε)

∣∣∣∣∣
2]}

. (22)

We emphasize the last two subscripts in Eq. (22) refer to
Fourier indices. Next, the time-averaged current or dc current
over one period T (T = 2π/ω) can also be written as the
Floquet-Landauer formalism [46,47,49]

〈IL(t )〉

= 1

T

∫ T

0
I (t ) dt

=
∑

n

e

h

∫
dε

{(
T (n)

ReLe (ε) + T (n)
RhLe (ε) + T (n)

LhLe (ε)
)

fLe (ε)

−T (n)
LeLh (ε) fLh(ε) − T (n)

LeRe (ε) fRe (ε) − T (n)
LeRh (ε) fRh(ε)

}
.

(23)

The transmission coefficients are calculated by the retarded
Green’s function

T (n)
αβ,α′β ′ (ε) = Tr

[
�α

βGr,ββ ′
n0 (ε) �α′

β ′Ga,β ′β
0n (ε)

]
. (24)

Here α, α′ denote L, R normal leads and β, β ′ denote the elec-
tron e or hole h part. The resulting time-averaged differential
conductance G(V ) = d〈IL (t )〉

dV in the low-temperature limit is

G (V ) = e2

h

∑
n

[
T (n)

ReLe (V ) + 2T (n)
LhLe(V ) + T (n)

RhLe(V )
]
, (25)

where T (n)
ReLe(V ), T (n)

LhLe(V ), T (n)
RhLe(V ) denote normal transmis-

sion, local Andreev reflection, and crossed Andreev reflection
coefficients for incident electrons from the left lead by ab-
sorbing (emission) |n| photons if n > 0 (n < 0) and outgoing
electron (or hole) to the left or right leads. It can be evalu-
ated that Eqs. (23) and (25). is consistent with the results in
Ref. [21] once returning to static limit (A = 0). Additionally,
the derivation of the current for the periodically driven single
impurity is analogical, except that the R lead is replaced by
the superconductor terminal S.

B. Numerical results for anomalous photon-assisted tunneling

With the help of the Floquet Green’s function and it-
erative method (see Appendix A), we can numerically

calculate the time-averaged conductances. Here we take
the low-temperature limits and set e� = 220 μeV, αR =
0.28 eV Å and effective mass m∗ = 0.02me (me is the mass
of the electron) [10,21]. The lattice constant a = 3.5 nm and
the resulting nearest hopping energy is tN = h̄2/(2m∗a2) ≈
156 meV. The coupling is e


L = e

R = 0.05tN for the 1D Ma-

jorana nanowire. For the single impurity, we set E0 = 0 and
e


sc = e

L = 0.05 in the unit of h̄ω.

In Figs. 1(c) to 1(f), the time-averaged conductances G
are shown as functions of relative field strength AR = A

h̄ω
and

the bias for the microwave-driven MBSs and single impu-
rity. Figures 1(e) and 1(f) are the cutoff of Figs. 1(c) and
1(d). When the driving field is absent (AR = 0), both triv-
ial ABSs and MBSs contribute a ZBCP. As AR climbs, the
height of ZBCP for the single impurity changes dramatically
and PAT sideband peaks emerges obviously at harmonics
V = 0,±1h̄ω,±2h̄ω, . . ., indicating the absorption and emis-
sion of photons [Figs. 1(d) and 1(f)]. But the ZBCP in the
conductance spectroscopy remains the same and no PAT
peaks appears in the case of MBSs, see Figs. 1(c) and 1(e).
This means no interaction between MBSs with Q = 0 and
photons. In the case of applying the harmonic magnetic
field (0, 0, A cos(ωt )), similar results are exhibited, see
Figs. 2(a) to 2(d). PAT sideband peaks disappear for MBSs in
Figs. 2(a) and 2(c), but arise for single impurity in Figs. 2(b)
and 2(d). This supports our argument that ζz for MBS is also
zero.

When the Majorana nanowire length N decreases, two
MBSs located at two opposite ends will overlap and lead to
an energy splitting. In the meantime the lowest-energy states
ψ0 formed by two MBSs will recover finite BCS charge Q
[as Eq. (14) suggests]. In Figs. 3(a) and 3(b), we show the
time-averaged conductances for different nanowire lengths
when AR = 0 and AR = 2. Due to the enhanced hybridization
between two MBSs, the ZBCP splits into two peaks as the
nanowire becomes short. The stronger splitting is accompa-
nied by a greater asymmetry of electron-hole components and
more obvious PAT side peaks. This anomalous PAT signal
is consistent with our preceding analysis. The disappear-
ance of the PAT signal actually reflects that a MBS remains
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FIG. 2. (a)–(d) The time-averaged conductances for the (a,c)
MBSs and (b,d) single impurity driven by the harmonic magnetic
field as functions of AR and bias V . Parameters are the same as
Figs. 1(c) to 1(f).

unperturbed by local electromagnetic noise, which is crucial
to implement a topological qubit.

Besides the cases for MBSs and single impurity shown in
Fig. 1, the real situation may be more complicated since MBSs
and near-zero energy ABSs possibly coexist in the nanowire.
At this time, PAT may still emerge due to the near-zero energy
ABSs, even if MBSs are well separated. MBSs’ information
here is inevitably interfered by ABSs. However, from the
perspective of the application, the coexistence of MBSs and
near-zero energy ABSs may not serve to prepare for topolog-
ical qubits since the probe is hard to be assured to selectively
couple to one single MBS. Although MBSs cannot be well
confirmed in this case, it has little application potential. What
the experiment should pay attention for applications should be
the case where PAT disappears.

FIG. 3. Time-averaged conductances G vs. bias V for different
nanowire lengths N with AR = (a) 0 and (b) 2. All the other param-
eters are the same as Fig. 1(e).

IV. MEASUREMENT OF BCS CHARGE

A. Analytic form of time-averaged conductance

Based on the projected Hamiltonian in Eq. (8), we are able
to analyze how BCS information enters into time-averaged
conductance. Take the microwave-driving field as an example,
the resulting projected self-energy terms of normal leads in the
lowest-energy states space are �r,p = �

r,p
L + �

r,p
R with

�
r,p
α=L,R =

(
−i γα

2 −i ξα

2

∗

−i ξα

2 −i γα

2

)
, (26)

where γα = 
̃αnα , nL = ∑
s(|u(0)

1s |2 + |v(0)
1s |2), nR = ∑

s

(|u(0)
Ns |2 + |v(0)

Ns |2), ξL = 
̃L
∑

s 2u(0)
1s v

(0)
1s , ξR = 
̃R

∑
s 2u(0)

Ns

v
(0)
Ns . We also introduce γLe = ∑

s 
̃L|u(0)
1s |2, γRe =∑

s 
̃R|u(0)
Ns |2, γLh = ∑

s 
̃L|v(0)
1s |2, γRh = ∑

s 
̃R|v(0)
Ns |2. The

linewidth functions are

�α,p = i
(
�r,p

α − �a,p
α

) = �α,p
e + �

α,p
h =

(
γα ξ ∗

α

ξα γα

)
. (27)

Starting from Eqs. (8) and (26), we can use the Dyson
equation introduced in Ref. [38] to obtain the analytic
expressions for differential conductances (see details in
Appendix B). Under the weak coupling strength (
̃α → 0)
and low-temperature limits, the G(V ) at the harmonics V =
ε0 + nh̄ω (ε0 �= 0, n = 0,±1, . . . ) denoted as Gn can analyt-
ically be obtained as

Gn ≈ e2

h

4γLh

γ 2
(γR + 2γLe)J2

n (QAR) , (28)

where γ = γL + γR and Jn(QAR) is the nth-order Bessel
function of argument QAR. Close to V = −ε0 + nh̄ω, the
conductances are the same as Eq. (28) except for exchanging
e and h. Equation (28) clearly suggest that the height of PAT
peaks are relevant to the BCS charge of the subgap bound
state. It indicates that we can extract the BCS charge from
the ratio of peak heights

G1/G0 = J2
1 (QAR)/J2

0 (QAR). (29)

It is worth mentioning that here we use a local conductance
to detect the BCS charge. Compared with nonlocal conduc-
tances, local conductance will give a stronger signal [21].

B. BCS charge extraction from the conductance spectroscopy

We try to numerically explore the time-averaged conduc-
tance as a function of chemical potential μ (see Fig. 4) and
Zeeman field V0 (see Fig. 5) for the microwave-driven Ma-
jorana nanowire. In Fig. 4, without the driving field (AR = 0),
the energy-gap closure occurs at μ = μc ≈ ±550 μeV, which

is roughly the topological transition point μc = ±
√

V 2
0 − e�

2

[8,9]. The ZBCP appears, and the nanowire is in the topo-
logical phase with a pair of MBSs when |μ| < μc. With
the increase of μ from −μc, the ZBCP is almost unaffected
at low μ, but gradually split and the lowest-energy states
ε0 present the characteristics of typical Majorana oscilla-
tion [see Figs. 4(a) and 4(c)] [50]. The enhancement of the
split (i.e., ε0) originates from the increase of the coupling
strength between MBSs when μ raises. After applying the
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FIG. 4. (a)–(d) Time-averaged conductances G of microwave-
driven Majorana nanowire as functions of μ and bias V with AR =
(a, c) 0 and (b, d) 3. (c, d) are the enlarged views of the low energy
part in (a, b). (e) The comparison between extracted G1/G0 (pink
stars) from (d) and J2

1 (QAR )/J2
0 (QAR ) (blue line) with Q obtained

from Hnw diagonalization. (f) The comparison between QBCS from
conductance ratios G1/G0 (pink stars) and “actual” QBCS from di-
rect diagonalization of Hnw (blue line). The parameters N = 400,
V0 = 600 μeV, and h̄ω = 10 μeV.

microwave field (AR = 3), the conductance spectroscopy be-
comes complicated [Fig. 4(b)]. Massive PAT sideband peaks
concentrate on the region beyond the induced topological
gap where electron-like and hole-like quasiparticle states stay.
Near ZBCP, the photonic sideband peaks appear to be more
obvious as μ grows. From the enlarged view only concerning
of the lowest-energy state in Fig. 4(d), these sideband peaks
can be seen clearly, as a result of the coupling of MBSs lead-
ing to a nonzero BCS charge Q. In Fig. 4(e), we can extract
a series of conductance peak ratios G1/G0 of zeroth and first
harmonics from Fig. 4(d), and also show J2

1 (QAR)/J2
0 (QAR)

with Q obtained by numerically diagonalizing the isolated
nanowire Hamiltonian Hnw. There is a strong correlation be-
tween G1/G0 (pink stars) and J2

1 (QAR)/J2
0 (QAR) (blue line).

Furthermore, in Fig. 4(f), we use these extracted conductance
ratios G1/G0 to fit Eq. (29) to obtain QBCS (pink stars). It is
found to be well consistent with the “actual” QBCS (blue line)
from Hnm diagonalization [51]. Comparing Figs. 4(d) and 4(f),
the BCS charge and energy splitting oscillate out of phase due
to Q is equal to dε0

dμ
[21].

Similar results are shown by varying the static Zeeman
field V0 in Fig. 5. With AR = 0, a gap closure and ZBCP
appears at V0 ≈ 300 μeV because of the topological transition
in Fig. 5(a). Then, as V0 grows, a Majorana oscillation can

FIG. 5. (a)–(d) Time-averaged conductances G of microwave-
driven Majorana nanowire as functions of static Zeeman field V0

and bias V at μ = 0 when (a, c) AR = 0 and (b, d) AR = 3. (c) and
(d) are the enlarged views of (a) and (b). (e) The comparison between
G1/G0 (pink stars) extracted from (d) and J2

1 (QAR)/J2
0 (QAR ) (blue

line) where Q is just BCS charge obtained from Hamiltonian Hnw

diagonalization. (f) The comparison between QBCS obtained from
conductances ratios G1/G0 (pink stars) and “actual” QBCS from direct
diagonalizing Hnw . The other parameters are the same as Fig. 4.

be also observed as the Zeeman field also modulates MBSs’
coupling strength [see Figs. 5(a) and 5(c)]. When the mi-
crowave field exists (AR = 3), PAT sideband peaks emerge
clearly in Figs. 5(b) and 5(d). We can repeat the previous
process to compare G1/G0 and extract the BCS charge. The
results still match the expectations [see Figs. 5(e) and 5(f).]
In general, this provides a reliable way to detect BCS charges
by measuring the conductance ratios G1/G0. In principle, if
the driving field is locally applied on the wire, the local BCS
charge information can be also extracted.

V. MEASUREMENT OF BCS SPIN COMPONENTS

Enlightened by the Eq. (8), we consider that the Majorana
nanowire is driven by both the harmonic magnetic field along
the z direction and the microwave field. The external field
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FIG. 6. (a, b) Time-averaged conductance G versus μ and V at
V0 = 600 μeV under the joint external field Hf 1. The initial phases of
the two fields are (a) φ1 = φ2 = 0 and (b) φ1 = 0, φ2 = π . (c) The
comparison between the extracted G1/G0 (pink stars) from (b) and
J2

1 (Q↓AR)/J2
0 (Q↓AR ) (blue line). (d) The QBCS,↓ obtained from the

G1/G0 in (b) (pink stars) and “actual” QBCS,↓ by diagonalizing
Hamiltonian Hnm (blue line). Other parameters are the same as Fig. 4.

Hamiltonian is

Hf 1 = Hf m + Hf z

=
∑

i,s

A

2
cos (ωt + φ1) c†

iscis

+
∑
i,s,s′

A

2
cos (ωt + φ2) c†

is(σ
z )ss′cis′ . (30)

Here we set the amplitude of two fields as equal, which
can be realized even without knowing the g-factor (see Ap-
pendix C). When the two fields have the same initial phase
φ1 = φ2 = 0, the renormalization factor in Eq. (8) is Q↑ =∑

i(|u(0)
i↑ |2 − |v(0)

i↑ |2). But the renormalization factor is Q↓ =∑
i(|u(0)

i↓ |2 − |v(0)
i↓ |2) when two initial phases have π differ-

ence (e.g., φ2 = π , φ1 = 0). So we expect that Q↑ and Q↓, the
BCS spin components along the z direction, can be measured
from conductance ratios under this joint field.

Figure 6 shows time-averaged G as a function of μ under
the joint field with φ1 = φ2 = 0 [Fig. 6(a)] and φ1 = 0, φ2 =
π [Fig. 6(b)], respectively. Here the PAT peaks also exhibit as
expected. Moreover, they are much clearer in Fig. 6(b) than in
Fig. 6(a). The reason is that the BCS charge for overlapping
MBSs has a spin polarization : QBCS,↓ 
 QBCS,↑. This con-
forms to the fact that the Majorana wave function has large
spin ↓ component for a strong magnetic field. From Fig. 6(b),
we directly extract G1/G0 (pink stars) and find it is well
consistent with J2

1 (Q↓AR)/J2
0 (Q↓AR) (blue line) see Fig. 6(c).

Similarly, in Fig. 6(d), QBCS,↓ can be obtained by fitting
Eq. (29) using the extracted G1/G0 (pink stars), and is almost
the same as the “actual” QBCS,↓ (blue line) by diagonalizing

FIG. 7. (a, b) Time-averaged conductance G versus V0 and V at
μ = 0 under the joint external field Hf 2. The initial phases of the
two fields are (a) φ1 = φ2 = 0 and (b) φ1 = 0, φ2 = π . (c) The com-
parison between the extracted G1/G0 [pink stars for (a) and green
circles for (b)] and J2

1 (QAR)/J2
0 (QAR) where Q = ∑

i(|u(0)
i,x↑/x↓|2 −

|v(0)
i,x↑/x↓|2) (both of the spin components are represented by dark

blue lines due to the coincidence). (d) The QBCS obtained from the
G1/G0 [pink stars for (a) and green circles for (b)] and “actual”
QBCS by diagonalizing Hamiltonian Hnm (dark blue line for both spin
components). Other parameters are the same as Fig. 4.

Hamiltonian Hnw (due to errors in the numerical extraction
process, the deviations may occur when QBCS → 0).

The BCS spin component along any direction can be ob-
tained by choosing an appropriate harmonic magnetic field
direction, in principle. For example, when the Majorana
nanowire is driven by both a harmonic magnetic field along
the x direction and the microwave field. The external field
Hamiltonian is

Hf 2 = Hf m + Hf x

=
∑

i,s

A

2
cos (ωt + φ1) c†

iscis

+
∑
i,s,s′

A

2
cos (ωt + φ2) c†

is(σ
x )ss′cis′ . (31)

Similarly, we can extract the BCS spin component Qx↑,x↓
along the x direction by adjusting phases φ1 = φ2 = 0 or
φ1 = 0, φ2 = π , as shown in Figs. 7(a) to 7(d). Different
from Fig. 6, the conductance spectroscopies for φ1 = φ2 = 0
in Fig. 7(a) and φ1 = 0, φ2 = π in Fig. 7(b) are totally the
same, as a result of QBCS,x↑ = QBCS,x↓. This equality origins
from the symmetry of our model. It also means BCS spin
polarization along the x direction ζx = ∑

i,s(uisu∗
is − visv

∗
is) is

zero [52] (s is the opposite direction of spin s). Besides, we
also compare the conductance ratios G1/G0 and QBCS,x↑,x↓
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with J2
1 (QAR)/J2

0 (QAR) and the “actual” QBCS,x↑,x↓ from the
Hnm diagonalization. As shown in Figs. 7(c) and 7(d), the
comparison results are still consistent.

VI. SUMMARY AND DISCUSSION.

In this paper, we show an anomalous PAT for the MBS
where the sideband peaks are correlated with Majorana nonlo-
cality in the periodically driven Majorana nanowire. The PAT
sideband peaks should disappear for well-separated MBSs,
but reappear for overlapping MBSs. We also investigate the
conductance spectroscopy by varying chemical potential and
Zeeman field to study the PAT characteristics for Majorana os-
cillations. In addition, a systematic scheme is further proposed
to measure the BCS information of subgap states.

For the experiment realizations, PAT in the periodically
driven Majorana nanowire is, in principle, attainable, espe-
cially in view that the research for PAT and the periodically
driven system has developed as a mature field and covered
a wide range as stated in the Introduction. For instance, the
interplay between the microwave driving field and supercon-
ductors, which has produced many works in recent years such
as the measurement of the 4π periodic Josephson effect [53]
and PAT into YSR states [54]. One experiment very related to
our setup is a recent work considering two coupled Majorana
nanowires where one of them is applied by microwave field
[55]. They investigate the PAT signals on the charge stability
diagram and give a spectroscopic measurement of interpair
coupling EM between zero modes on two superconducting
islands. Our device is similar to them for one periodically
driven Majorana nanowire coupled to two normal leads and
should be also achievable.

One potential question of our scheme in the experiment
detection may be that thermal broadening could cover the
sideband peaks. Then, the PAT signals in our previous results
may be all invisible. The thermal broadening from the finite-
temperature effect ignored in our calculation can be calculated
as a convolution with the derivative of the Fermi distribution.
It will affect the line shape of conductance peaks in the same
way, thus does not affect the conductances peaks’ ratios [21].
In the experiment, the temperature T is usually tens of mK
corresponding to several μeV for thermal broadening kBT
(kB is the Boltzmann constant). This is much lower than the
superconducting gap, which is a few hundreds of μeV [10].
Therefore, by adjusting the experiment’s parameters appropri-
ately, the case satisfying (
, kBT ) (peaks broadening, several
μeV) � h̄ω (photon energy, ∼10 μeV) � e� (superconduct-
ing gap, several 100 μeV) is possible, in principle, to be
realized to make the sideband peaks distinct.

Although Majorana fermions are proved to exhibit an
anomalous PAT in our work, it still remains a question
whether this can be used to identify the emergence of
topological MBSs in the experiment, especially considering
the various complex situations in the present experiments.
This is, of course, not the main goal of our work. Here we
could conclude some remarks. Overall, anomalous PAT side-
band peaks have a connection with the Majorana nonlocality
or BCS charge of subgap states. According to Ref. [56], the
origin of ZBCP can be divided into three scenarios: good,
bad, and ugly. Only subgap states for the good ZBCP case

corresponds to a pair of topological MBSs (i.e., two MBSs
located at two ends of the nanowire). For the bad or ugly cases,
the near-zero energy ABSs are composed of two partially or
highly overlapped MBSs. Therefore, from their differences
on Majorana nonlocality, PAT sideband peaks or BCS charge
should exhibit distinguishable characteristics for good and
bad/ugly cases within a range of parameters, in principle.
But some special cases, such as partially separated ABSs
composed of two MBSs separated by a distance of order
of Majorana decay length [57,58] or quasi-Majoranas with
two opposite spin polarizations [43], may still need more
detailed information. Additionally, the BCS spin information,
which can be extracted in our scheme, is also helpful. For
example, when quasi-MBSs and overlapping MBSs have a
finite BCS charge, given their difference on spin polariza-
tions, it is expected to extract BCS spin information and
find QBCS,↓ 
 QBCS,↑ for topological MBSs (see Fig. 6) and
QBCS,↓ ≈ QBCS,↑ for quasi-MBSs. In short, our scheme is at
least able to provide some prejudgments for the existence of
topological MBSs or for topological qubit implementation,
in view of the close link between BCS charge and Majorana
nonlocality.
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APPENDIX A: FLOQUET GREEN’S FUNCTIONS
IN FLOQUET EXTENDED SPACE

In this Appendix, we briefly introduce how to compute
those Floquet Green’s functions in Sec. III. For a more ex-
pansive and detailed description, see Refs. [35,36,45]. We
first write the time-dependent Shrödinger equation (in units
of h̄ = 1)

i∂tψ j (t ) = H (t ) ψ j (t ) , (A1)

where H (t + T ) = H (t ) under the periodically driving field.
The wave function ψ j (t ) can be decomposed into ψ j (t ) =∑

m e−iε j t+imωt
eψ

m
j in the Floquet extended space. Substituting

this expression into Eq. (A1) and multiplying on the left by
1
T

∫ T
0 dte−inωt , we can get

HF
eψ j = ε jeψ j, (A2)

where eψ j is a vector in the Floquet extended space, HF is the
Floquet Hamiltonian, and its components can be defined as

HF
nm = 1

T

∫ T

0
dte−inωt (H (t ) − i∂t ) eimωt

= 1

T

∫ T

0
dtei(m−n)ωt H (t ) + mωδnm. (A3)

Thus the time-dependent Hamiltonian in Eq. (A1) will be just
changed into the time-independent Hamiltonian in Eq. (A2),
by considering the m and n index as the Floquet basis. Simi-
larly, we can give the retarded Floquet Green’s function with
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the help of the Dyson equation in the Floquet extended space

Gr,−1(E ) = E ∗ I − HF −
∑

α=L,R


r
α, (A4)

where I is the identity matrix. The Floquet Hamiltonian for
our system is

HF =

⎛
⎜⎜⎜⎝

· · · H1 0 0 · · ·
· · · H0 − ωI4N×4N H1 0 · · ·
· · · H−1 H0 H1 · · ·
· · · 0 H−1 H0 + ωI4N×4N · · ·
· · · 0 0 H−1 · · ·

⎞
⎟⎟⎟⎠ ,

(A5)

where N is the number of lattice sites for the nanowire. H0

is just the nanowire Hamiltonian Hnm. The off-diagonal ele-
ments H1,−1 is related to the periodically driving field: H1 =
(H−1)† = A

2 τ zI2N×2N for the microwave field and A
2 σ zτ zIN×N

for the harmonic magnetic field along the z direction. The 
r
α

is the self-energy from normal leads α and is related to the
linewidth function matrix

�L,R = i
(
�r

L,R − �a
L,R

)
4NM×4NM

=
((

�L,R
e

)
2NM×2NM

0
0

(
�L,R

h

)
2NM×2NM

)
, (A6)

with M is the Floquet space dimension, which is infinite
in principle. 
r = (
a)†. (�L

e,h)i j,lr;mn = e

L
δi jδi1δlrδmn and

(�R
e,h)i j,lr;mn = e


R
δi jδiNδlrδmn, where l, r only take the value

of 1,2 for the electron part and 3,4 for the hole part. To con-
duct numerical calculations in our main text, we truncate the
Floquet space dimension into [−7, 7] (M = 15). In addition,
with the help of recursive Green’s function equations

G(i+1),r
i+1,i+1(E ) = [

g(0),−1
i+1,i+1(E ) − Vi+1,iG

(i),r
i,i (E )Vi,i+1

]−1
,

G(i+1),r
1,i+1 (E ) = G(i),r

1,i (E )Vi,i+1G(i+1),r
i+1,i+1(E ), (A7)

where Gr is the dressed Green’s function involving the cou-
plings between the sites, g(0) is the isolated Green’s function
for one site, Vi, j is the hopping energy between site i and site
j, we can obtain the Gr

n,n and G,r
1,n for any n starting from

G(1),r
1,1 = g(0)

1,1. We also denote all these terms on the sites are
put in the Floquet

⊗
BdG space.

APPENDIX B: DERIVATIONS OF ANALYTIC FORM
FOR THE TIME-AVERAGED CONDUCTANCES

In this Appendix, we try to analyze the Floquet Green’s
functions in the projected space (ψ†

0 , ψ0). Using the Dyson
equation, we can express the retarded Green’s function Gr,p in
the projected space as [38]

Gr,p
11;mn = gr,p

11;mn +
∑
n1,n2

Gr,p
11;mn1

(



r,p
11;n1n1

δn1,n2 + 

r,p
12;n1n1

D22;n1n2

r,p
21;n2n2

)
gr,p

11;n2n,

Gr,p
22;mn = gr,p

22;mn +
∑
n1,n2

Gr,p
22;mn1

(



r,p
22;n1n1

δn1,n2 + 

r,p
21;n1n1

D11;n1n2

r,p
12;n2n2

)
gr,p

22;n2n,

Gr,p
12;mn =

∑
n1

Gr,p
11;mn1


r
12;n1n1

D22;n1n,

Gr,p
21;mn =

∑
n1

Gr,p
22;mn1



r,p
21;n1n1

D11;n1n, (B1)

where 

r,p
mn = 
r,pδnm due to the time independence and 
r,p corresponds exactly to Eq. (26). Here the first two indices denote

the Nambu spinor in the projected space (ψ†
0 , ψ0) and the other two indices denote Fourier indices or Floquet indices. Based on

Eq. (8), the bare Green’s function gr,p
mn without coupling to normal leads is derived as (in units of h̄ = 1)

gr,p
mn =

(∑
k

Jk+m (QAR )Jk+n(QAR )
ε−ε0−kω+i0+ 0

0
∑

k
Jk−m (QAR )Jk−n(QAR )

ε+ε0+kω+i0+

)
. (B2)

Here AR = A/ω. In addition, Dii;mn (i = 1, 2) in Eq. (B1) can be calculated using the recursive method

Dii;mn = gr,p
ii;mn +

∑
m1

gr,p
ii;mm1



r,p
ii;m1m1

gr,p
ii;m1n + · · · . (B3)

In the approximation of ω 
 γ = γL + γR (γL,R is defined in Sec. IV), we can take the approximation [38]

∑
n,m

fnm

(ε + ε0 + nω + i0+) (ε + ε0 + mω + i0+)
≈

∑
n

fnn

(ε + ε0 + nω + i0+)2 (B4)

165148-10



ANOMALOUS PHOTON-ASSISTED TUNNELING IN … PHYSICAL REVIEW B 105, 165148 (2022)

for any function fnm. Thus, the projected retarded Green’s functions of Eq. (B1) can be summarized as

Gr,p
11;mn =

∑
k

Jm+k (QAR) Jn+k (QAR)

ε − ε0 − kω + i γ

2 + ∑
l

J2
k+l (2QAR )|ξ |2/4
ε+ε0+lω+i γ

2

,

Gr,p
22;mn =

∑
k

Jk−m (QAR) Jk−n (QAR)

ε + ε0 + kω + i γ

2 + ∑
l

J2
k+l (2QAR )|ξ |2/4
ε−ε0−lω+i γ

2

,

Gr,p
12;mn =

∑
ks

Jm+k (QAR) Js−n (QAR) Jk+s (2QAR)(
ε − ε0 − kω + i γ

2 + ∑
l

J2
k+l (2QAR )|ξ |2/4
ε+ε0+lω+i γ

2

) (
ε + ε0 + sω + i γ

2

) (−iξ ∗/2) ,

Gr,p
21;mn =

∑
ks

Jk−m (QAR) Js+n (QAR) Jk+s (2QAR)(
ε + ε0 + kω + i γ

2 + ∑
l

J2
k+l (2QAR )|ξ |2/4
ε−ε0−lω+i γ

2

) (
ε − ε0 − sω + i γ

2

) (−iξ/2) . (B5)

Here ξ = ξL + ξR where ξL,R is defined in Sec. IV. Now we
focus on the region close to harmonics, namely near ε =
±ε0 + nω (ε0 > 0, n = · · · − 1, 0, 1, 2 · · · ). For convenience,
we denote the time-averaged conductances at these resonant
levels as Gn. Despite the lattice indices no longer existing
due to projection operation on the lowest-energy states, we
can still substitute Green’s functions in Eq. (B5) along with
linewidth functions in Eq. (27) into Eqs. (24) and (25) to
obtain transmission coefficients and the resulting conductance
(all of these quantities are regarded as matrices in the pro-
jected space with Floquet indices). Considering the weak
coupling limit (γL + γR � ω), the time-averaged differential
conductance is simplified into

G(V ) ≈ e2

h

∑
k

[
(γR + 2γLe) γLh

J2
k (QAR)

(V − ε0 − kω)2 + 1
4γ 2

+ (γR + 2γLh) γLe
J2

k (QAR)

(V + ε0 + kω)2 + 1
4γ 2

]
. (B6)

When two MBSs are well separated, γLh = γLe = 1
2γL, ε0 →

0. Also at V = nω,

Gn ≈ 4e2

h

γL

γ
J2

n (QAR) . (B7)

If no driving field exists AR = 0, then n = 0, we recover the
result of quantized ZBCP 2e2

h once γL = γR. When two MBSs
are coupled, namely, ε0 > 0, we can obtain the time-averaged
conductance at V = ε0 + nω is

Gn ≈ e2

h

4γLh

γ 2
(γR + 2γLe) J2

n (QAR) . (B8)

Similarly we find that at V = −ε0 + nω, the time-averaged
conductance is

Gn ≈ e2

h

4γLe

γ 2
(γR + 2γLh) J2

n (QAR) . (B9)

Here we could find the time-averaged differential conductance
peaks at harmonics are directly proportional to J2

n (QAR).

APPENDIX C: DETERMINATION OF THE POSITION
THAT TWO FIELDS MEET FOR MBS

In experiment, the g-factor of the hybrid nanowires may be
modified and sometimes difficult to be determined. Aimed to
MBSs, due to their wave-functions’ spin polarization prop-
erties, we can still find a way to approximately locate the
position that two fields are equal, even if without knowing the
g-factor. By this we can move forward to obtain the g-factor
and then the BCS spin components.

In Fig. 8 we focus on a pair of MBSs with finite coupling
in a short nanowire, driven by the joint field

Hf = Hf m + Hf z

=
∑
i,ss′

(A

2
(σ 0)ss′ + Vz

2
(σ z )ss′

)
cos(ωt )c†

iscis′ . (C1)

The amplitude of the Zeeman field is set as Vz = 2h̄ω. We in-
crease the amplitude of microwave field A from zero. Figure 8
shows the time-averaged conductance spectroscopy for cou-
pled MBSs. There are two high main peaks at V = ±ε0 due to
the coupling of two MBSs. The PAT sideband peaks emerge at
harmonics V = ±ε0 ± h̄ω. With the increase of A from zero,

FIG. 8. The time-averaged conductance spectroscopy for weakly
coupled MBSs under the joint field versus bias V and relative mi-
crowave intensity AR = A/h̄ω. Here h̄ω = 20 μeV, V0 = 600 μeV,
and μ = 0. The other parameters are the same as Fig. 4.
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the PAT sideband peaks show obviously a minimum region.
The minimum value of the PAT sideband peaks locate about
at A = Vz. So from the PAT conductance spectroscopy, we can
ascertain the position of A = Vz = 1

2 gμBB and further obtain
the g-factor. The reasons are as follows: the joint driving
field Hf projected to the lowest-energy states space (ψ†

0 , ψ0)
will be

H p
f = H p

f m + H p
f z

=
[

A(Q↑ + Q↓)

2
+ Vz(Q↑ − Q↓)

2

]
cos(ωt )

=
[

(A + Vz )Q↑
2

+ (A − Vz )Q↓
2

]
cos(ωt ). (C2)

Here H p
f is the effective driving field for the lowest sub-

gap states. In addition, [ (A+Vz )Q↑
2h̄ω

+ (A−Vz )Q↓
2h̄ω

] will also be

the argument of the Bessel function, as Eq. (28) in the
main text indicates. For MBSs, |Q↑| is rather tinier than
|Q↓|. As a result, the effective driving field approximately is
(A−Vz )Q↓

2 cos(ωt ). In Fig. 8, when the microwave field strength
A is zero, BCS spin components −VzQ↓ contribute to the
external driving field. When A < Vz, as A grows, |(A − Vz )Q↓|
decreases, and the height of PAT sideband peaks also decline.
At A = Vz, (A − Vz )Q↓ = 0, leading to a very weak PAT side-
band peak. Once A goes across Vz, |(A − Vz )Q↓| increases
from 0 once more and PAT sideband peaks could go up again.
So PAT sideband peaks will reach around a minimum when
A = Vz for MBSs. In summary, in the topological MBSs sys-
tem, by scanning the intensity of the microwave field to find
the position for the PAT sideband peaks’ minimum, we can
approximately determine the point where two fields meet and
further extract both of the BCS spin components. Moreover,
this method could also help to estimate the g-factor.
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