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Abelian origin of ν = 2/3 and 2 + 2/3 fractional quantum Hall effect

Liangdong Hu 1,2,3,4 and W. Zhu2,3,4

1Zhejiang University, Hangzhou 310027, China
2School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China

3Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
4Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University,

18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China

(Received 13 December 2021; revised 10 April 2022; accepted 11 April 2022; published 22 April 2022)

We investigate the ground-state properties of the fractional quantum Hall effect at the filling factor ν = 2/3
and 2 + 2/3, with a special focus on their typical edge physics. Via a topological characterization scheme in the
framework of the density matrix renormalization group, the nature of the ν = 2/3 and 2 + 2/3 states is identified
as an Abelian hole-type Laughlin state, as evidenced by the fingerprint of entanglement spectra, central charge,
and topological spin. Crucially, by constructing an interface between the 2/3 (2 + 2/3) state and different integer
quantum Hall states, we study the structures of the interfaces from many aspects, including charge density and
dipole moment. In particular, we demonstrate the edge reconstruction by visualizing edge channels comprised
of two groups: the outermost 1/3 channel and the inner composite channel made of a charged mode and neutral
modes.
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I. INTRODUCTION

The fractional quantum Hall (FQH) [1,2] effect is a typ-
ical example of a topologically ordered state [3], and it has
attracted a lot of attention since its discovery. The FQH
state exhibits novel features of topological order, including
fractional charge excitation [2], anyonic statistics, and the
topologically protected edge property [4]. In particular, the
study of edge physics is in the central stage of the FQH effect.
First, due to the well-established bulk-edge correspondence,
the knowledge of edge physics, which is more accessible in
transport experiments, could provide insight into the topol-
ogy in the bulk. In this context, the robustness of transport
properties such as the quantization of electrical and thermal
conductance can be intuitively understood by the formation
of edge states. Second, beyond the description of topological
order in the bulk, the interplay between strong interactions and
confining potentials may “reshape” the FQH edge states, lead-
ing to the phenomenon of edge reconstruction [5–8], which
introduces complications into edge physics. This has also
motivated recent experimental efforts to detect the emergent
neutral modes [9–13]. To sum up, edge physics, in the pres-
ence of tunneling and disorder, is an enduring theme in the
study of the FQH effect.

In this paper, we will consider the FQH state at a filling fac-
tor of ν = 2/3 in the lowest Landau level. The spin-polarized
ν = 2/3 FQH state is usually regarded as a particle-hole-
conjugated Laughlin ν = 1/3 state or, equivalently, a hole 1/3
state embedded in the integer quantum Hall ν = 1 background
[14]. This is the simplest example with counterpropagating
edge modes, thus the nature of the 2/3 state has been widely
studied both theoretically and experimentally [14–35]. In

particular, the upstream neutral edge mode has recently been
identified in experiments [9–13], together with a more del-
icate indication of edge reconstruction [36–39]. One of our
motivations is to provide clear evidence of possible edge re-
construction of the 2/3 state and to uncover its connection
with the experimental observations [9,10].

Additionally, we will also consider the FQH state at the
filling factor ν = 2/3 in the second Landau level (referred to
as the 2 + 2/3 or 8/3 state). Apart from the bulk property
of the 2 + 2/3 state, edge physics and the associated edge
reconstruction have never been discussed before. Moreover,
due to the possibility of non-Abelian states in the second
Landau level, the 2 + 2/3 state may potentially realize non-
Abelian-type topological order, such as the Z4 parafermion
FQH state [40,41], the Fibonacci ŝu(3)2 state [42], and the
Bonderson-Slingerland state [43]. To the best of our knowl-
edge, the precise nature of edge physics of the 2 + 2/3 state
and the trace of non-Abelian predictions have not been studied
systematically before [18,19], which is another motivation of
this work.

In this paper, we present a microscopic study of the
ν = 2/3 and 2 + 2/3 states based on the cylinder geometry
from the viewpoints of bulk and edge properties. First of
all, through a topological characterization scheme for bulk
properties, we identify that both 2/3 and 2 + 2/3 states are
topologically equivalent to a hole-type Laughlin state with
Abelian statistics, based on the numerical evidence from
the entanglement spectra and momentum polarization. Apart
from the topological characters in the bulk, we are able to
study the topological order by investigating the interface be-
tween 2/3 (2 + 2/3) and different integer quantum Hall (IQH)
states, and these manmade interfaces provide a method to
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study a variety of edge as well as interface physics. In partic-
ular, we find strong signals for edge reconstruction on the ν =
0|ν = 2/3 and ν = 2|ν = 2 + 2/3 interfaces, and we identify
that the outer and inner edges are located at density changes
of 0 → 1/3 and 1/3 → 2/3, respectively. These results not
only test predictions of the effective-field theory, but they also
provide further insight into the physics of edge reconstruction.

Moreover, we contribute two different methods to obtain
the topological shift quantum number [44], which provides
ambiguous information for the ν = 2/3, 2 + 2/3 states. One
method is through momentum polarization from entanglement
spectra [45,46], which is based on a uniform bulk state. The
other method is via electric dipole momenta living on the FQH
edge or interface [47]. In particular, both of these methods
give the same topological shift, where S = 0 for the ν = 2/3
state and S = 2 for the ν = 8/3 state. In Appendix B, the
theoretical topological shift of a fully polarized Abelian ν =
2/3 state in a higher Landau level [i.e., ν = n + 2/3 (n =
0, 1, 2, . . . )] is S = 2n. This provides additional evidence of
the Abelian nature of these two states.

The rest of the paper is organized as follows. In Sec. II
we will illustrate the details of implementing DMRG in a
FQH system and the construction of an interface in DMRG.
We will summarize the quantum numbers that determine the
topological order in the bulk, on the edge of FQH states. As
a result, in Sec. III we will show the topological characters
of ν = 1/3, 2/3, 8/3 states. Finally, in Secs. IV and V we
will study the edge and interface physics between FQH (ν =
1/3, 2/3, 8/3) and IQH states (ν = 0, 1, 2, 3).

II. MODEL AND METHOD

A. Model

Throughout this paper, we consider interacting electrons
living on the cylinder geometry in the presence of a uniform
perpendicular magnetic field. The cylinder has area S = LxLy,
where y runs along the periodic direction with circumference
Ly = L, and x runs along the open direction with length Lx.
In the Landau gauge A = (0,−Bx) and magnetic field B =
−ezB (or Bz = −B, where e is the unit vector), the single-
particle orbit in the nth-Landau level (nth-LL) is

ψn, j (r) = ei
Xj
�2 y− (x−Xj )2

2�2√
2nn!

√
π�Ly

Hn

(x − Xj

�

)
, (1)

where Hn(x) is the nth-order Hermite polynomial, � =√
h̄/|eB| is the magnetic length, and Xj = k j�

2 is the center of
a single-particle orbit. There are Nφ-fold-degenerate orbitals
in a single Landau level 2π�2Nφ = LxLy, which are distin-
guished by the momentum quantum number k j = 2π j

Ly
( j =

0, 1, . . . , Nφ − 1). When a single LL is partially occupied
with a fractional filling factor ν = Ne/Nφ = p/q (p and q
are integers and coprime to each other), one can consider
the electron-electron interaction by projecting onto the N th
Landau level (LL):

ĤI =
Nφ∑

j1, j2, j3, j4

AN
j1, j2, j3, j4 ĉ†

j1
ĉ†

j2
ĉ j3 ĉ j4 . (2)

In this paper, we adopt two types of interactions, namely
the Haldane pseudopotential and the modified Coulomb inter-
action V (r) = e2

εr e−r2/ξ 2
with a regulated length ξ = 4� [48].

More details about the derivation of AN
j1, j2, j3, j4 can be found in

Appendix A. We only show the result here,

AN
j1, j2, j3, j4 = 1

2Ly

∫ ∞
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dqx

∑
qy

V (q)

[
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2
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)]2
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δ j1+ j2, j3+ j4 , (3)

where LN (z) is the N th-order Laguerre polynomial and q2 =
q2

x + q2
y . V (q) is the Fourier transformation of the electron-

electron interaction:

V (q) =
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(4)

The first line describes the Haldane pseudopotential [49]. The
second line is the result of modified Coulomb interaction, and
I0(z) is the first kind of modified Bessel function. The factor
δ j1+ j2, j3+ j4 in Eq. (3) indicates momentum conservation j1 +
j2 = j3 + j4.

B. Operator ordering and fermionic phase

For the convenience of calculation in DMRG, we should
rearrange the operator ordering in Eq. (2) and transform the
fermionic operators into hard-core bosonic operators. In the
sweep process of DMRG, we need to calculate the left (right)
environment Hamiltonian from left (right) to right (left), thus
the ordering of the operator string of some local operators
must be ascending from left to right, i.e., the operator acts
on the left site to the left of the string. For example, ĉ†

1ĉ6ĉ4ĉ†
9

is invalid but −ĉ†
1ĉ4ĉ6ĉ†

9 is valid. By imposing the ascending
ordering on Eq. (2),

ĤI =
∑

j1< j2, j3< j4

AN
j1, j2, j3, j4 ĉ†

j1
ĉ†

j2
ĉ j3 ĉ j4

=
∑

j1< j3< j4< j2

AN
j1, j2, j3, j4 ĉ†

j1
ĉ j3 ĉ j4 ĉ†

j2

(
�◦

j1
•
j3

�•
j4

◦
j2

)

+
∑

j3< j1< j2< j4

AN
j1, j2, j3, j4 ĉ j3 ĉ†

j1
ĉ†

j2
ĉ j4

(
�•

j3
◦
j1

�◦
j2

•
j4

)

−
∑

j1= j3< j2= j4

AN
j1, j2, j1, j2 n̂ j1 n̂ j2 , (5)

where AN
j1, j2, j3, j4 = (2AN

j1, j2, j3, j4 − 2AN
j2, j1, j3, j4 ).

Finally, we use the Jordan-Wigner transformation to trans-
form a fermion into a hard-core boson,

HI = −
∑

j1< j3< j4< j2

AN
j1, j2, j3, j4 a†

j1
Fj1, j4 â j3 â j4 F̂j4, j2 â†

j2

−
∑

j3< j1< j2< j4

AN
j1, j2, j3, j4 â j3 F̂j3, j1 â†

j1
â†

j2
F̂j2, j4 â j4

−
∑

j1= j3< j2= j4

AN
j1, j2, j1, j2 n̂ j1 n̂ j2 , (6)
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FIG. 1. The main steps of calculating the Laughlin ν = 1/3 state using iDMRG: First line: starting from a unit cell with 2q = 6 orbits and
optimizing the energy of MPS. Second and third lines: then we enlarge the MPS by inserting a new unit cell, and we optimize the energy of
this new unit cell; here we have used the initial guess. Fourth and fifth lines: by repeating the enlargement and optimization step, we can reach
the thermodynamic limit and derive a translationally invariant unit cell.

where F̂i, j = 

j−1
s=i+1F̂s = (−1)

∑ j−1
s=i+1 n̂s is the Jordan-Wigner

string operator (fermionic phase operator), and â† (â) is the
hard-core bosonic operator. All operators in Eq. (6) are local,
and all operator strings are in ascending ordering from left
to right. Conclusively, Eq. (6) is a DMRG-friendly form of
many-body Hamiltonian Eq. (2).

C. Conserved quantities

Generally speaking, the invariance of a Hamiltonian un-
der symmetry transformation gives us conserved quantum
numbers. First we need to find all symmetry groups whose
Hamiltonian is invariant under the symmetric operations.
Since the generators of different groups may not commute
with each other, we can only use the symmetry group whose
generators commute with each other. These generators and the
Hamiltonian can be diagonalized simultaneously. The eigen-
values of these generators are good quantum numbers of the
Hamiltonian.

First, under a global gauge transformation of Landau level
ψN, j → eiθψN, j , which is the U(1) group, the Hamiltonian
is invariant under this global gauge transformation. The con-
verse quantity corresponding to this symmetry is the particle
number [N̂e, Ĥ ] = 0, where

N̂e =
Nφ∑
j=1

n̂ j =
Nφ∑
j=1

ĉ†
j ĉ j . (7)

Second, we consider the translation operator T̂ (a) [50],

T̂ (a) =
Ne∏

i=1

T̂i(a) =
Ne∏

i=1

exp
( i

h̄
a · K̂ i

)
, (8)

where K̂ i = �̂i − |e|B × r̂i (r̂i is the coordinate operator of
the ith single particle) is called guiding center momentum,
and �̂i = p̂i + |e|A is canonical momentum. K̂i,y = p̂i,y and
K̂i,x = p̂i,x − h̄

�2 ŷi, where the second subscript denotes the
component of the vector. One can prove that [T̂ (a), Ĥ ] = 0
[50,51]. Crucially, the translation operators along different
directions do not commute with each other, as can be seen
from the following relation:

[K̂i,x, K̂ j,y] = ih̄|e|Bzδi j = −i
h̄2

�2
δi j . (9)

Since our setup of the cylinder is periodic along the
y-direction, we have T̂ (aey)ψN, j (x, y) = ψN, j (x, y + a) =
ei 2π j

Ly
a
ψN, j (x, y), which leads to the second conserved operator

K̂y = ∑Ne
i=1 K̂i,y:

K̂y| j1 · · · jNe〉 = 2π h̄

Ly

Ne∑
i=1

ji| j1 · · · jNe〉. (10)
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FIG. 2. The construction of the interface: Top: the schematic
diagram of constructing the “hardwall edge,” where we just drop the
left boundary. Middle and bottom: the construction of the interface
between two different QH states. We first cut each of the two infinite
cylinders into two halves, and we glue the left half of the ν1 state
and the right half of the ν2 state together. The blue plane denotes the
interface.

Thus, the conserved quantity is

〈K̂y〉 = 2π h̄

Ly

Ne∑
i=1

ji. (11)

There is another definition of momentum,

〈 Ly

2π h̄
K̂y

〉
=

Ne∑
i=1

ji, (12)

which is convenient in the DMRG routine. These two defini-
tions only differ by a constant. Unless otherwise specified, we
choose the second definition in this paper.

Finally, we consider how the operator T̂ (aex ) affects
the momentum K̂y. The special translation distances Xm =
2π�2

Ly
m(m ∈ Z) along the x-direction, which translate one sin-

gle orbital to another, are important in the DMRG algorithm,
and these operators T̂m = T̂ (−Xmex ) act on a single orbit,

T̂mψN, j (x, y) = ψN, j (x − Xm, y) = ψN, j+m(x, y). (13)

The momentum of this single orbit changes from j to j + m,
which can also be seen by considering

T̂ †
m K̂yT̂m = K̂y + 2π h̄

Ly
mN̂e. (14)

Equation (14) is an important relation in some situations of
the DMRG algorithm.

D. DMRG algorithm

Due to the complexity of FQH systems, the exact diag-
onalization (ED) research is too difficult to extend to large
system sizes. In this work, to reach large sizes and discuss
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FIG. 3. The topological order of the Laughlin 1/3 state for
Coulomb interaction: (a) The entanglement entropy of the Laughlin
1/3 state in different Ly. The upper panel is the scaling behavior
of entanglement entropy SE ≈ 0.157Ly − γ . The lower panel is the
topological entanglement entropy γ where the blue horizontal line is
−γ = − ln

√
3. (b) The momentum polarization of the Laughlin 1/3

state in different Ly. The obtained topological characters are guiding
center spin s ≈ −1, topological spin h ≈ 1

3 , and central charge c ≈ 1.

the edge and interface physics, we will rely on the density-
matrix renormalization group (DMRG) method. The DMRG
algorithm [52,53] is a powerful technique for studying one-
dimensional (1D) systems. For the short-range correlation
length of a gapped ground state, one can truncate the Hilbert
space to small dimension with high accuracy. In this section,
we will illustrate the implementation of the DMRG algorithm
in a FQH system [45,48,54,55]. All algorithms in this paper
are implemented based on the ITensor library 3(C++ version)
[56].

1. Finite DMRG

Finite DMRG (fDMRG) is a variational method to find
the ground state of a system on a given finite size. First we
give an initial state in the form of a matrix product state
(MPS); the goal is to find the ground state of Eq. (6). Due to
the incompressible natural of the FQH state, the correlation
and entanglement are finite for the ground state. Thus, we
can truncate the MPS by diagonalizing the reduced density
matrix (or singular value decomposition for the MPS, i.e.,
SVD) and keep the largest D eigenstates and eigenvalues (or
singular values, the square root of eigenvalues), where D is
called the bond dimension of the MPS, and the summation
of all discarded eigenvalues is called the truncation error ε.
In the limit D → ∞, the truncation error becomes zero and
the MPS representations become exact. We will discuss the
convergence of fDMRG in Sec. II D 2.

Since the Hamiltonian Eq. (6) commutes with T̂ (aey), the
momentum of the initial state is invariant in fDMRG, so we
can only reach a ground state with the same momentum as
the initial state. This provides a way to select or control the
ground state by starting from an initial state with specific mo-
mentum. For instance, for the Laughlin ν = 1/3 state, the root
configuration is |010010010 · · · 〉, and the model ground state
is a superposition of |010010010 · · · 〉 and its “squeeze” se-
quences (such as |001100010 · · · 〉, |001010100 · · · 〉 · · · ) [57].
Note that the third line of Eq. (5) actually describes a typical
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FIG. 4. The ES of the ν = 1/3, 2/3 state for Coulomb interaction:
The entanglement spectra of (a) Laughlin 1/3 state and (b) 2/3 state.
The circumference is Ly = 20�. Both show the typical U(1) counting
1, 1, 2, 3, 5, . . . , but their chirality is opposite.

“squeeze,” and therefore we have the possibility to reach the
ground state in fDMRG.

In this paragraph, we illustrate the basic concept of “root
configuration.” The “root configuration” is related to the
generalized Pauli exclusion principle. For example, the gen-
eralized Pauli exclusion principle of the Laughlin ν = 1/3
state is that there is no more than one particle in three con-
secutive orbits; the representation in the second quantization
language |010010 · · · 〉 is called the “root configuration.” One
may ask, why not |100100 · · · 〉 or |001001 · · · 〉? The answer
is that these two states are also the Laughlin ν = 1/3 state, but
they carry a pair of quasiparticle and quasihole excitation at
both ends of the cylinder (see Appendix C). As we explained
above, the “squeezing” operators preserve the momentum
quantum number, and we can use the “root configuration” to
represent the ground state in this momentum space.

2. Improvement of DMRG

In this subsection, we will discuss some techniques of
DMRG in solving the ground state of Eq. (6). These tricks
are important for DMRG in FQH systems, or DMRG in
momentum space. To proceed, let us briefly explain why
we highlight these techniques. Let us consider the simplest
Hamiltonian with only a nearest-neighbor interaction (e.g.,
Ŝi · Ŝi+1, ĉ†

i ĉi+1); the two-site DMRG can find an optimal
state even if the initial state is a product state. The two-site
DMRG can only “see” the nearest-neighbor interaction, i.e., it
can only find the local optimal wave function in the two-site
Hilbert space, for example H2 = span(|00〉, |10〉, |01〉, |11〉).
Once we give a product state like |010010 · · · 〉, the mo-
mentum conservation prohibits the nearest-neighbor hopping,
hence the initial state |010010 · · · 〉 never changes, and the
DMRG algorithm will fall into a local solution forever.

Because of this limitation, we list some methods
here to overcome this drawback of the two-site
DMRG:

n-site DMRG. Since the momentum conservation prohibits
nearest-neighbor hopping and the simplest “squeeze” step
(|1001〉 → |0110)〉) requires at least 4-site optimization. The
most straightforward way is to use n-site optimization instead
of 2-site. The n-site algorithm for some n > 2 depends on the
filling [45]. This significantly increases the memory require-
ments of the algorithm.

Superposition initial state. The 2-site update cannot reach
the optimal state from the initial state |010010 · · · 〉. Since the
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FIG. 5. The topological order of the 2/3 state for Coulomb in-
teraction: (a) The entanglement entropy of the 2/3 state in different
Ly. The upper panel is the scaling behavior of entanglement entropy
SE ≈ 0.157Ly − γ . The lower panel is the topological entanglement
entropy γ , where the blue horizontal line is −γ = − ln

√
3. (b) The

momentum polarization of the 2/3 state in different Ly. The obtained
topological characters are guiding-center spin s ≈ 1, topological spin
h ≈ 1

3 , and chiral central charge c ≈ 0.

model state is a superposition of the root configuration and its
“squeeze,” we can use the superposition of a set of “squeezed”
states instead of a product state [54].

Global subspace expansion. Global subspace expansion
(GSE) is proposed by Ref. [58], which is used to improve the
traditional time-dependent variational principle (TDVP) algo-
rithm and avoid falling into local solutions. The key idea of
GSE is the enlargement of tangent space by Krylov subspace
of order k,

K(Ĥ , |ψ〉) = span{|ψ〉, Ĥ |ψ〉, . . . , Ĥk−1|ψ〉}, (15)

and to use the state in this Krylov subspace instead of |ψ〉.
Density matrix correction. Density matrix correction [59]

can improve the convergence dramatically. The main idea is
illustrated as follows. Equation (6) can be written as Ĥ =∑

i ĤL,i ⊗ ĤR,i and |ψ〉 = ∑
i si|Li〉 ⊗ |Ri〉. The reduced den-

sity matrix correction is to add the corrected term ρ =∑
i〈Ri|ψ ′〉〈ψ ′|Ri〉 to the original reduced density matrix ρ =∑
i〈Ri|ψ〉〈ψ |Ri〉, where |ψ ′〉 = ∑

i ĤL,i ⊗ ÎR|ψ〉. The final
step is to replace the original reduced density matrix ρ with
the new one, ρ + δρ, where δ is a small controllable weight
constant. Sometimes ρ is regarded as a “noise” term, and
then δ is the intensity of “noise.”

Lastly, when applying finite DMRG to the cylinder geom-
etry, to avoid the electrons becoming trapped at the two ends
of the finite cylinder, it is necessary to include an additional
trap potential [60]. The selection of trap potential is usually
empirical. An alternative way to overcome this issue is to
work on the infinite cylinder geometry, as discussed below.

3. Infinity DMRG

Infinity-DMRG (iDMRG) is a powerful method for the
FQH systems [45]. In this subsection, we will discuss the
technical details for implementing iDMRG in FQH systems.
We choose the Laughlin ν = 1/3 state as an example, and we
show the main process of iDMRG in Fig. 1.

Step 1: Starting from a unit cell with 2q = 6 orbits, using
the fDMRG method to minimize the energy, we have the
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FIG. 6. The topological characters of the ν = 8/3 state for
Coulomb interaction: (a) The EE and (b) the extracted TEE of the
ν = 8/3 state; the yellow dashed line is − ln

√
3. (c),(d) The momen-

tum polarization of the ν = 8/3 state in different Ly. Part (c) shows
the extracted topological spin ha and guiding-center spin s, while
(d) is the central charge c.

ground-state MPS:

|ψ1〉 =
∑

σ

Aσ A
1 Aσ A

2 Aσ A
3 �[1]Bσ B

3 Bσ B
2 Bσ B

1 |σ 〉, (16)

where Aσ and Bσ are left-orthogonal and right-orthogonal
tensors, respectively.

Step 2: After the first step, we insert a new unit cell into the
center of the original MPS. Following the intuition of MPS,
we write down the “enlarged” MPS as

|ψ2〉 =
∑

σ

L
(
Aσ A

4 Aσ A
5 Aσ A

6 �[2]Bσ B
6 Bσ B

5 Bσ B
4
)
R|σ 〉, (17)

where L = Aσ A
1 Aσ A

2 Aσ A
3 and R = Bσ B

3 Bσ B
2 Bσ B

1 . The crucial task
is to find a good initial guess for the newly inserted tensors
which can help to quickly reach the translationally invariant
state in the calculation. Following the key ideas in Ref. [53],
the good initial guess is intended to translate the right half
(including the tensor containing singular values) of Eq. (16)
to the left half of the newly inserted unit cell, and vice versa
for the other half. Therefore, the initial guess can be written
as

|ψ2〉 =
∑

σ

L
(
�[1]Bσ B

3 Bσ B
2 Bσ B

1 Aσ A
1 Aσ A

2 Aσ A
3 �[1]

)
R|σ 〉. (18)

It is worth noting that we have translated the tensors in
this step; the conserved quantities of each tensor need to be
treated carefully. Since the generators of translation opera-
tors do not commute with each other, translating tensors in
MPS will change the quantum numbers they carried. Follow-
ing Eq. (14), when we translate A(B) and � from position
i to j, the quantum numbers must change from (Ne, K ) to
(Ne, K + ( j − i)Ne).

Step 3: Optimizing the newly inserted unit cell by fDMRG
and keeping the other tensors unchanged, we get the following

MPS with 12 orbits:

|ψ2〉 =
∑

σ

L
(
Aσ A

4 Aσ A
5 Aσ A

6 �[2]Bσ B
6 Bσ B

5 Bσ B
4
)
R|σ 〉. (19)

Step 4: Using the same method to insert a new unit cell into
the middle again,

|ψ3〉 =
∑

σ

L
(
�[2]Bσ B

6 Bσ B
5 Bσ B

4 (�[1] )−1Aσ A
4 Aσ A

5 Aσ A
6 �[2]

)
R|σ 〉,

(20)
where L = Aσ A

1 Aσ A
2 Aσ A

3 Aσ A
4 Aσ A

5 Aσ A
6 and R =

Bσ B
6 Bσ B

5 Bσ B
4 Bσ B

3 Bσ B
2 Bσ B

1 . By repeating Step 3 and Step 4, we can
reach the thermodynamic limit and derive a translationally
invariant unit cell.

E. Construction of the interface

In this paper, we will investigate the interface physics of
FQH states. This is partially motivated by recent experimental
works (e.g., Ref. [13]). In preview works [61–63], the inter-
face can be constructed through 2D conformal field theory. In
this work, we provide another way to build the interface by
optimizing the MPS energy in the DMRG algorithm. Now we
explain the “cut-and-glue” scheme in which we construct the
interface of FQH states. The general steps are as follows: (i)
After the iDMRG algorithm converges, we get the translation-
invariant MPS unit cell, and we cut the MPS into two halves,
i.e., the left part and the right part. (ii) We drop the one
part (say the left one) and project the bond between the left
boundary and the first orbit of the right part to the state that has
the same quantum number as the root configuration. (iii) Now
we have a semi-infinite cylinder with a filling factor ν1, and
then we glue it together with another semi-infinite cylinder
with a filling factor ν2; see Fig. 2. (iv) We optimize the energy
of MPS around the interface region and find the lowest energy
configuration, as with the usual finite DMRG procedure.

In this paper, we will construct three types of interfaces (we
will use “ν1|ν2 interface” to denote the interface between the
ν1 state and the ν2 state):

(i) The first one is called the “hardwall edge” (or with a
sharp cleaved edge) [64], where the electron cannot enter the
hardwall, or it can be seen as a situation in which the other half
takes an infinite (sharp) confining potential [see Fig. 2 (top)].
In this case, after we cut the translation-invariant MPS into
two halves, we can directly optimize the semi-infinite cylinder
by skipping the glue step.

(ii) The second type is to glue together an integer quantum
Hall state with filling ν1 and the FQH ν2 state, where ν1

is smaller than ν2 [see Fig. 2 (middle)]. For example, for
the ν1 = 0|ν2 = 2/3 or ν1 = 2|ν2 = 8/3 interface, the integer
quantum Hall half is used to gap out the integer edge modes of
the FQH half. Please note that in this case, the electron could
enter the integer filling region, in contrast to the “hardwall
edge.”

(iii) The third type is similar to the second, but ν1 is greater
than ν2 [see Fig. 2 (bottom)], for example ν1 = 1|ν2 = 2/3 or
ν1 = 3|ν2 = 8/3. In this case, tunneling through the interface
is allowed.

Finally, we stress that this construction scheme has many
advantages. First, the construction is based on the iDMRG
scheme in cylinder geometry [45], so that we can get a target
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FIG. 7. The edge of the ν = 1/3, 2/3 state: (a) The density profile
and (b) the integral of the Laughlin 1/3 state (blue labels) and the
2/3 state (yellow labels). (c),(d) The extracted guiding-center spin
from the dipole moment, where (c) for the Laughlin 1/3 state and
(d) for the 2/3 state. We can see that the quantity −s/q converges
to 1/3 and −1/3 for the Laughlin ν = 1/3 state and ν = 2/3 state,
respectively. Here, we choose the Haldane pseudopotential v1 = 1.0
and the circumference of the cylinder, Ly = 20�.

FQH state in an unbiased way, without any empirical informa-
tion such as the confining potentials or the background charge
layer. Second, after the gluing step we perform an energeti-
cally variational optimization, so the obtained configurations
(shown below) on the interface are the lowest energy configu-
ration. Next, this scheme will be displayed to investigate edges
and interfaces in greater detail.

F. Topological characters in the bulk and on the interface

In this section, we summarize the physical quantities that
we will utilize for identifying the topological properties in
the bulk and on the interface. They include entanglement
spectra for the chiral edge state, topological entanglement
entropy for the quasiparticle quantum dimension, momentum

FIG. 8. The “hardwall edge” of the ν = 8/3 state: (a) The density
profile and (b) integral of the ν = 8/3 state. (c) The guiding-center
spin extracted from the dipole moment. (d) A zoomed portion of (c),
in which we can clearly see that −s/q converges perfectly to −1/3
as the theoretical prediction. Here, we choose Coulomb interaction
and the circumference Ly = 21.

polarization for topological spin and guiding-center spin, and
electric dipole momentum for guiding-center spin.

1. Entanglement spectra

FQH states are gapped in the bulk but contain gapless
edge excitation. This means that the electrons in bulk are
localized, and the transport properties (electrical and thermal
conductance) [65–70] are determined by the gapless edge
states, which are extended. This implies that there is a certain
connection between edge and bulk states. On the other hand,
the topological order of a FQH state can be determined by
its edge states [4]. Moreover, the entanglement spectrum of
a FQH wave function can be seen as some special “energy
levels” which correspond to the entanglement Hamiltonian
ĤE . It has been shown [71,72] that there is a general re-
lationship between the entanglement spectrum and the edge
state spectrum of topological quantum states. Thus, one can
investigate the entanglement spectra of a FQH state instead of
the true edge excitation, which provides a straightforward way
to study the edge excitation. We briefly describe the method
of calculating the entanglement spectra below.

Once we get the ground-state wave function |ψ〉, consider
a bipartition of the system into two parts A and B, and the
Hilbert space H = HA ⊗ HB. One can write |ψ〉 as a super-
position of some product states |ψ〉 = ∑

i, j ci, j |ψA
i 〉 ⊗ |ψB

j 〉,
where |ψA

i 〉 ∈ HA and |ψB
j 〉 ∈ HB. By employing the Schmidt

decomposition (SVD), |ψ〉 has a special form,

|ψ〉 =
∑

i

λi

∣∣ψA
i

〉 ⊗ ∣∣ψB
i

〉
, (21)

where λi = exp (− 1
2ξi ) � 0, and ξi’s can be seen as “en-

ergy levels” [72]. One can write the reduced density matrix
as ρ̂A = trB|ψ〉〈ψ | = ∑

i exp (−ξi )|ψA
i 〉〈ψA

i |, which is diago-
nal, thus we can see ξi as eigenvalues of ĤE = − ln(ρ̂A) =∑

i ξi|ψA
i 〉〈ψA

i |, where ĤE is called the “entanglement Hamil-
tonian” and ξi’s are “entanglement spectra” (ES). Therefore,
we can calculate the ES through ξi = − ln (λ2

i ).
The remarkable feature of ES is the low-energy excitation.

For example, the û(1) free chiral boson Hamiltonian He =∑
k>0 ε(k)b†

kbk is the effective Hamiltonian of the Laughlin
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FIG. 9. The density profile of the ν = 1|ν = 2/3 interface:
(a) The density profile of the ν = 1|ν = 2/3 interface (blue circle).
The red square is 1 − 〈n̂i〉1/3, where 〈n̂i〉1/3 is the density of the
Laughlin ν = 1/3 state in Fig. 7(a). Here, we see the ν = 1|ν = 2/3
interface is equivalent to a hole-type Laughlin 1/3 state embedded
in the integer quantum Hall ν = 1 background. (b) The extracted
guiding center spin from the dipole moment of the ν = 1|ν = 2/3
interface; the results converge to −1/3 perfectly as Xj increases,
where −s/q = −1/3 is the theoretical prediction.

state, and the counting of low-energy excitation obeys [4]

k : 0 1 2 3 4 5 6 · · · ,

Degeneracy : 1 1 2 3 5 7 11 · · · .

Alternatively, the typical counting “1, 1, 2, 3, 5, 7 . . . ” in the
ES tells us that the effective edge theory is described by û(1)
free chiral boson theory.

2. Area law and topological entanglement entropy

A prominent measure of the entanglement between one
part and the rest of a quantum many-body system is
entanglement entropy (EE) [73]. The Neumann entropy
SE = −tr(ρ̂A ln ρ̂A) of the reduced density matrix ρ̂A =∑

i exp (−ξi )|ψA
i 〉〈ψA

i | is

SE = −
∑

i

λ2
i ln λ2

i =
∑

i

ξi exp (−ξi ). (22)

Generally, for a gapped state, the EE SE obeys the “area law,”
which means the EE is proportional to the “area” of the joint
boundary. Importantly, in addition to the area law, there is an
emergent nonzero constant term for the topologically ordered
states, called topological entanglement entropy (TEE) [74,75].

Now, we focus on the FQH states on a cylinder. When we
cut the cylinder along the periodic direction, the area of the
joint boundary is the circumference Ly = L, and the EE of a
FQH state scales as [76]

SE = αL − γa + O(1/L), (23)

where γa is TEE and α is a nonuniversal constant. The TEE
γa is a topological quantity that can be used to determine
the topological order, and it has a theoretical value γa =
ln(D/da), where da is the quantum dimension of anyon a,
and D = √∑

a d2
a [75] is the total quantum dimension of its

topological field theory.

3. Momentum polarization

Following Ref. [46], the topologically ordered state on a
cylinder corresponds to the topological quasiparticle on each
side. In addition, the rotation along the periodic direction will
not give us any information due to the rotational invariance of
the cylinder. If one can rotate one side and keep another side
unchanged, this progress will give us a phase that contains
information of the quasiparticle on this side. This idea can
be realized by dividing the cylinder into two parts along the
periodic direction. We denote these two parts as A and B,
and we apply the operator T̂ A

y to the A part, where T̂ A
y is the

restriction of Eq. (8),

T̂ A
y =

∏
i∈A

exp
( i

h̄
LyK̂i,y

)
. (24)

We obtain the phase

exp (i2π〈M〉a) = 〈ψa|T̂ A
y |ψa〉 = trA

(
ρ̂AT̂ A

y

)
, (25)

where |ψa〉 denotes the ground state corresponding to the
topological sector a. Since T̂ A

y commutes with the Hamilto-
nian, we can diagonalize ρ̂A and T̂ A

y simultaneously. We can
calculate 〈M〉a from ES by

〈M〉a = trA

(
ρ̂A

Ly

2π h̄
K̂A,y

)
=

∑
i

e−ξi

〈 Ly

2π h̄
K̂A,y

〉
i
, (26)

where K̂A,y = ∑
i∈A K̂i,y is the guiding center momentum op-

erator in the A part, and 〈Ô〉i = 〈ψA
i |Ô|ψA

i 〉. This phase 〈M〉a

contains three important topological quantities,

〈M〉a − 〈M〉root = ηg

2π h̄
L2

y − ha + c − ν

24
, (27)

where ηg = − h̄
4π�2

s
q is the guiding-center Hall viscosity [77]

and s is the guiding-center spin [47,78–80]. The subscript
“root” in 〈M〉root means that this term is calculated using the
root state |ψroot〉 [47]. The second term ha is the topological
spin corresponding to quasiparticle a [45,46], and c is the
central charge of the underlying edge conformal field theory
(CFT). The last term ν = p/q is the filling factor of a FQH
state. These three quantities s, ha, c provide rich topological
information. First, s is a quantized quantity corresponding to
the nondissipative response of the metric perturbation [81],
similar to how the Hall conductance is the response of elec-
tromagnetic gauge A. The other two quantities ha and c
are elements of the modular-T matrix, which is the unitary
transformation of the ground-state manifold under modular
transformation. Moreover, the modular matrix can be used to
describe the topological order [82].

4. Electric dipole moment and guiding-center spin

Near the edge or around the interface, the intrinsic
or external electric field inevitably induces a nonuniform
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FIG. 10. The ν = 3|ν = 8/3 interface: (a) The density profile of the ν = 3|ν = 8/3 interface. The left half (Xj < 0) is the ν = 3 (ν = 1 in
the SLL) IQH state, and the right (Xj > 0) is ν = 8/3 (ν = 2/3 in the SLL). The insets show the ES in different positions; they all exhibit the
same chirality. (b) The density integral of this interface. (c) The guiding-center spin extracted from the dipole moment. (d) A zoomed portion
of (c); we can clearly see that −s/q converges perfectly to −1/3 as the theoretical prediction. Here, we choose Coulomb interaction and the
circumference Ly = 21.

density distribution of electrons. One typical result is that
the chiral edge mode forms and propagates along the edge
or interface. Recently, it has been realized that the nonuni-
form density distribution gives a quantized dipole moment,
which is connected to the finite Hall viscosity of FQH liquids
[47], and it has been numerically verified in several systems
[47,83].

To be specific, the intrinsic dipole moment coupled to the
electric field generates an electric force. This electric force
counterbalances the viscous force applied on the edge modes,
which gives the relation [47]

ηg = py

Ly
Bz = − py

Ly
B, (28)

where B is the magnetic field, ηg = − h̄
4π�2

s
q is the guiding-

center Hall viscosity, and py is the dipole moment

py = −2π |e|
Ly

∑
i

(〈n̂i〉 − ν)i. (29)

Now we have

− s

q
= 8π2

L2
y

∑
i

(〈n̂i〉 − ν)i, (30)

where s is the guiding-center spin and q is the denominator
of ν = p/q. In the following, we will show that the dipole
moment is an important quantity, even though it is calcu-
lated by the nonuniversal oscillated density (depending on the
interaction), but the dipole moment (or guiding-center spin)
is protected by topology; for more details, see Sec. IV and
Ref. [47].

5. Relations between guiding-center spin and topological shift

Generally, the total Hall viscosity of a FQH state includes
two parts:

ηH = ηo + ηg = h̄

4π�2

(
ν s̃ − s

q

)
= h̄ν

4π�2
s̄ = h̄ν

8π�2
S,

(31)

where ηg = − h̄
4π�2

s
q is the guiding-center Hall viscosity, and

ηo = h̄
4π�2 ν s̃ is the Landau-orbital Hall viscosity [47,81]. The

quantity s̃ = n + 1
2 in ηo is the Landau-orbital spin for the

nth (n = 0, 1, 2, . . . ) Landau level. Since ηo comes from the
Landau-orbital form factor and we are working on the LL-
projected Hamiltonian, it does not appear in Eqs. (27) and
(28). Interestingly, by defining the mean “orbital spin” s̄ =
s̃ − s

p [80], one can relate it to the topological shift S [44] via
S = 2s̄ [80]. From Eq. (31), we can write down the relation
between guiding-center spin and topological shift,

S = 2

(
s̃ − s

p

)
. (32)

Equation (32) means that we can obtain a topological shift
by calculating the guiding-center spin since s̃ is a known num-
ber. Please note, the filling factor ν = p/q in both Eqs. (31)
and (32) is the filling of a single Landau level. For example,
the ν = 8/3 state has total filling ν = 2 + 2/3, so its filling
in the second Landau level is ν = 2/3 and we should use
ν = p/q = 2/3 in Eqs. (31) and (32). If the nature belongs
to the Laughlin state, S is 0 and 2 for the 2/3 state and the
2 + 2/3 state, respectively. As a comparison, non-Abelian Z4

parafermion hosts S = 3 [40,41], and Bonderson-Slingerland
hierarchy has S = 4 [43] (in LLL). Finally, we provide
some details of the theoretical derivation of S and s for the
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FIG. 11. The ν = 0|ν = 2/3 interface: (a) The density profile of the ν = 0|ν = 2/3 interface. The left half (Xj < 0) is the ν = 0 vacuum
state and the right (Xj > 0) is the ν = 2/3 state. The insets show the ES in different positions. The ESs in regions Xi ∼ 0� and Xi > 10�

have opposite chirality, which means a small region of Laughlin 1/3 has emerged. The ESs in the upper left (Xi ≈ 4.39�) have particle-hole
symmetry, which is evidence of the existence of the interface between the 1/3 state and its particle-hole conjugation (2/3 state). (b) The
EE of this interface, and the background is the schematic diagram of this interface; the red and blue arrows represent the 1/3 chiral boson
and neutral mode, respectively. (c) The density integral of this interface. (d) The guiding-center spin extracted from the dipole moment. (e)
A zoomed portion of (d). We can clearly see that −s/q converges perfectly to −1/3 as the theoretical prediction. Here, we choose Haldane
pseudopotential v1 = 1.0 and the circumference Ly = 20.

Abelian ν = n + 1/q state and the ν = n + 1 − 1/q state in
Appendix B.

6. Relations between dipole moment and momentum polarization

Now, we illustrate the relation between dipole moment
and momentum polarization, which has also been explained
in Ref. [47]. Starting from Eq. (26), we have 〈M〉a =
trA(ρ̂A

Ly

2π h̄ K̂A,y); note that the momentum operator K̂A,y can be
expressed as K̂A,y = ∑

i∈A n̂i
2π ih̄

Ly
. Using this relation, we have

〈M〉a =
∑
i∈A

trA(ρ̂An̂i ) × i =
∑
i∈A

〈n̂i〉 × i. (33)

Comparing Eqs. (27) and (30), we can find that Eq. (30)
should be

− s

q
+ 8π2

L2
y

(
−ha + c − ν

24

)
= 8π2

L2
y

∑
i

(〈n̂i〉 − ν)i. (34)

Here, we have found a correction in Eq. (30) of order O(L−2
y ),

which will vanish in the thermodynamic limit. Please note
that the O(L−2

y ) coefficient on the right-hand side of Eq. (30)

can be absorbed by 8π2

L2
y

∑
i i ≈ ∫

k dk, where k = 2π i
Ly

, and

Eq. (34) can be written as

− s

q
=

∫
dk(〈n̂(k)〉 − ν(k))k. (35)

In Appendix C, we provide more details about the corrected
term in Eq. (34).

III. TOPOLOGICAL PROPERTIES IN THE BULK

In this section, we will study the bulk properties of
the ν = 1/3, 2/3 states. The nature of the ν = 2/3 state is
thought to be the particle-hole conjugation of the Laughlin
ν = 1/3 state [84,85], but the discussion on the ν = 2/3
state has recently been revived [36,37,39], mainly due to the
experimental identification of complex edge structures that
are beyond the previous description [9–11]. We also study
the ν = 2/3 state in the second Landau level (SLL), i.e., the
ν = 8/3 state. It has been theoretically proposed that this state
could be non-Abelian. These are the motivations for this work.

Here, we list the values of the parameters we used in
iDMRG. (a) We choose a cutoff εH = 10−6 of a Hamiltonian,
which means that we only consider terms with coefficients in
Eq. (3) |AN

j1, j2, j3, j4 | � εH . (b) The upper bound of truncation
error in DMRG is chosen to be εD = 10−7 and the bond
dimension of MPS is automatically increased to ensure that
the truncation error is smaller than εD. (c) The intensity of
noise in the density matrix correction is δ ≈ 10−3–10−4. (d)
The regulated length in the Coulomb interaction is ξ = 4�.
The full text will use the above setting of parameters.
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FIG. 12. The ν = 2|ν = 8/3 interface: (a) The density profile of the ν = 2|ν = 8/3 interface. The left half (Xj < 0) is the ν = 2 (ν = 0 in
the SLL) state and the right (Xj > 0) is the ν = 8/3 (ν = 2/3 in the SLL) state. The insets show the ES in different positions. (b) The density
integral of this interface. (c) The guiding-center spin extracted from the dipole moment. (d) A zoomed portion of (c). We can clearly see that
−s/q converges perfectly to −1/3 as the theoretical prediction. Here, we choose Coulomb interaction and the circumference Ly = 21.

A. Laughlin 1/3 state

The Laughlin 1/3 state is the simplest FQH state, and
its topological characters have been extensively studied both
numerically and theoretically. Here we use it as a bench-
mark. The Laughlin 1/3 state is an Abelian state with three
kinds of quasiparticle, 0,+|e|/3,−|e|/3, and all of them have
quantum dimension da = 1, thus the total quantum dimension
is D = √

3 [76,86–88], so the TEE should be γa = ln
√

3 ≈
0.549. The EEs SE of the Laughlin 1/3 state obtained us-
ing iDMRG have been shown in Fig. 3(a). Clearly, the EE
satisfies the area law: SE ≈ 0.157Ly − γ . In the lower panel
of Fig. 3(a), the TEE γ converges to ln

√
3 ≈ 0.549 as Ly

increases.
The guiding-center spin of the Laughlin 1/q state is s =

1−q
2 [81] (or see Appendix B), so the theoretical value of the

Laughlin 1/3 state is s = −1 and topological spin is h = 1
3

[81]. The numerical results of momentum polarization have
been shown in Fig. 3(b), and they are in perfect agreement
with the theoretical prediction as Ly increases. Finally, the
edge theory of the Laughlin 1/3 state is described by a chiral
free boson with central charge c = 1. In Fig. 3(b), the obtained
c in momentum polarization perfectly converges to 1. Mean-
while, the ESs of the Laughlin 1/3 state have been shown in
Fig. 4(a), which demonstrates explicitly that the chirality and
the degeneracy of low-energy excitation are 1, 1, 2, 3, 5, . . . ,
which is consistent with theoretical prediction of the chiral
free boson and with other numerical results [3,4,72,76,89,90].

B. The 2/3 state

Now we consider the ν = 2/3 state, and we make a com-
parison with the 1/3 state. The topological characters are
shown in Fig. 5. The lower panel shows that the TEE of the
2/3 state converges to ln

√
3, similar to the Laughlin 1/3 state.

This value of the TEE shows the Abelian nature of the 2/3
state. Meanwhile, the ES of the 2/3 state in Fig. 4(b) also
exhibits chirality and degeneracy, but its direction of motion
is opposite to that of the Laughlin 1/3 state, which is shown
in Fig. 4(a). This supports the idea that the ν = 2/3 state is a
hole-type Laughlin 1/3 state [84,85,91]:

S =
∫

dx dt
1

4π
∂xφ1(∂tφ1 − v1∂xφ1)

− 3

4π
∂xφ3(∂tφ3 + v3∂xφ3), (36)

where φ1 is the edge mode of the ν = 1 component, and φ3 is
the edge mode of the Laughlin ν = 1/3 component.

In addition, the momentum polarization is shown in Fig. 5;
the topological spin of the 2/3 state is h = 1/3, but the
guiding-center spin takes the opposite value s ≈ 1, which is
opposite to that of the 1/3 state, which is consistent with
theoretical prediction (see Appendix B). From this, we also
state that the topological shift is S = 0 for the 2/3 state,
pointing to the Abelian Laughlin state.

The numerically obtained chiral central charge perfectly
converges to 0 as Ly increases. The result c ≈ 0 supports two
counterpropagating ν = 1 and 1/3 edge modes. This is also
consistent with the exact diagonalization study on the torus
geometry [81].

C. The 2 + 2/3 state

We consider the ν = 8/3 state in SLL. First, the ES is
shown in the inset of Fig. 6(a), which shows the same ES as
the ES of the 2/3 state. The typical 1, 1, 2, 3, 5, . . . counting
matches the prediction of a free chiral boson. In addition,
the EE SE scales as the area law in Fig. 6(a); the fitting
result is SE ≈ −0.3919 + 0.1813Ly. The extracted TEE is
γ ≈ 0.3919, which is nearly a 29% error from the theoretical
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FIG. 13. The ν = 1|ν = 1/3 interface: (a) The density profile of the ν = 1|ν = 1/3 interface. The left half (Xj < 0) is the ν = 1 state and
the right (Xj > 0) is the ν = 1/3 state. The insets show the ES in different positions. The ESs in region Xi > 0� and Xi > 10� have opposite
chirality, which means a small region of 2/3 has emerged. The ES in the upper left corner (Xi ≈ 4�) have particle-hole symmetry, which is
evidence of the existence of the interface between the 1/3 and 2/3 states. (b) The EE of this interface, and the background is the schematic
diagram of this interface; the red and blue arrows represent the 1/3 chiral boson and neutral mode, respectively. (c) The density integral of this
interface. (d) The guiding-center spin extracted from the dipole moment. (e) A zoomed portion of (d). We can clearly see that −s/q converges
perfectly to 1/3 as the theoretical prediction. Here, we choose Haldane pseudopotential v1 = 1.0 and the circumference Ly = 20.

prediction of the 2/3 state (ln
√

3 ≈ 0.5493); the big error
comes from the finite-size effect of Ly. The Coulomb interac-
tion at SLL decays much slower than the lowest Landau level
(LLL), resulting in a rapid increase of the bond dimension
of MPO (∼1000–2000), so it is difficult to get convergence
in large Ly. On the other hand, the momentum polarization
in Figs. 6(c) and 6(d) tells us that the 8/3 state contains
only one kind of topological spin, ha = 1/3, consistent with
the Abelian 2/3 state. Moreover, the extracted guiding-center
spin s and central charge c are shown in Figs. 6(c) and 6(d);
they all oscillate and converge slowly to the theoretical value
of the ν = 2/3 state (s = 1 and c = 0) as Ly increases [92].
Combining the above results, we can conclude that the 8/3
state is Abelian, which is topologically equivalent to the 2/3
state in LLL.

IV. TOPOLOGICAL PROPERTIES ON
THE HARDWALL EDGE

Apart from the topological order in bulk, we will investi-
gate the edge of the 1/3, 2/3, 8/3 states in this section. Here,
when we refer to the edge, it is equivalent to the “hardwall|ν”
interface as shown in Fig. 2 (top).

A. Density profile

The expectation of the particle number operator 〈n̂i〉 =
〈ĉ†

i ĉi〉 is the most direct representation of the edge. We

plot the density profile of the edge [or the “hardwall” in-
terface; see Fig. 2 (top)] of the ν = 1/3 and 2/3 states
in Fig. 7(a). The edge of the 1/3 state exhibits oscillating
behavior, similar to Ref. [60], and the density profile can
be well fitted by fν (x) = Cν exp (−x/ξν ) cos (kνx + θν ) + ν,
where k1/3 ≈ 1.546�−1 and ξ1/3 ≈ 1.573�. The wave number
k1/3 ≈ 1.546�−1 is close to the bulk magnetoroton minimum,
in agreement with the result in Refs. [60,93,94]. The density
profile of the 2/3 state has a ν = 1 integer region at the
outmost. After an intermediate region, a typical oscillating
behavior can be found (Xj > 14�) and the same fitting result
as that of the 1/3 state (k2/3 ≈ 1.549�−1 and ξ2/3 ≈ 1.552�).
The results of the 8/3 state are shown in Fig. 8. There is also
an outmost ν = 1 integer region, where the typical oscillating
behavior can be found in Xj > 34� and the fitting results are
k8/3 ≈ 1.517�−1 and ξ8/3 ≈ 5.482�. The 2/3 and 8/3 edge
profile is consistent with the theoretical prediction, which
includes an outmost ν = 1 edge and an inner ν = 1/3 edge.

B. Dipole moment and guiding-center spin

The oscillating density induces a dipole moment on the
edge. Before calculating the dipole moment, we should check
the charge neutral conditions where the density integral
N (x) = ∑x

i (〈n̂i〉 − ν) should converge to 0 [47]. This con-
dition ensures that the dipole moment does not depend on
the choice of origin. In Figs. 7(b) and 8(b), we can see that
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FIG. 14. The central charge c of the ν = 1/3, 2/3 state: The
extracted central charge c of (a) the Laughlin ν = 1/3 state and
(b) the ν = 2/3 state from the density profile. The insets show the
complete data range. The results are calculated by Eq. (C1); the
density profile are the same data as in Fig. 7, and the guiding-center
spin in Eq. (C1) is chosen to be s1/3 = −1, s2/3 = 1. The extracted
central charges of ν = 1/3, 2/3 states are c = 0.999 931, 0.000 066,
respectively.

N (x) converges to 0 in bulk. The dipole moment in an
inhomogeneous external electric field will feel an electric
force, and this force can be balanced by the viscous force.
Thus the relation between Hall viscosity and dipole moment
is η

g
H = − h̄

4π�2
s
q = 2π |e|B

L2
y

∑
i(〈ni〉 − ν) × i [47,83], where we

can extract the topological quantity guiding-center spin s via

− s

q
= 8π2

L2
y

∑
i

(〈ni〉 − ν) × i. (37)

We have shown the results of the Laughlin 1/3 state in
Fig. 7(c). The quantity −s/q converges to 1/3 in the bulk, and
the extracted guiding-center spin is s ≈ −1. The results of the
2/3 and 8/3 states are shown in Figs. 7(d) and Figs. 8(c) and
8(d), and the extracted guiding-center spin is s2/3 ≈ s8/3 ≈ 1.
Both results are consistent with theoretical predictions (see
Appendix B).

In particular, in Figs. 7(a) and 7(b) we can see a quasi-
particle (−|e|/3) and a quasihole (+|e|/3) at Xi ≈ 14� and
Xi ≈ 6.5�, respectively. The same behavior can also be found
in Fig. 8(b); the coordinates of the quasiparticle and quasihole
are Xi ≈ 33� and Xi ≈ 14�, respectively. This pair cancels out
part of the dipole moment of the outermost integer region,
leaving a quantized guiding-center spin.

V. TOPOLOGICAL PROPERTIES ON THE INTERFACE

The interface between different quantum Hall states is a
useful geometry to study the edge physics, which can be

realized in experiments. In particular, recent measurements
on the interface between ν = 1 and 2/3 states demonstrate
the counterpropagating chiral channels and upstream neutral
edge mode [11–13]. Motivated by this experimental progress,
in this section we study the interface between integer quantum
Hall states and FQH states. The numerical details of con-
structing an interface in DMRG is the “cut-and-glue” scheme,
which has been shown in Sec. II E.

A. The ν = 1|ν = 2/3 interface

Let us recall that, in Sec. III B, the ν = 2/3 state supports
two counterpropagating chiral channels: a downstream ν = 1
electron channel and an upstream ν = 1/3 channel. On the
interface between ν = 1 and 2/3 there is expected to be only
one 1/3 edge mode, since the integer edge mode of the 2/3
state is gapped out by the ν = 1 state. The single 1/3 edge
mode is expected to exhibit a 1/3 two-terminal conductance,
which has been seen in experiment [13]. Similarly, for a ν =
3|ν = 8/3 interface, the two integer edge modes in the lower
Landau level gap out each other, equivalent to a ν = 1|ν =
2/3 interface.

The blue line in Fig. 9(a) is the density 〈n̂i〉2/3 of this
interface, the left half (Xj < 0) is the ν = 1 state, and the right
(Xj > 0) is the ν = 2/3 state. We have found two interesting
points from the density profile. First, there is no charge “leak-
ing” from ν = 1 to 2/3, reflecting the incompressible nature
of the ν = 2/3 state. Second, we compare the density profile
with the hole-Laughlin state 1 − 〈n̂i〉1/3, where 〈n̂i〉1/3 is the
density of the Laughlin 1/3 state as shown in Fig. 7(a). It is
found that the density profile around the ν = 1|ν = 1/3 inter-
face perfectly matches the hole-Laughlin state. This strongly
indicates that the ν = 1|ν = 2/3 interface forms a hole-type
Laughlin ν = 1/3 state.

Similar to Sec. IV B, the balance condition on the interface
requires us to form a quantized electric dipole moment [83],

−
(

sR

qR
− sL

qL

)
= 8π2

L2
y

∑
i

(〈ni〉 − νi ) × i, (38)

where νi = θ (i) × 1 + θ (−i) × 2/3 is the filling of each half
and θ (x) is the step function. In the left region sL = 0 for
the ν = 1 state, and in the right region sR/qR = 1/3 for the
ν = 2/3 state (as shown in Sec. III B), and we expect −1/3 in
Eq. (38) on the ν = 1|ν = 2/3 interface. In Fig. 9(b), we have
shown the numerical result of the dipole moment where the
results converge to −1/3 perfectly as Xj increases.

Now we consider the similar ν = 3|ν = 3/8 interface or
the ν = 1|ν = 2/3 interface in SLL; the results are shown in
Fig. 10. In Fig. 10(a), we have shown the density of the ν =
3|ν = 2/3 interface; the insets are ESs at different positions.
In Fig. 10(b), the density integral converges to 0, indicating
the neutral condition. Using Eq. (38) and choosing νi<0 =
1, νi>0 = 2/3, we have shown the results in Figs. 10(c) and
10(d). The result converges to −1/3 perfectly as Xj increases,
which is consistent with the result of the ν = 1|ν = 2/3 in-
terface in the LLL. This result shows that the ν = 8/3 state
has the same guiding-center spin as the ν = 2/3 state. It can
be seen as evidence that the ν = 8/3 and 2/3 states have the
same topological order.
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FIG. 15. The “hardwall edge” of different topological sectors of
the Laughlin ν = 1/3 state: (a) The density profile 〈n̂i〉, (b) density
integral N , and (c) extracted −s/q of different topological sectors
of the Laughlin ν = 1/3 state. (d) The topological spin of the 001
topological sector; the result is ha ≈ 0.333332. And the inset is the
density difference 〈n̂i〉 = 〈n̂i〉0 − 〈n̂i〉a between different topologi-
cal sectors. Here, we choose the Haldane pseudopotential v1 = 1.0
and the circumference of cylinder Ly = 20�.

B. The ν = 0|ν = 2/3 interface

We concentrate now on the interface between ν = 0 and
2/3, which is equivalent to the ν = 2|ν = 8/3 interface. We
stress that the difference between the ν = 0|ν = 2/3 interface
and the hardwall edge of ν = 2/3 is as follows (see Sec. III B):
the edge can be seen as a special interface with an infinite
confining potential; under this potential, the electrons never
cross the interface to the ν = 0 region, and as a result an out-

FIG. 16. The “hardwall edge” of different topological sectors of
the ν = 2/3 state: The topological spin extracted from the density
profile; the result is ha ≈ 0.333 333. The insets show the complete
data range. Here, we choose the Haldane pseudopotential v1 = 1.0
and the circumference of cylinder Ly = 20�.

most ν = 1 region is formed [see Fig. 7(a)]. Here, we choose
the confining potential to be 0, therefore electrons cross the
interface to the ν = 0 region, and the original ν = 1 region
collapses, thus the edge reconstruction occurs. The former
study [14] suggested that a ν = 1/3 stripe will appear on
the outmost region. As a result, two new counterpropagating
ν = 1/3 edge modes could be added to the outside of the
original (in order from edge to bulk, 1/3,−1/3, 1,−1/3)
[10,38]. The former study proposed that the inner three edge
modes should renormalize to a single 1/3 charge mode and
two opposite neutral modes.

In Fig. 11(a), the blue line is the density profile of the ν =
0|ν = 2/3 interface, where the left half (Xi < 0) is vacuum
ν = 0 and the right (Xi > 0) is ν = 2/3. We identify that the
density in the Xi < 0 region forms a typical Laughlin ν = 1/3
edge by comparing the density profile with that of the Laugh-
lin 1/3 state (the yellow line) [same data from Fig. 7(a)].
The inset at the bottom left of Fig. 11(a) is the entanglement
spectrum at Xi ≈ 0.47�, which shows the same chirality and
counting as the Laughlin ν = 1/3 state. Combining these two
pieces of evidence, we can conclude that there is a 1/3 edge
mode at the outmost region (−3� < Xi < 0). Moving to Xi ≈
4.39�, the entanglement spectrum shown in the upper left
corner of Fig. 11(a) exhibits particle-hole symmetry, signaling
a crossover regime. Moreover, the entanglement spectrum on
the right side of this point shows the same chirality as the
ν = 2/3 state. Based on these observations, we speculate that
at around Xi ≈ 4.39� and 〈n̂i〉 ≈ 0.5 a ν = 1/3|ν = 2/3 inter-
face emerges. This is partially consistent with the prediction
in Ref. [38] and experimental observation [10].

Now, we focus on the dipole moment of the ν = 0|ν =
2/3 interface. The density integral N (x) = ∑x

i (〈n̂i〉 − ν) is
shown in Fig. 11(c), and we obtain N (Xi ) = 0 for large
Xi. We further calculate the dipole moment of this interface
by Eq. (38). In Figs. 11(d) and 11(e), we have shown the
numerical result of Eq. (38), where −sν=2/3/q converges to
−0.3387 as Xj increases, and we extracted sν=2/3 ≈ 1.0162.
Thus, the dipole moment on the ν = 0|ν = 2/3 interface is the
same as the ν = 2/3 edge, because both ν = 0 and vacuum
have the same guiding-center spin sν=1 = 0.
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FIG. 17. The central charge c of the interface: The central charge of (a) ν = 1|ν = 1/3 interface, (b)ν = 0|ν = 2/3 interface, and (c) ν =
1|ν = 2/3 interface. The results are c ≈ 0.000031, c ≈ 0.013280 and c ≈ −0.996121 respectively.

Finally, we consider the ν = 2|ν = 8/3 interface, where
the integer parts gap each other out, leaving the ν = 0|ν =
2/3 in the SLL. Comparing Figs. 11 and 12, we can see that
the ν = 2|ν = 8/3 interface is similar to the ν = 0|ν = 2/3
interface, except for the different penetration depths (depend-
ing on the nonuniversal correlation length). One can see that
there is also a small region of the 2 + 1/3 Laughlin state
between ν = 2 and 8/3, i.e., edge reconstruction occurs.

C. The ν = 1|ν = 1/3 interface

At the end of this section we consider the ν = 1|ν = 1/3
interface, which is also studied in Refs. [95,96]. The ν =
1|ν = 1/3 interface is the particle-hole conjugation of the
ν = 0|ν = 2/3 interface. Meanwhile, in Sec. V B we find
the edge reconstruction in the ν = 0|ν = 2/3 interface, re-
sulting in a small ν = 1/3 region between ν = 0 and 2/3,
thus we look forward to discovering a small ν = 2/3 region
on the ν = 1|ν = 1/3 interface. Fortunately, in the insets of
Fig. 13(a) we see that the ES around Xi ≈ 1.5� exhibits an
achiral property, which indicates that a small ν = 2/3 region

has emerged. Following the discussion in Sec. V B, we can see
that the outmost edge mode comes from the ν = 1|ν = 2/3
interface, i.e., a single 1/3 charge mode [Fig. 13(b)]. As for
the inside, a 1/3 charge mode and two opposite neutral modes
[Fig. 13(b)] come from the ν = 2/3|ν = 1/3 interface. In
Figs. 13(c) and 13(d), the extracted guiding-center spin is
s = sν=1/3 − sν=1 = −1. Once again, this supports the idea
that the dipole moment is a quantized quantity on the interface
that is protected by intrinsic topology.

VI. CONCLUSION

In this paper, we investigate the topological properties of
ν = 2/3 and 8/3 states, including the bulk and edge physics.
On the one hand, via the entanglement spectra and momen-
tum polarization calculations, we identify that both 2/3, 8/3
states are Abelian-type, and they share the same topology as
the hole-conjugated Laughlin 1/3 state. On the other hand,
we illustrate the interface made of the ν = 2/3 (8/3) states
and ν = 0 (2). Crucially, our method is able to demonstrate
edge reconstruction directly, i.e., it shows that the interface

FIG. 18. The ν = 2|ν = 7/3 interface: (a) The density profile of the ν = 2|ν = 7/3 interface. The left half (Xj < 0) is the ν = 2 (ν = 0
in the SLL) state, and the right (Xj > 0) is ν = 7/3 (ν = 1/3 in the SLL) state. The insets show the ES in different positions. (b) The density
integral of this interface. (c) The guiding-center spin extracted from the dipole moment. (d) A zoomed portion of (c); we can clearly see that
−s/q converge perfectly to 1/3 as the theoretical prediction. Here, we choose Coulomb interaction and the circumference Ly = 21.

165145-15



LIANGDONG HU AND W. ZHU PHYSICAL REVIEW B 105, 165145 (2022)

FIG. 19. The topological characters of the ν = 7/3 state for
Coulomb interaction: (a) The EE and (b) the extracted TEE of the
ν = 7/3 state; the yellow dashed line is − ln

√
3. (c),(d) The momen-

tum polarization of the ν = 7/3 state in different Ly. Part (c) shows
the extracted topological spin ha and guiding-center spin s, while
(d) is the central charge c.

ν = 0|ν = 2/3 contains a 1/3 edge mode and a group of
edge modes inherited from the ν = 1/3|ν = 2/3 interface,
which are spatially separated on the interface. Throughout this
paper, we find that the dipole moment living on the interface
is a quantized quantity (equivalent to guiding-center spin or
topological shift) which is protected by nontrivial topology,
even though charge density is nonuniversal depending on the
interaction details. Lastly, in the case of a hardwall edge (a
sharp confining potential), edge reconstruction does not oc-
cur, and the edge state forms a group with the outer ν = 1
integer quantum Hall mode and an inner counterpropagating
1/3 mode.

These results open the door to looking at fractional states
and the behavior of edge modes, especially in cases in which
reconstruction at the edge takes place, leading to the formation
of counterpropagating modes. For example, it was experimen-
tally identified [9,10] and then theoretically proposed [38] that
the reconstructed edge at the 2/3 state consists of an outer-
most 1/3 channel and the inner composite channels including
neutral modes. Our current results indeed support the above
picture (on the interface or smooth edge potentials), which
has not been achieved by numerical simulations before. Thus,
we believe that our work paves the way to a more complete
understanding of fractional quantum Hall states, and it can be
extended to more fillings without any barrier.
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APPENDIX A: DETAILS OF THE MANY-BODY
HAMILTONIAN

In this Appendix, we will show more details about the
derivation of the Hamiltonian and the Fourier transformation
of the modified Coulomb interaction.

1. Hamiltonian

First, the Landau level wave function is

ψn, j (x, y) = e−i
X j
�2 y− (x−Xj )2

2�2√
2nn!

√
π�Ly

Hn

(x − Xj

�

)
. (A1)

If we project the electron-electron interaction into a single
Landau level, the second quantization form of the Hamilto-
nian can be expressed by

HI =
Nφ∑

j1, j2, j3, j4

An
j1, j2, j3, j4 a†

n, j1
a†

n, j2
an, j3 an, j4 , (A2)

where the interaction matrix element is

An
j1, j2, j3, j4 =1

2

∫
dr1

∫
dr2ψ

∗
N, j1 (r1)ψ∗

N, j2 (r2)

V (r1, r2)ψN, j3 (r2)ψN, j4 (r1). (A3)

The two-body interaction in real space satisfies V (r + bêy) =
V (r), which we can rewrite as

V (r) = 1

L y

∫ ∞

−∞
dqx

∑
qy

V (q)eiq·r, (A4)

where qy = 2πt
Ly

, t ∈ Z is the momentum along the y-
direction, and

V (q) =
∫ ∞

−∞
dx

∫ Ly

0
dy V (r)eiq·r. (A5)

Now we can calculate AN
j1, j2, j3, j4 by substituting Eq. (A4) into

Eq. (A3):

AN
j1, j2, j3, j4 = 1

2Ly

∫ ∞

−∞
dqx

∑
qy

V (q)IN
j1, j4 (q)IN

j2, j3 (−q), (A6)

where IN
s,s′ (q) = ∫

dr ψ∗
N,sψN,s′eiq·r is a useful integral:

In
s,s′ (q) = 1

2nn!
√

π�

∫ ∞

−∞
dx e− 1

�2 [x− 1
2 (2Xs−qy�

2+iqx�
2 )]2

× Hn[(x − Xs)/�]Hn[(x − Xs′ )/�]

× e
1

4�2 (2Xs−qy�
2+iqx�

2 )2− X2
s

2�2 − (Xs−qy�2 )2

2�2 δt,s−s′

= Ln

(
1

2
q2�2

)
e− 1

4 q2�2+iqxXs− iqx qy�2

2 δt,s−s′ . (A7)

We first integrate the variable y and then use a special
function integral relation

∫ ∞
−∞ dx e−x2

Hm(x + y)Hn(x + z) =
2n√πm!zn−mLn−m

m (−2yz) m � n.
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Finally, we have

An
j1, j2, j3, j4 = 1

2b

∫ ∞

−∞
dqx

∑
qy

V (q)In
j1, j4 (q)In

j2, j3 (−q)

= 1

2Ly

∫ ∞

−∞
dqx

∑
qy

V (q)

[
LN

(
1

2
q2�2

)]2

× e− 1
2 q2�2+iqx ( j1− j3 ) 2π�2

Ly δqy,
2π ( j1− j4 )

Ly

δ j1+ j2, j3+ j4 .

(A8)

2. Fourier transformation of the modified Coulomb interaction

The modified Coulomb interaction in real space is V (r) =
e2

ε
e−r2/ξ2

r . Due to the periodicity along the y-direction, it can be
written as

V (r) = e2

ε

∑
t∈Z

e−r2/ξ 2

|r + tbêy| = 1

b

∫ ∞

−∞
dqx

∑
qy

V (q), (A9)

where r · êy ∈ [0, Ly) and qy = 2πt
Ly

, t ∈ Z. We have

V (q) = 1

2π

e2

ε

∫ ∞

−∞
dx

∫ ∞

−∞
dy

e−r2/ξ 2

r
e−iq·r

= 1

2π

e2

ε

∫ ∞

0
dr

∫ 2π

0
dθ

e−r2/ξ 2

r
e−iqr cos θ

= e2

ε

∫ ∞

0
dr e−r2/ξ 2

J0(qr)

= e2

ε

ξ

2

√
π exp

(
−q2ξ 2

8

)
I0

(
q2ξ 2

8

)
, (A10)

where
∫ ∞

0 dr e−r2/ξ 2
J0(r) = ξ

2

√
π exp (−ξ 2/8)I0(ξ 2/8) and

I0(z) = 1
π

∫ π

0 exp (z cos θ ) cos (nθ )dθ is the first modified
Bessel function In(z) = 1

π

∫ π

0 dθ exp (z cos θ ) cos (nθ ). If we
choose ξ → ∞, the modified Coulomb interaction with reg-
ulated length ξ will come back to the original Coulomb
interaction,

lim
ξ→∞

V (q) = e2

ε

1

q
, (A11)

where we have used the asymptotic approximation of the first
kind of modified Bessel function (for large values of x),

In(x) = ex

√
2πx

[
1 − 4n2 − 1

8x
+ O

(
1

x2

)]
. (A12)

3. Pseudopotential Hamiltonian

In general, the V (q) in Eq. (A4) can be expanded with
Laguerre polynomials,

V (q) =
∑

l

vlLl (q
2), (A13)

where Ll (x) is a Laguerre polynomial and vl are some tunable
parameters.

Here, we will show that this potential is a short-range
interaction, using Eq. (A4),

V (r) = 1

L y

∫ ∞

−∞
dqx

∑
qy

∑
l

vlLl (q
2)eiq·r

=
∑

l

vlLl (−∇2
r )

∫ ∞

−∞
dqx

1

L y

∑
qy

eiq·r

=
∑

l

vlLl
( − ∇2

r

)
δ2(r). (A14)

This is the model Hamiltonian of the Laughlin ν = 1/q wave
function �q({ri}),∫ ∏

i

d2ri�
∗
q ({ri})

∑
j,k

V (r j − rk )�q({ri}) = 0 (A15)

if we choose

vl = 1 (l < q),

vl = 0 (l � q).
(A16)

Since Laguerre polynomials are complete, by selecting the
appropriate vl ’s we can construct some special potential V (r),
and vl is called the Haldane pseudopotential in order l .

APPENDIX B: THE THEORETICAL PREDICTION OF
TOPOLOGICAL SHIFT

The topological shift, first introduced by Wen and Zee [44],
is a shift in the relation between Ne and Nφ ,

Nφ = ν−1Ne − S (1 − g), (B1)

where g is the genus of the manifold. We can easily find
the relations Nφ = ν−1Ne − S for sphere geometry and Nφ =
ν−1Ne for torus geometry. In Ref. [44], the topological shift
can be determined by the K matrix,

S = 2

ν
qT K−1s, (B2)

where q and s are charge and spin vectors. For the Laughlin
ν = 1/q state in the LLL, where K = q, q = 1, and s = q/2,
we have S = q. As for the hole-type Laughlin state in filling
ν = 1 − 1/q in the LLL, K, q, s are

K =
(

1 1
1 1 − q

)
q =

(
1
0

)
s = 1

2

(
1

1 − q

)
, (B3)

thus we have S = 0. Using the relations in Eq. (31), we
have s

1
q = 1−q

2 and s1− 1
q = q−1

2 = −s
1
q . Now we consider the

results in the higher Landau level. The K matrix and charge
vector q do not change, but the components of spin vector sI

should change as the Landau level index n (n = 0, 1, 2, . . . ),

sI → sI + n. (B4)

Now we have the final results,

Sn+ 1
q = q + 2n, sn+ 1

q = 1 − q

2
,

Sn+1− 1
q = 2n, sn+1− 1

q = q − 1

2
. (B5)
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We can clearly see that the guiding-center spin of the Laughlin
ν = n + 1

q state and its particle-hole conjugated ν = n + 1 −
1
q state take opposite values. When we choose q = 3, we have

the theoretical predictions of the Laughlin ν = n + 1
3 and ν =

n + 2
3 states,

Sn+ 1
3 = 3 + 2n, sn+ 1

3 = −1,

Sn+ 2
3 = 2n, sn+ 2

3 = 1. (B6)

The topological shift will change as the Landau level index
changes, but the difference 2n is exactly the difference of
Landau level degeneracy on the sphere. Please note that the
degeneracy of the nth Landau level on the sphere is No =
2s0 + 1 + 2n (n = 0, 1, 2, . . . ) [49,97], where s0 is the num-
ber of monopoles on the center of the sphere, and Nφ = 2s0 is
the number of magnetic Dirac flux quanta through the surface
of the sphere. In addition, the guiding-center spin does not
change as the Landau level index changes, thus it can be used
to characterize the topological order of the FQH state in the
higher Landau level.

APPENDIX C: CENTRAL CHARGE AND TOPOLOGICAL
SPIN IN THE DIPOLE MOMENT

In this Appendix, we will show more numerical details
about the O(L−2

y ) term in Eq. (34).
We first consider the dipole moment of the “hardwall edge”

of the vacuum sector (ha = 0). The central charge c can be
extracted by

c = 24

(∑
i

(〈n̂i〉 − ν)i + L2
y

8π2

s

q

)
+ ν. (C1)

Using this equation, we have plotted the results of the ν =
1/3, 2/3 states in Fig. 14. The extracted central charges of
the ν = 1/3, 2/3 states are c = 0.999 931, 0.000 066, respec-
tively, in excellent agreement with theoretical predictions.

So far, we have only cut the infinite cylinder into a vacuum
sector. Now we focus on the quasiparticle sector, which in-
cludes nonzero topological spin. Motivated by this intuition,
we need to cut the infinite cylinder into different topological
sectors. For example, the Laughlin ν = 1/3 state has three dis-
tinct topological sectors that can be constructed by cutting the
infinite cylinder · · · 010010 · · · into |010010 · · · , |10010 · · · ,
and |0010 · · · , respectively, where “|” denotes the “hardwall
edge” and “· · · ” denotes the semi-infinite cylinder. We denote
the three sectors as 010, 100, and 001. We use the same
method as in Sec. II E to optimize the MPS, and the results are
shown in Fig. 15(a). From the density integral in Fig. 15(b),
we can clearly see that there is a quasiparticle of the 100 (001)
sector with charge Qa = e/3 (−e/3). As shown in Fig. 15(c),
we have found that the dipole moment of the 001 sector is
smaller than 010 (vacuum sector). The difference comes from
the nonzero topological spin ha. Using Eq. (34), the topologi-
cal spin can be extracted from the density difference between

the vacuum (〈n̂i〉0) and the quasiparticle (〈n̂i〉a) sector by

ha =
∑

i

(〈n̂i〉0 − 〈n̂i〉a)i. (C2)

Using this relation, we have shown the results of ν =
1/3, 2/3 in Figs. 15(d) and 16, respectively. The extracted
topological spin is ha ≈ 0.333 332 and ha ≈ 0.333 333, and
both results are consistent with theoretical predictions.

Finally, we consider the interface version of Eq. (C1).
Using Eqs. (34) and (38), we have

c = 24

(∑
i

(〈n̂i〉 − νi )i + L2
y

8π2

(
sR

qR
− sL

qL

))
+ νR − νL,

(C3)

where c is the central charge of the interface CFT. In Fig. 17,
we have plotted the central charge c of the ν = 1|ν = 1/3,
ν = 0|ν = 2/3, and ν = 1|ν = 2/3 interfaces, and we have
used the same data as in Figs. 9, 11, 13. (a) ν = 1|ν = 1/3
interface: Following the discussion in Sec. V C, this interface
includes two 1/3 charged modes and two counterpropagating
neutral modes; the total central charge is 0. In Fig. 17(a), the
numerical result is c ≈ 0.000 031, consistent with the theoret-
ical value 0. (b) ν = 0|ν = 2/3 interface: The ν = 0|ν = 2/3
interface is the same as the ν = 1|ν = 1/3 interface, but all
of the chiral edge modes have the opposite direction, so the
theoretical value of the central charge is also 0. In Fig. 17(b),
the extracted central charge is c ≈ 0.013 280. (c) ν = 1|ν =
2/3 interface: First, the edge theory of the ν = 2/3 state is
an integer mode and a counterpropagating 1/3 chiral charged
mode. When we put the ν = 2/3 state together with the ν = 1
state, we see that the integer charged mode of the ν = 2/3
state has been gapped; only a single 1/3 chiral charged mode
with opposite chirality (or the edge mode of the hole-type
Laughlin ν = 1/3 state) remains. So, the central charge of
the ν = 1|ν = 2/3 interface is c = −1. In Fig. 17(c), we have
shown the central charge, and the result is c ≈ −0.996 121.
All three of the numerical results in Fig. 17 are consistent with
theoretical predictions. We conclude, therefore, that Eq. (C3)
can be used to calculate the central charge of the interface.

APPENDIX D: ν = 7/3 STATE

In this Appendix, we will show the results of the ν = 7/3
state for the sake of completeness. The topological characters
of the ν = 7/3 state are shown in Fig. 19. The results indicate
that the ν = 7/3 and Laughlin ν = 1/3 states share the same
topological order, which is consistent with the conclusion in
Ref. [48].

According to previous conclusions, we expect that the phe-
nomenon of edge reconstruction will also occur on the ν =
2|ν = 7/3 interface. Fortunately, in the insets of Fig. 18(a),
we can see that the ESs show same behavior as in Fig. 13.
First, the ES around Xi ≈ 1.5� exhibits an achiral property,
which indicates that a small ν = 2/3 region has emerged. And
then, in the rightmost region, the ESs are just those in the bulk
of the ν = 7/3 state. Finally, we find that in the intermediate
region, the ESs exhibit particle-hole symmetry. Combining
the above results, as we predicted, it can be seen that the edge
reconstruction phenomenon occurred in the ν = 2|ν = 7/3
interface.
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