
PHYSICAL REVIEW B 105, 165141 (2022)

Exploring the robust extrapolation of high-dimensional machine learning potentials
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We show that, contrary to popular assumptions, predictions from machine learning potentials built upon high-
dimensional atom-density representations almost exclusively occur in regions of the representation space which
lie outside the convex hull defined by the training set points. We then propose a perspective to rationalize the
domain of robust extrapolation and accurate prediction of atomistic machine learning potentials in terms of the
probability density induced by training points in the representation space.
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I. INTRODUCTION

Machine learning (ML) potentials for atomistic systems
infer the mapping between configurations and a target ob-
jective function, i.e., the total energy of the system and the
forces acting on each atom. These potentials are trained on
a database of configurations whose objective function has
been calculated via a computationally expensive, yet accurate,
reference, e.g., density functional theory methods. Following
the training procedure, ML potentials offer predictions that
are accurate with respect to, and much faster to compute than,
the reference method [1–5]. A key aspect toward the making
of accurate and efficient ML potentials lies in the choice of
the representation function, which maps atomic coordinates
to a set of numerical features. Among the most successful
ones, we find expansions of local densities around atoms in
the systems. In a nutshell, these representations are built upon
the description of an atomic environment in terms of atom-
centered distributions (encoding N-body correlations up to a
desired order of N), which are approximated via a truncated
expansion in radial and angular basis sets [6–11].

One notable characteristic of these representations is that
they originate a high-dimensional feature space. The accuracy
of the ML predictions is, moreover, generally observed to
correlate with the representation’s dimensionality, when the
other free parameters in the expansion are fixed [1,2,12]. For
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this reason, there is an incentive to employ high-dimensional
atomic-density representations when training ML potentials.
Recent publications by Balestriero et al. [13] and Yousefzadeh
[14], built upon the theoretical results presented by Bárány
and Füredi [15], showcased that the predictions made by im-
age recognition models whose inputs are high-dimensional,
happen in an extrapolation regime, where interpolation and
extrapolation regimes are formally defined according to a ge-
ometric criterion, in particular [13]: Interpolation occurs for a
point x∗ whenever the latter belongs to the convex hull (CH) of
a set of training points X � x1, x2, . . . xM , if not, extrapolation
occurs.

The above definition has also been employed in the
community of scientists applying ML methods to atomistic
systems, and a common assumption is that the accuracy of
ML potentials is strongly dependent on the fact that their
predictions take place in an interpolation regime. When a
ML potential accurately predicts the objective function for a
structure outside the training database, this result is often in-
terpreted as a sign that the atomic environment representations
in the out-of-sample structures are contained in, covered by, or
interpolated between points in the training set [16–24].

Atom-density representations are built to naturally encode
physical symmetries [6–11]. Further, protocols underlying the
generation of atomistic configuration databases hinge on the
sampling of trajectories and of physically relevant phases.
These properties reduce the effective degrees of freedom
possessed by such representations when compared, e.g., to
images. It is therefore not trivial to predict a priori whether
ML potentials exploiting high-dimensional atom-density
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representations also suffer from a curse of dimensionality and
whether they carry on predictions in an extrapolative regime,
defined according to the previously mentioned geometric cri-
terion.

First, we show that, for the example case of data sets and
benchmarks widely quoted in literature, ML potentials pre-
dictions generally occur at a point outside the training set CH.
We then propose a protocol to measure the sampling density
induced by the training data on points belonging to the test
data set. This quantity is computed on a test point’s features
as the log probability density of training points estimated via
an adaptive k-nearest-neighbors algorithm. We show that such
measure strongly correlates with the prediction errors incurred
by ridge-regression potentials on test sets, thus providing an
effective tool to identify low-accuracy regions in the represen-
tation space and to rationalize the accuracy of ML potentials
according to a rigorous geometric criterion. We thus clarify
the difference between the CH-derived definition of interpo-
lation and the alternative concept of a well-sampled region in
the representation space. While the knowledge of whether a
test point lies within the training set CH yields no information
on the test accuracy of a high-dimensional ML potential, we
show that one can establish a relationship between the test
error incurred by ML potentials and the probability density
function induced by the training set and computed on a test
point.

II. METHOD

To draw general conclusions, we consider three data sets
in our investigation. These comprise periodic and finite-size
systems with different chemistries:

(1) The ice-water data set by Monserrat et al. [19], which
was employed to test the transferability of a ML force field
trained on water configurations to the case of ice crystals. It
encompasses a training set of forces and energies in 1000 liq-
uid water configurations—corresponding to 192 000 atomic
environments—and a test set containing structures corre-
sponding to 54 known ice phases—comprising 2847 atomic
environments—which also includes all the experimentally
verified ice structures.

(2) The Li, Mo, Ge, Si, Ni, Cu data set by Zuo et al.
[12], which was used to benchmark cost and accuracy of
several ML force-field flavors. It gathers energies and forces
in systems of the six different elements for their ground-
state crystalline bulk configuration, strained crystals, low
Miller index surfaces, bulk structures sampled during ab initio
molecular dynamics (MD) trajectories at different tempera-
tures, and bulk structures with a vacancy, also sampled during
ab initio MD trajectories. Configurations are then organized,
according to a random 90:10 split, into a training and testing
set.

(3) The Au13 database, which was custom built to probe
the likelihood of extrapolation during a MD trajectory. It
comprises five subsets of 1000 configurations of planar Au13

nanoclusters, with energies and forces labels, sampled every
3 ps during finite-temperature (50 K, 100 K, 200 K, 300 K,
and 400 K) MD runs where no structural rearrangements were
observed; for further details, we refer the reader to Sec. C of
the Supplemental Material [25].

To associate features to atomic environments, we employ
the atom-centered symmetry functions (ACSFs) [6,26], the
smooth overlap of atomic positions (SOAP) [7,27], or the
atomic cluster expansion (ACE) [11,28] representation (see
Supplemental Material [25], Secs. A and B and Tables S1–S6
for further details), and adopt previously reported setups when
these are available in the literature [12,19,29,30]. We then
transform the high-dimensional representations in a linear
fashion via principal components analysis (PCA), and con-
struct sets of P-dimensional representations which employ
the first P principal components, using the same procedure as
reported in Zeni et al. [30]. We then systematically investigate
whether test points are contained within the CH of the training
set, also as a function of the number of employed PCA com-
ponents. This approach parallels emerging protocols in the
literature where low-dimensional embedding of atom-density
representations are employed as a tool to probe the similarity
among structures [31,32] and rationalize ML accuracy and
transferability [1,12,19–23]. Rather than computing the CH—
a time-consuming task in high dimensions [33]—we verify
whether a test point x∗ can be expressed as a linear combi-
nation of the points in the training set {xi}M

i=1 constrained to
non-negative coefficients λi summing up to one:

x∗ =
M∑

i=1

λixi

with
M∑

i=1

λi = 1 ∧ λi � 0 ∀ i = 1, . . . , M. (1)

The test point x∗ is in the CH of the training set if and only if
the above can be satisfied; this can be verified efficiently via a
linear programming approach [34,35].

III. RESULTS AND DISCUSSION

Figure 1 reports the number of test atomic environments
which fall within the CH induced by the training set as a
function of the dimensionality P of the PCA representations,
for the three databases described. For reference, we show in
Fig. S1 the cumulative variance explained by 2 to 25 principal
components. The test points are completely contained in the
CH determined by the training set, when considering a projec-
tion in the space of the first two PCA components. Increasing
the dimensionality of the embedding, the number of test points
enclosed within the CH diminishes rapidly. Regardless of the
database design, chemical nature of the system, and choice of
representation (see also Fig. S2 for additional benchmarks),
embedding on a low yet sizable (P ∼ 10–20) number of PCA
components results in an almost complete separation between
each of the test points and the CH associated to the training
points.

Following Fig. 1, we note that low-dimensional projections
of atom-density features fail in faithfully preserving the in-
formation about whether an atomic environment is contained
within the CH determined by a set of other ones. At a more
fundamental level, we highlight that ML potentials based on
high-dimensional representations are very likely to carry out
predictions at data points not contained in the CH enclos-
ing the training set. This is true not only when testing the
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(a)

(b)

(c)

FIG. 1. Fraction of atomic environments in the test set which
are contained in the CH enclosing the points in the training set,
featurized according to their first P PCA components. (a) refers
to results found for the water-ice database, using SOAP or ACSF
representations. (b) corresponds to the case study of the six data sets
described in Zuo et al. [12], using an ACE representation. (c) reports
results found for structures extracted from an MD trajectory of an
Au13 planar nanocluster at different temperatures, using an ACE
representation, where the test and training set are constructed via a
leave-one-out scheme.

transferability of the ML potential from one phase to another
(i.e., the ice-water database) but also in apparently trivial
MD trajectory where no structural rearrangements take place
(i.e., the Zuo et al. [12] and the Au13 database). Notably, the
non-negligible portion of atomic environments found within
the training points CH in the Zuo et al. [12] data set [Cu, Ni,
Ge and Si curves in Fig. 1(b)] actually consists of local atomic
environments identical to those also present in the training set
(see Supplemental Material [25], Sec. D).

After determining that predictions are likely to happen
outside the training set CH when using a high-dimensional
input representation, we test whether a ML potential’s pre-
diction effectively operates in such a high-dimensional space.
To investigate if an accurate ML potential projects data into
a low-dimensional space where test data are contained by the

(a)

(b)

FIG. 2. Mean absolute error on energy prediction when account-
ing for the contribution of the first P PCA of the high-dimensional
feature spaces deriving from an ACE representation for a ridge-
regression potential trained on the Zuo et al. [12] data set (a) and
on the Au13 database at 200 K (b).

ones in the training set, we train a regularized linear potential
to predict the energy of structures for the example cases of the
Zuo et al. [12] and Au13 data sets (see Supplemental Material
[25], Secs. G and H for further info). We analyze the weights
assigned to each feature by the regression algorithm following
training, and map the relevance of each PCA feature toward
diminishing the per-atom energy mean absolute error (MAE).
We report the MAE of the potential as a function of the
number of PCA components accounted for in the regression
in Fig. 2. We refer the interested reader to Fig. S1 for a report
on the amount of variance explained, and to Figs. 1(b) and
1(c) for the number of test points which are enclosed by
the training points CH, as a function of the first P principal
components. We confirm that ridge regression potentials do
need to operate in a feature space where the majority of the
test set atomic environments lie in a region of extrapolation to
reach their best accuracy.

In light of the accuracy reported in the literature for
predictions on train-set as well as test-set configurations
[12,19,29,30] and our analysis, we demonstrate the need
to revisit previous interpretations [1,12,19,21,22,24] relating
ML potentials’ accuracy and the geometrical relationship
between test and training atomic environments, especially
when these are carried out on low-dimensionality projec-
tions. Indeed, ML potentials exploiting a high-dimensional
local density representation can generalize their predictions
to atomic environments which lie in an extrapolation regime,
as per defined according to a CH-based criterion. By the same
token, and from the opposite perspective, we conclude that
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accurate predictions do not imply that test points are contained
within the high-dimensional CH enclosing the set of available
training points. For the above reasons, a CH-based definition
of interpolation and extrapolation is too weak and uninfor-
mative for the case of high-dimensional spaces. This finding
further motivates the search for better suited definitions of
interpolation and extrapolation, which align with generaliza-
tion performances.

To rationalize the effectiveness of ML regressors in high
dimensions, we hypothesize that the test points lie in regions
of the representation space that are sufficiently sampled by the
training set distribution. To test this hypothesis, we estimate
the probability density generated by the training set points,
which we call sampling density, on the locations of repre-
sentation space where test points lie. We do so by using an
adaptive k-nearest-neighbor density estimation, which works
as follows. The test point x∗ is virtually added to the training
set and its k∗ nearest training points are found. The density is
then computed as

ρ(x∗) = k∗ − 1

M V ∗ , (2)

where M is the size of the training set and V ∗ is the
volume occupied by the first k∗ training point neighbors [36].

The number k∗ of training neighbors considered is chosen
adaptively for each test point as to maximize the accuracy of
the estimate [37]. The volume V ∗ is computed as the volume
of a hypersphere in dimension d , where d is the intrinsic
dimension of the training data manifold computed via the
TwoNN estimator [38]. This way, we obtain a measure that
indicates how much test set points are well-sampled by the
training set density. We refer the interested reader to Sec. I
of the Supplemental Material [25] for further details on the
density estimation algorithm.

We assess the relationship existing between such measure
and the error incurred by a ridge-regression potential based
on ACE representations trained on the data that generates the
density distribution when tested on points in the test set. We do
so for the Zuo et al. [12] and for the Au13 database. In the latter
case, each potential is trained on data from a MD trajectory
at a single temperature, and tested on data coming from the
other four MD trajectories. In Fig. 3, we report the test MAE
on forces, averaged and binned over the negative log sampling
density of local atomic environment representations in the test
sets. We use 20 averaging windows equispaced between the
lowest 5% and the highest 5% log density encountered across
all test sets, and display only bins containing at least 1% of
the data.

Figure 3 highlights how the log sampling density corre-
lates with the binned test MAE on forces for points outside
the training set, for all databases considered (see also Figs.
S7–S9). We find that the metric we introduce offers an
estimate of the degree by which an out-of-sample atomic
environment lies within a well-sampled region of the rep-
resentation space and, more importantly, correlates with the
error incurred by trained regression potentials. We never-
theless find that the proposed metric is dependent on the
choice of the representation (Figs. S8 amd S9) and that the
precise relationship with the MAE is system- and model-
dependent. Moreover, we observe a good correlation between

FIG. 3. Correlation between the test MAE on forces incurred by
ridge regression potentials and the negative log probability density
estimate for the training points in representation space, computed on
test points (i.e., sampling density).

the proposed metric and a model-dependent error estimator,
i.e., the prediction uncertainty drawn from a committee of
models trained by sub-sampling a larger training set [39] (see
Sec. K, Fig. S11 for further details). These results confirm
the hypothesis that the training set sampling density pro-
vides a statistical/geometrical criterion to chart extrapolation
robustness of high-dimensional ML models across the repre-
sentation space.

IV. CONCLUSIONS

To conclude, we follow the definition spelled out by
Balestriero et al. [13], where extrapolation occurs if the test
structure lies outside the high-dimensional CH which encloses
the set of training structure, and find that the large majority
of the test predictions take place in an extrapolation regime
when employing high-dimensional local atomic density rep-
resentations (ACSF, SOAP, ACE). We thus demonstrate the
need to revisit previous interpretations relating ML potentials’
accuracies and the geometrical relationships between test and
training atomic environments.

In a second instance, to understand why linear ML mod-
els exploiting atom-density representations are predictive for
points outside their CH, we relate their accuracy to the proba-
bility density induced by training points in the representation
space. This geometric measure of well-sampledness in the
representation space is found to correlate with the error in-
curred by the ML model, and overcomes the limitations in the
use of a CH construction to geometrically define interpolation
and extrapolation regimes in high-dimensional spaces. The
criterion suggested, in turn, enables us to verify whether a
training set is well-suited to enable accurate predictions at a
target point in representation space.

We envision that the density-sampling analysis will pro-
mote the rational development of novel database generation
routines, adaptive sampling protocols, and data point selection
algorithms. This area of research [40–43] is indeed critical
toward a data-efficient route in the automatic construction
of ML potential potentials. Future endeavors will be also
directed to probe the mechanisms that rule the interpolation/
extrapolation and the induced training densities inherent to
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ML potentials exploiting learnable representations [44–49].
Finally, we highlight the generality of the training data-set
sampling density analysis, which could be applied in other
domains where high-dimensional ML models are widespread
and successful, e.g., image recognition, diagnostics, therapeu-
tic development and health-care delivery.

Scripts and inputs required to generate all the plots and
results discussed in this paper are available on the Materials
Cloud [50].
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