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Interplay of band occupation, localization, and polaron renormalization for electron transport
in molecular crystals: Naphthalene as a case study
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Understanding electronic properties and charge transport in organic semiconductors is important for improv-
ing organic electronic materials and devices. Here we investigate the impact of electronic band occupation,
charge-carrier concentration, and symmetry of phonon modes on the electron mobility in naphthalene crystals
for various temperatures. Our theoretical approach is based on the description of the electron-phonon coupling
(EPC), where the coupling to low-frequency modes is treated by an effective vibrational disorder potential with
local and nonlocal contributions and the coupling to high-frequency modes is included by a polaron treatment.
Surprisingly, the coupling to high-frequency modes leads to an increase in the mobility in presence of the
low-frequency modes, which is explained by localization and band occupation effects that further depend on
the carrier density. A symmetry analysis sheds additional light on the energy dependence of the EPC, which
is important to describe transport properties as a function of charge density and temperature. We also find that
coupling to low-frequency phonons together with band occupation effects can lead to a vanishing slope of the
mobility versus temperature that is known from experiments.

DOI: 10.1103/PhysRevB.105.165136

I. INTRODUCTION

Over the last decades, organic semiconductors have re-
ceived increasing attention in fundamental and applied
research. The progress in material synthesis, purification
techniques and electronic optimization strategies led to a con-
stant improvement of electronic device performance, which
makes organic semiconductors very promising candidates for
low-cost and easy-to-process electronic and optoelectronic
applications [1,2]. This development has resulted in appli-
cations such as organic light-emitting diodes [3], organic
field-effect transistors [4,5], organic solar cells [6,7], and
organic sensors [8], which are now becoming commercially
available. Despite the number of applications, there are still
great challenges in describing the microscopic charge trans-
port in those materials. Even in the same material such as
naphthalene, electrons and holes can behave very differently
[9–12] and elude a satisfactory description. While at room
temperature the electron mobility along a certain direction is
almost temperature-independent, the hole mobility shows a
steep power-law behavior [13,14]. A deep understanding of
a number of microscopic aspects is essential but has not been
achieved yet.

In general, the properties of organic semiconductors de-
pend very sensitively on intra- and intermolecular vibrations.
For instance, to understand charge transport it is essential to
find a suitable description of the electron-phonon coupling
(EPC) that is intrinsic to all organic materials. Within the
broad class of organic semiconductors, organic molecular
crystals have long-range order, which reduces the complexity
as compared to blends or polymers and makes them ideal
model systems to study. One important milestone was the
development of polaron theories [15–21] that describe the

impact of EPC through the formation of a polaron, a charge
carrier coherently dressed by dynamic molecular vibrations.
This dressing causes a reduction of the electronic bandwidth,
also known as band narrowing. This polaronic description
is suitable for high-frequency vibrations but questionable for
slow (low-frequency) modes [22,23], for which a quasistatic
treatment generating electronic disorder was suggested to
be more appropriate [22,24]. This disorder and the dynamic
change of the same (also referred to as dynamic disorder) is
the basis for a description of the transient localization sce-
nario [25–27] at ultrashort time scales. Time-scale analysis
become more important in recent research since the molecular
vibration spectra are broad and cover two orders of magni-
tude in energy [28]. A single analytical limit to describe all
molecular vibrations, i.e., either dynamic polaron dressing or
quasistatic disorder, appears inappropriate and recent models
perform a separation into multiple frequency regimes [28–30].
Additionally, numerical methods treating the full dynamics of
the molecular vibrations are emerging [31,32].

In this work, we use linear response theory and a dedicated
treatment of EPC for low- and high-frequency phonons that
combines a vibrational-disorder approach with a polaron ap-
proach to calculate electron mobilities in naphthalene crystals.
We concentrate on the coupling to only low-frequency phonon
modes first and later extend our considerations to all phonon
modes. We show that the simultaneous coupling to low- and
high-frequency vibrations leads to an unexpected increase
of mobility, which is explained in detail. We shed light on
temperature dependences of the electron mobility, the role
of the charge-carrier density and band-occupation effects, as
well as the impact of correlated vibrational disorder across the
conduction band.
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II. THEORY AND METHODS

A. Holstein-Peierls Hamiltonian

The arrangement of organic molecules in a periodic crystal
structure leads to an overlap of molecular orbitals, which
enable charge carriers to spread across the crystal. Inter- and
particularly intramolecular vibrations in the crystal change
the overlap of orbitals and thus directly affect the electronic
properties and charge transport, which is called EPC. We
model these properties of organic crystals by utilizing the
Holstein-Peierls Hamiltonian [17,19],

H = Hel + Hph + Hel−ph. (1)

The electronic Hamiltonian is given by an effective tight-
binding model, where every molecule represents a single site

Hel =
∑

i j

εi j a†
i a j, (2)

a(†)
i annihilates (creates) an electron at the lowest unoc-

cupied molecular orbital (LUMO) of the ith molecule. Inter-
and intramolecular vibrations (phonons) are described by har-
monic oscillators

Hph =
∑

Q

h̄ωQ

(
b†

QbQ + 1

2

)
, (3)

where the index Q ≡ (λ, q) is composed of λ the mode
index and q the phonon momentum. The EPC Hamiltonian is
given by

Hel−ph =
∑

i j

∑
Q

h̄ωQgQ
i j (b

†
Q + b−Q)a†

i a j, (4)

where the coupling constant gQ
i j can be written as

gQ
i j = 1√

2N�h̄ω3
Q

∑
nμ

eλ
nμ(q)Cnμ

i j , (5)

with polarization vectors

eλ
nμ(q) = eλ

μ(q)eiqR0
n , (6)

and the gradients of the transfer integrals with respect to
atomic displacements

Cnμ
i j = 1√

Mμ

∂εi j

∂Rnμ

∣∣∣∣
Rnμ=R0

nμ

. (7)

Here, the index n runs over all unit cells and μ over all
atoms inside the unit cell. Rnμ is the position of an atom,
R0

nμ the associated equilibrium position, and Mμ its mass. The
vectors Cnμ

i j account for changes in the electronic structure due
to displacements of atoms and have the full crystal symmetry.
Information about phonon mode patterns are contained in the
polarization vectors, which are composed of the mode patterns
eλ
μ(q), which are the eigenvectors of the dynamical matrix

[33], and a phase factor eiqR0
n due to a finite wave vector q.

Unfortunately, the Holstein-Peierls Hamiltonian cannot
be solved analytically for large crystals with many phonon

modes. Typical problems are the phonon dispersion and the
large number of modes, which lead to an exponentially in-
creasing Hilbert space with increasing system size. In the
following, we discuss an analytic approach how such obsta-
cles can be approached.

B. Phonon symmetry and phonon dispersion relation

The challenge of describing the q dependence of the EPC
is often circumvented by assuming dispersionless optical
phonons [34–37,12,18]. However, such a description could
leave out essential physics as has been demonstrated for
one-dimensional (1D) models of organic molecular crystals
[38,39]. Notwithstanding, in 3D bulk crystals the influence
of phonons with a nontrivial q dispersion relation is rarely
explored but we believe that this would contribute to a better
description of charge transport in crystalline organic semicon-
ductors [40].

To interpolate gQ
i j throughout the Brillouin zone (BZ), we

start with Eq. (5) and restrict the sum over all unit cells n to
the unit cells of the involved transfer integral, i.e., the unit
cell which contains the sites Ri or R j . For organic molecular
crystals, this is a good approximation because of the rapidly
decaying orbital overlap, which also entails rapidly decaying
couplings with orbital distance. As a result, changes in the
geometry outside the involved unit cells do not affect the
transfer integral. Performing this approximation allows us to
continue analytically and yields

gQ
i j ≈ 1√

2N�h̄ω3
λ

∑
μ

(
eλ

n(i)μ(q)Cn(i) μ
i j + eλ

n( j)μ(q)Cn( j) μ

i j

)
.

(8)
The indexes i and j run over all molecules in the crystal and

can also be described by their corresponding unit cell index
n(i) or n( j) and molecule indexes μ within their unit cell.
The vectors eλ

n(i)μ denote the corresponding mode patterns
according to unit cell n(i), which is related to the mode pattern
in unit cell n( j) by,

eλ
n( j)μ = eλ

n(i)μeiq(R0
n( j)−R0

n(i) ), (9)

where R0
n(i) is the position of the unit cell, in which site i

is located. It is not to be confused with the position of the
ith molecule Ri. As a result, the EPC constants are solely
determined by the mode patterns inside the unit cell and
neighboring unit cells in the crystal lattice, which corresponds
to an interpolation of the q dispersion of gQ

i j on the basis of two
wave functions. A systematic improvement with more terms
is straightforward but not in the scope of the present work.

We next define the symmetric (s) and antisymmetric (a)
EPC parameters as

gs λ
i j (q) := 1√

2h̄ω3
λ
(q)

∑
μ

eλ
μ(q)Cns (i) μ

i j ,

ga λ
i j (q) := 1√

2h̄ω3
λ
(q)

∑
μ

eλ
μ(q)Cna (i) μ

i j , (10)
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with the symmetrized and antisymmetrized gradients of the
transfer integrals,

Cns (i) μ
i j = Cn(i) μ

i j + Cn( j) μ
i j ,

Cna (i) μ
i j = Cn(i) μ

i j − Cn( j) μ
i j , (11)

respectively, and obtain

gQ
i j = gs λ

i j (q)

2
√

N�

(
eiqR0

n(i) + eiqR0
n( j)

)

+ ga λ
i j (q)

2
√

N�

(
eiqR0

n(i) − eiqR0
n( j)

)
. (12)

The EPC is hereby (without further approximations) ex-
pressed in terms of symmetric and antisymmetric coupling
constants and therefore the q dependence of the EPC constant
can be split into symmetric and antisymmetric contributions,
which turns out to be very useful for later analysis. The EPC
constants gs(a) λ

i j (q) themselves are still a function of phonon
momentum. From Eq. (12), we see that the symmetric cou-
pling has the strongest impact for q = 0 and the weakest for
q being at the edge of the BZ. For antisymmetric coupling the
behavior is opposite [39]. The symmetric coupling constant
gs λ

i j (q) can be evaluated at the BZ center (� point) and the
antisymmetric coupling constant ga λ

i j (q) at the edge of the
BZ. From Eqs. (10) to (12), we can immediately see that the
antisymmetric coupling vanishes for n(i) = n( j), i.e., when
both molecular sites i and j are located in the same unit cell.
That is, inside a unit cell [n(i) = n( j)] the EPC constant has
only symmetric contributions.

The symmetrization of the EPC is illustrated schematically
in Fig. 1 for the example of two sites i and j. In this figure,
the atom index μ is neglected for simplicity in the mode
patterns eλ

n(i) and in the gradients of the transfer integrals Cn(i)
i j

and the projection eλ
n(i)C

n(i)
i j + eλ

n( j)C
n( j)
i j is proportional to the

EPC coupling constant [cf. Eq. (8)]. Figure 1(a) illustrates
that the gradients (orange arrows) are in general different,
i.e., Cn(i)

i j �= Cn( j)
i j . Symmetrization leads to the symmetrized

gradients Cns (i)
i j in Fig. 1(b) and the antisymmetric gradients

Cna (i)
i j in Fig. 1(c). The sum of Cna (i)

i j and Cns (i)
i j gives the

original gradient Cn(i)
i j . Please note that the mode pattern is not

symmetrized. The q dependence of the EPC constant can then
be expressed in terms of the (anti)symmetric Cns(a) (i)

i j gradients
projected onto the mode patterns in the unit cells n(i) and n( j)
yielding the q dispersion given in Eqs. (10) and (12).

Further extending Eqs. (8) and (12) to more neighboring
unit cells is possible and would lead to additional symmetry
flavors besides (anti-)symmetric EPC. However, such an sys-
tematic extension is computationally demanding [40], because
it involves simulating large supercells to obtain the material
parameters. It is not in the scope of the present work and we
focus on symmetric and antisymmetric coupling, which is an
improvement over previous publications that are exclusively
based on �-point phonon modes.

FIG. 1. Schematic view on the relevant contributions to the q
dependence of the EPC constants for neighboring molecular sites
i and j with transfer integral εi j . For simplicity, we have dropped
the atomic index μ in the mode patterns eλ

n(i) and eλ
n( j) and in the

gradients Cn(i)
i j and Cn( j)

i j (see Eq. (7) for their definition). (a) Un-
symmetrized gradients used in Eq. (8). (b) Symmetrized gradients
Cns (i)

i j as introduced in Eq. (10) to define the q dependence of the
symmetric part of the EPC constant gs λ

i j (q). (c) Antisymmetrized

gradients Cna (i)
i j as introduced in Eq. (10) to define the q dependence

of the antisymmetric part of the EPC constant ga λ
i j (q).

C. Effective description of electron-phonon coupling

1. EPC to low-energy phonon modes

In our study, we combine the two different theoretical con-
cepts of (adiabatic) quasistatic disorder and polaron narrowing
to cover the effect of EPC of different modes with improved
accuracy. The first treats the phonon modes within the adi-
abatic limit of EPC, in which the vibrational mode energies
are small compared to the electronic transfer integrals. This
leads to an effective description of EPC in terms of dynamic or
vibrational disorder for EPC to low-frequency modes. The ef-
fectiveness of vibrational disorder treatments has been shown
for model systems by previous studies [38,39,41]. They show
that not only the high-frequency modes but also the coupling
to quasistatic modes are essential to understand the dynamics
of charge carriers.

Here, we introduce a real-space formulation of the
nonlocal, temperature-dependent vibrational disorder oper-
ator V (T ) that generalizes local vibrational disorder used
previously [42,28]. More details on the derivation of vibra-
tional disorder can be found in the Supplemental Material
[43]. We account for the symmetry of the EPC in terms
of symmetric and antisymmetric vibrational disorder and
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obtain

V (T ) = V s(T ) + V a(T ), with

V s(a)(T ) =
∑
λi j

σ
s(a) λ
i j (T )

(
φλ

i + (−)φλ
j

)
2

a†
i a j, (13)

where φλ
i are independent, normal-distributed random num-

bers with zero mean and variance of one. Note that this is a
nonlocal disorder potential, which results from the nonlocal
EPC. The disorder strengths σ

s(a) λ
i j (T ) for each mode with its

symmetric and antisymmetric coupling parameters are given
by

σ
s(a) λ
i j (T ) = gs(a) λ

i j h̄ωλ

√
(1 + 2〈nλ〉T ). (14)

Here, 〈nλ〉T denotes the occupation according to the
Bose-Einstein distribution function for phonon mode λ at
the absolute temperature T . The absolute values of σ

s(a) λ
i j

denote the standard deviation of the random disorder.
According to Eq. (14), σ

s(a)
i j consists of a temperature-

independent and a temperature-dependent contribution. The
temperature-independent part originates from quantum me-
chanical zero-point vibrations of the phonon modes and is
the main difference to a classical description [37]. Please note
that the random numbers φλ

i in Eq. (13) only depend on the
site index i and mode λ. Consequently, two transfer integrals
ti j and tik , which share the same site, share the same φλ

i but
may differ in the second random number φλ

j and φλ
k if j �= k.

The partly randomized transfer integrals are therefore not
independent but correlated with an autocorrelation A, whereas
on-site energies are not correlated. This corresponds to the
physical picture, where, e.g., a molecular vibration would lead
to a decrease in distance to a neighboring site and therefore
increase the distance to another neighbor in opposite direc-
tion. The transfer integrals at one site would increase due
to a stronger overlap of molecular orbitals and decrease by
the same amount in opposite direction. Thus, the vibrational
disorder is correlated.

The sign of σ
s(a) λ
i j is related to the autocorrelation between

neighboring sites. From the hermiticity of the Hamiltonian, it
follows directly that σ s

i j = σ s
ji and σ a

i j = −σ a
ji. The symmetry

of a phonon mode manifests with different correlations of
neighboring transfer integrals. Total (anti)symmetric modes
generate an autocorrelation of A = +(−)0.5 for adjacent
transfer integrals along a certain crystal-direction. The mix-
ture of symmetric and antisymmetric modes in a real system
would lead to smaller values, i.e., between −0.5 and +0.5.

2. EPC to high-frequency phonon modes

The appropriate concept to treat phonon modes which vi-
brate significantly faster than a typical charge-transfer time
can be described suitably by using polaron theories [17–21,5].
It is assumed that the polaron is instantaneously formed af-
ter the excess electron (or hole) has been created. In other
words, the time scales entail a relaxation of the geometry upon
charging that is faster than the charge transfer. The polaron
description here is based on the Lang-Firsov (LF) transforma-
tion [44], which is a unitary transformation of both electron

and phonon operators given by the operator

S =
∑

iQ

gQ
ii (b

†
Q − b−Q)a†

i ai. (15)

This transformation is performed for vibration modes with
intramolecular EPC only, whereas the modes with finite inter-
molecular EPC are effectively described using the vibrational
disorder potential. This assumption is always justified when
the EPC to typical high-energy phonon modes is dominated
by the intramolecular coupling constants gQ

ii . If we use the
proposed model for the Q dependence of the EPC constants
we find the real-space representation of the operator S,

S =
∑

iλ

gs λ
ii (b†

i,λ − bi,λ)a†
i ai, (16)

which indicates that only the intramolecular couplings at the
� point contribute. This is reasonable since prototypical high-
energy phonon modes only possess an intramolecular EPC
constant. The transformed Hamiltonian is then treated by a
mean-field approach that substitutes the transformed elec-
tronic part by the phonon average [45,20],

H̃el → 〈H̃el〉ph =
∑

i j

(δi j (εii + Vii(T ) − �)

+ (1 − δi j )P̃(εi j + Vi j (T ))) a†
i a j, (17)

where � is the polaron shift � = ∑
λ h̄ωλ(gs λ

ii )2 and P̃ is the
polaron renormalization factor

P̃ = exp

(
−

∑
λ

(
gs λ

ii

)2
(1 + 2〈nλ〉T )

)
. (18)

Equation (17) therefore considers both the EPC to the
low-energy modes by using the vibrational disorder potential
V (T ) and the EPC to high-energy modes yielding the polaron
renormalization factor P̃ for the electronic transfer integrals as
well as the polaron shift � of the on-site energies. Details on
the chosen mode energy which separates the modes according
to the two treatments of the EPC are discussed below.

At this point, we note that, for consistency, the LF trans-
formation also transforms the intermolecular part of the EPC
and leads to a renormalization of the vibrational disorder that
is caused by intermolecular EPC in the same way as for the
electronic transfer integrals [cf. second term on the rhs of
Eq. (17)]. This is because only electronic operators in the
intermolecular EPC are affected by the LF transformation
since phonon operators of different vibrational modes com-
mute with each other.

The effective mean-field Hamiltonian in Eq. (17) is used
below to evaluate the current-current correlation function for
the coherent contributions to charge transport (cf. [45]) with
an ab initio description of the Hamiltonian parameters. We
note that the high-frequency modes do not lead to incoher-
ent transport contributions because they are not thermally
activated.

D. Charge transport simulations

We use the framework of linear-response theory by apply-
ing the Kubo formula [46–48] for the longitudinal electrical
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FIG. 2. (a)–(c) Naphthalene crystal and definition of transfer integrals with their ordering number (see Table I). Molecules of a single,
primitive unit cell are shown in green. (d) Band structure from fragment-orbital (FO) and plane-wave (PW) DFT simulations. The energy
zero is set to the valence band minimum. (e) Half of the Brillouin zone and definition of k points. The used k points in the plot include: Y =
(0.5, 0.0, 0.0), � = (0.0, 0.0, 0.0), B = (0.0, 0.5, 0.0), Z = (0.0, 0.0, 0.5), A = (0.5, 0.5, 0.0), L = (0.0, 0.5, 0.5). (f) Cumulative variance
of the vibrational disorder in the ab direction for symmetric (blue) and antisymmetric (orange) EPCs as well as combined σ (black line)
plotted against the energy cutoff for quasistatic phonons. Vertical gray lines indicate phonon modes. Every phonon mode is either symmetric
or antisymmetric. To show if a phonon mode couples (anti-)symmetrically small blue (orange) dots are used.

conductivity σαα in the form

σ dc
αα = 1

�

∫ β

0
dλ

∫ ∞

0
dtTr[ρ jα (t + ih̄λ) jα (0)], (19)

where ρ = e−β(H−ζN )/Zgc denotes the grand-canonical den-
sity operator of the unperturbed system with Hamiltonian H,

chemical potential ζ , partition function Zgc, and inverse tem-
perature β = 1/kBT . � denotes the volume of the crystal and
jα (t ) = e0vα (t ) is the current operator for the charge carriers,
where α is the cartesian component and e0 the elementary
charge.

We evaluate Eq. (19) based on an ab initio description of
the electronic structure using density-functional theory (DFT)
whose details are given further below. Through this connec-
tion to DFT, one can treat electron-electron interaction in
mean field and continue with effectively noninteracting Kohn-
Sham particles for the calculation of the density of states
D(E ) = 1

�
Tr{δ(E−H )} and the energy-resolved mean square

displacement

�X 2(E , t ) = 〈(x(0) − x(t ))2〉E , (20)

with effective single-quasiparticle wave packets [49]. The
notation 〈O〉E := Tr{δ(E−H ) O}

Tr{δ(E−H )} for an operator O denotes the
corresponding energy-projected averages.

We employ the efficient Lanczos recursion and continued
fraction methods [49–51] to tridiagonalize the Hamiltonian.
The time evolution of the system is performed by a Cheby-
shev polynomial expansion of the time evaluation operator
[52]. Furthermore, we apply periodic boundary conditions.
The initial state is a random phase state, which allows us to

calculate traces as expectation values over the random phase
state if the sample is large enough [53]. For our study on
naphthalene, we find that a supercell consisting of 325 ×
416 × 180 primitive unit cells is sufficiently large to calculate
numerically converged results.

Finally, the longitudinal mobility is obtained as [49]

μαα (t ) = βe0

2n

d

dt

∫ ∞

−∞
dE f (E )[1 − f (E )]D(E )�X 2(E , t ),

(21)
where n denotes the charge-carrier density and we have used
∂ f (E )

∂E = −β f (E )[1− f (E )] with the Fermi function f (E ) =
1/(eβ(E−ζ ) + 1). Equation (21) is used to calculate the time-
dependent mobility for a single wave packet propagating
coherently in time and space. In a measurement setup, such
wave packets could in principle decohere, which we do not
model explicitly. The influence of such stochastic decoher-
ence can be captured by introducing an empirical coherence
time τc, which leads to an exponential decay over time [54],

μdc
α = 1

N

∫ tmax

0
dt e− t

τc μα (t ), (22)

where N = ∫ tmax

0 dt e− t
τc is needed for normalization and tmax

is the maximum time of our simulation. The coherence time
is usually unknown for real systems. However, it needs to
be chosen consistently with the energy cutoff for quasistatic
modes. A meaningful choice would be τc = h̄

Ecut
, where Ecut is

the energy cutoff for quasistatic phonons.
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TABLE I. Transfer integrals for electrons in a naphthalene crystal.

Number Direction Symbol Value [meV]

1 ±(a/2 ± b/2) εab −37.0
2 ±b εb 9.9
3 ±c εc −3.8
4 ±(a + c) εac 4.5
5 ±(a/2 ± b/2 + c) εabc −3.3

III. RESULTS

A. Material parameters for naphthalene

We apply the above theoretical framework to naphthalene
as a concrete example. Naphthalene is an organic molecu-
lar crystal with two molecules per unit cell arranged in a
herringbone-stacking fashion [Figs. 2(a)–2(c)]. We determine
all Hamiltonian parameters based on the experimental crystal
structure [55,56].

1. Electronic structure

We perform the DFT parametrization of the Hamiltonian
for the two lowest conduction bands that are derived from
the molecular LUMO states of naphthalene and map them, by
representing every LUMO in the crystal by a single site, on an
effective tight-binding model, Eq. (2). The transfer integrals
between the sites are calculated with the fragment-orbital
approach [57–59] using DFT (FO-DFT) and the Gaussian16
code [60] with the basis set 6–311G** [61] and the exchange-
correlation-functional B3LYP [62,63]. The obtained transfer
integrals are shown in Figs. 2(a)–2(c) with their ordering
number used here. The values for all finite transfer integrals
are listed in Table I. Only a small number of neighbors have
a significant contribution and long-range transfer integrals are
exponentially suppressed. The on-site energies εii can be set
to zero.

A straightforward calculation of the band structure from
the electronic Hamiltonian Eq. (2) and the transfer integrals in
Table I leads to the band energies

ε(k) = ε0 +
∑

i∈{b,c}
2εi cos kRi + 2εac cos k(a + c)

± 2εab

(
cos k

a + b
2

+ cos k
a − b

2

)
± 2εabc

×
(

cos k
a + b + 2c

2
+ cos k

a − b + 2c
2

)
. (23)

Figure 2(d) shows the resulting FO-DFT band structure
in blue. As a reference, we have also calculated the band
structure with plane-wave DFT (PW-DFT) and B3LYP hy-
brid functional using the projector augmented-wave method
[64,65] of the VASP program package [66,67]. The reference
PW-DFT band structure is shown as dashed orange line in
Fig. 2(d). The PW-DFT and FO-DFT model agree very well
at the bottom of the conduction band, where electron transport
takes place. However, differences emerge at higher energies
and in the c direction, where distances between molecules are
largest. The model is in agreement with previous calculations

[68] and for transport properties up to room temperature, such
differences should be negligible.

2. Phononic properties and EPC

In the present approach we distinguish between local EPC
to the onsite energies of a molecule and the nonlocal EPC to
the transfer integrals between two different molecules. In the
case of naphthalene, the former predominantly contribute to
the polaron renormalization, while local and nonlocal con-
tributions together generate the disorder potential. The local
EPC is calculated for an isolated gas-phase molecule using
a frozen phonon approach [69] with vibrational patterns and
mode frequencies obtained with DFT using Gaussian 16 [60],
the basis set 6–311G** [61], and the exchange-correlation-
functional B3LYP [62,63].

The nonlocal EPC is calculated with phonon mode pat-
terns and vibration frequencies obtained with the density
functional based tight-binding method (DFTB) [70,71]. It
has been shown that DFTB yields appropriate estimations
of vibrational properties in a computationally efficient way
although being less accurate than DFT [72]. We used the
DFTB+ program [73] with the 3ob-3-1 parameter set [74,75]
for third-order density functional tight binding [76] and in-
cluded Grimme’s dispersion correction [77]. We apply a
frozen phonon approach [69], where the atoms in a supercell
are displaced according to the phonon mode patterns and
changes in εi j (calculated with DFT as explained above) are
tracked to obtain gQ

i j . To sample both the � point and BZ
edge of the crystal vibrations we have used a supercell with
2 × 2 × 1 primitive unit cells (8 molecules).

Antisymmetric modes are located at the BZ edge of the
primitive unit cell (see the Methods section) and are folded
into the BZ center of the supercell. Because of the chosen
size of the supercell only symmetric and antisymmetric gns(a) λ

i j
are located at the � point of the supercell’s BZ. The dis-
tinction between symmetric and antisymmetric modes can be
achieved afterwards by checking if gλ q=0

i j is periodic with
respect to the primitive unit cell (symmetric) or only with
respect to the supercell (antisymmetric). Finally, we calculate
the (anti)symmetric coupling constants gs(a) λ

i j according to
Eq. (10) for every phonon mode and the overall vibrational
disorder strength σ

s(a)
i j (T ) using Eq. (14).

The method of vibrational disorder is strictly valid only if
the phonons are static with respect to the electrons dynam-
ics. Therefore only the lowest-energy modes can be treated
quasistatically and we need to find a cutoff energy to sepa-
rate high- and low-frequency modes. Figure 2(f) shows the
cumulative vibrational disorder σ

s(a)
i j (T ) over different cutoff

energies along the largest transfer integral εab at T = 300 K.
Vertical lines represent phonon energies. The overall vibra-
tional disorder changes very much for small energy cutoffs
and barely changes for higher energies, where more phonon
modes are involved.

We performed test simulations for several cutoff
energies and compared the electrons dynamics in terms
of displacement and localization with the oscillation period
of the highest frequency phonon that is treated quasistatically.
We found that treating the eight lowest-frequency nonlocal
phonon modes with a maximum energy of 4.9 meV as
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quasistatic modes yields consistent results, i.e., where the
phonon oscillations are quasistatic compared to the electrons
dynamics. Similar cutoff energies of 5 meV have been chosen
previously for similar organic molecular crystals [41]. In our
case the standard deviation |σ s(a)

i j | of nonlocal vibrational
disorder at 300 K is highly anisotropic and reaches from 1.7
meV (38% of εac) in the ac direction to 23.9 meV (241%
of εb) in the b direction. The vibrational disorder from local
modes is an order of magnitude smaller with a maximum
standard deviation of only 0.45 meV.

B. Phonon-mode symmetries and correlation of
transfer integrals for quasistatic modes

An important precursor for transport properties is the den-
sity of states (DOS). We therefore investigate the influence
of the quasistatic phonons and their associated vibrational
disorder on the states in the conduction band. Figure 3(a)
shows a broadening of the DOS with increasing temperature
(increasing vibrational disorder). Higher temperatures lead to
an activation of more phonon modes and hence a stronger
vibrational disorder. Consequently, the DOS broadens with
increasing temperature. Despite the temperature dependence,
our data shows that the part of the vibrational disorder [cf.
Eq. (14)], which originates from quantum mechanical zero-
point vibrations, is significant at all considered temperatures
including room temperature. We note that a classical descrip-
tion of EPC, e.g., in the form of a molecular dynamics simula-
tion, would therefore not be able to capture such contributions.

EPC does not homogeneously broaden the DOS but can
have a different impact at different energies within the band.
To analyze the energy-dependent influence of the EPC on the
DOS, we now introduce the energy-resolved absolute cou-
pling constant Gs(a)

λ (E ) of (anti)symmetric modes to establish
a measure of the EPC strength projected onto the crystal band
energy [38,39] based on the band structure ε(q) [cf. Eq. (23)],

Gs(a)
λ

(E ) = 1

N�

∫
BZ

d3q Gs(a)
λ

(q)δ(E − ε(q)), (24)

with

Gs(a)
λ

(q) =
∑
〈i, j〉

∣∣gs(a) Q
i j

∣∣2
. (25)

The sum includes couplings over all the nearest neighbors
that are also connected via a transfer integral.

Figures 3(b) and 3(c) show the impact of the EPC for
symmetric and antisymmetric contributions across the band
for three different crystal directions (three transfer integrals).
In these figures, Gs(a)

λ (E ) is divided by the DOS for bet-
ter comparison of the couplings. The purely electronic DOS
without EPC (gray lines) indicates the energetic position of
the electronic band. It is clearly visible that the symmetric
coupling is strongest at the band edges, whereas the anti-
symmetric coupling is dominant in the middle of the band.
From Eq. (12) it gets clear that modes with q = 0 only cou-
ple symmetrically, whereas for q at the edge of the BZ, the
antisymmetric coupling is stronger. From the band structure
[see Fig. 2(d)] it can be seen that points near the � point
are related to energies at the band edge and points near the

FIG. 3. (a) Temperature dependence of the DOS. Vibrational
disorder broadens the DOS even at zero temperatures due to
temperature-independent zero-point fluctuations in Eq. (14). For
comparison the DOS without any vibrational disorder is shown in red
(no EPC). (b), (c) Energy-resolved coupling strength (see Eq. (24) for
definition) of purely symmetric EPC (b) and purely antisymmetric
EPC (c) for three different directions. DOS without EPC is indicated
in gray for clarity.

BZ edges are related to energies at the band center. Thus, the
symmetry of the coupling (and therefore the autocorrelation
of disorder) has a very distinct impact on different energy
regions in the band. We note that similar effects were observed
in theoretical studies of nonlocal, (anti)symmetric EPC in 1D
pentacene chains [39].

This observation can be further related to the influence of
the couplings at different temperatures and carrier densities.
For small temperatures and small charge densities, electrons
only populate states near the band edge and therefore symmet-
ric modes dominate EPC. On the other hand, antisymmetric
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coupling is more important at higher temperatures and larger
charge-carrier densities, because states in the middle of the
band become occupied. A detailed analysis of the band occu-
pation is given in the next section.

We next analyze the autocorrelation of the vibrational dis-
order. The combined vibrational disorder from all phonon
modes is correlated with an autocorrelation between the
neighboring transfer integrals along a given direction that
ranges from A = 0.1 (b direction) up to A = 0.3 (abc direc-
tion). This indicates that both symmetric and antisymmetric
modes contribute substantially but symmetric modes are more
dominant for every transfer integral. Previous studies of pen-
tacene crystals also have shown a dominance of symmetric
coupling with an autocorrelation of 0.25 [22], which agrees
with our results on naphthalene.

C. Influence of quasistatic phonon modes on 3D
electronic transport in naphthalene crystals

Before we address the influence of EPC on charge transport
in all its complexity, we want to investigate the influence
of band occupation on transport first. We focus on the case
of quasistatic modes only and generalize our findings later
systematically to the whole phonon spectrum. We start with
the observation that in our model we identify two underlying
temperature dependences. One is related to the ensemble of
phonons and affects vibrational disorder (see previous sec-
tion) while the other is bound to the ensemble of electrons,
which determines the band occupation and transport energies.

1. Transport level and band occupation

According to the Kubo-Formula in Eq. (21), the mobil-
ity depends on the density of transport states defined by
f (E )[1− f (E )]D(E ), which is to be distinguished from the
occupied density of states f (E )D(E ). Figure 4 shows the
energetic distribution of transport states (colored bold lines)
for two temperatures and different charge-carrier densities.
Colored areas show the occupation of the band, which differs
from the distribution of transport states especially at the band
edge. The distribution gets very narrow for low temperatures
[Fig. 4(a)] as its full-width-at-half-maximum is proportional
to 4kBT . For high temperatures [Fig. 4(b)] the distribution
gets broader and energy regions close to the band center
contribute more to the overall mobility. In general, those states
in the middle of the band are more delocalized and a broader
distribution would therefore increase the overall mobility if
the DOS would remain unchanged.

It becomes clear that the underlying temperature depen-
dences for phonons and electrons have opposite effects on the
charge transport. How these temperature dependences influ-
ence the mobility will be the subject of discussions in the next
sections. We start with the time-dependent mobility of a single
electronic wave packet, which than leads to the dc mobility
μdc

α (T ) in Sec. III C 3.

2. Time-dependent mobility

To calculate transport properties, we use the approach de-
scribed above (Sec. II D), the calculated DOS, and �X 2(E , t )
according to Eq. (20).

FIG. 4. Occupied density of states (colored areas) and associated
density of transport states ∝ f (E )[1 − f (E )]D(E ) (solid lines) for
three different charge densities at 60 K (a) and 300 K (b). (a) and (b)
use the same legend.

Figure 5 shows the mobility over time in the b direction
for three different charge-carrier densities. The vibrational
disorder and therefore DOS and �X 2(E , t ) are independent
of the density. All figures show a typical time dependence.
At the shortest times, electrons start spreading across the
crystal ballistically (linear increase of mobility up to ∼10 fs,
see insets) and eventually get scattered by local and nonlocal
vibrational disorder, which leads to destructive interference.
Consequently, the mobility decreases and transport becomes
diffusive. We find that for a 3D naphthalene crystal vibrational
disorder does not lead to a complete localization of electrons.

In Fig. 5(a) we observe that small charge-carrier densities
show a sharper and more pronounced initial mobility peak
compared to larger densities [cf. Fig. 5(c)]. Small carrier
densities lead to transport levels near the band edge. With
increasing carrier densities, we observe in Fig. 4 that the
density of transport states does not increase as strongly as the
density n itself that appears in the 1/n prefactor. This leads
to a reduced mobility-peak height for larger density, i.e., a
lower mobility at short times. For longer times, localization
effects set in and lead to a mobility decay. The stronger these
effects the sharper is the mobility peak. Consequently, the mo-
bility has a more pronounced peak for small charge densities.
A small temperature amplifies this effect, because a smaller
energy range is thermally active and higher energy states do
not contribute.

At the initial peak, μ(t ) is larger for small temperatures
than for larger temperatures. However, for longer times the
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FIG. 5. Time dependent mobility in b-direction for three differ-
ent charge-carrier densities and temperatures. Charge-carrier density
is set to (a) 10−4, (b) 10−3 and (c) 10−2. Insets show behaviors at
ultrashort times.

order is reversed and the mobility at 300 K becomes larger
than in the case of 60 or 140 K. This is related to the stronger
delocalization of states in the middle of the band, which
eventually dominate over the more localized states at the band
edge. As discussed in Sec. III B, symmetric coupling has the
strongest impact at the band edge while antisymmetric cou-
pling dominates the band center. From this we can conclude
that symmetric modes influence the ballistic regime and the
initial mobility peak stronger than antisymmetric modes do.

It becomes clear that at different times different energy
regions in the conduction band dominate transport. Therefore
it depends on the coherence time τc how much weight the
initial mobility peak gets and how strong the influence of the
long-time behavior is. The energy regions of transport are thus
influenced by τc.

FIG. 6. Temperature-dependent dc mobility for two directions
in the herringbone plane. Vibrational disorder stems from the eight
lowest quasistatic phonon modes (see main text). Solid lines show the
dc mobility for a coherence time of 135 fs, which is consistent with
the phonon cutoff energy. Dashed lines indicate a higher coherence
time of 270 fs. Colors indicate different charge-carrier densities. The
legend applies to both panels.

3. Coherence time and dc mobility

Figure 6 shows the dc mobility μdc
α (T ) in the herringbone

plane according to Eq. (22) for τc = 135 fs that is chosen in
consistency with the energy cutoff for vibrational disorder and
for τc = 270 fs which, for comparison, allows for a possibly
larger coherence time. Regardless of this choice, the mobility
decreases with temperature and shows power law behavior
below 150 K. We further analyze the phononic and electronic
contributions to the temperature dependency, which affect the
mobility additional to the β ∝ 1

T prefactor in Eq. (21). At low
T the broadening of the DOS due to EPC and the broader den-
sity of transport states are significant and therefore phononic
and electronic temperature dependences both codetermine the
slope of the power law in Fig. 6. We find that the peak of μα (t )
(see Fig. 5) dominates the dc mobility. Therefore the stronger
initial mobility peak at lower T leads also to higher mobilities
at low T in Fig. 6 and the mobility decreases with increasing
temperatures up to 150 K.

At high temperatures, the behavior of μdc
α in Fig. 6 changes

and the slope of the mobility flattens and even suggests the
emergence of a high-temperature plateau in the b direction
above 200 K. The phonon-induced changes in the DOS are
much less pronounced at higher temperatures for the relevant
energies around the chemical potential. This is in contrast
to low temperatures where the shape of the DOS changes
significantly, especially near the chemical potential. However,
the broadening of the density of transport states still increases
significantly leading to an increased contribution of delocal-
ized states. Thus, the main temperature dependence originates
from the thermal occupation of electronic states and not from
the temperature-dependent broadening due to vibrational dis-
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order. The high-temperature change in the mobility slope (i.e.,
dμdc

α (T )
dT ) in Fig. 6 is therefore identified as an effect of band

occupation (at constant carrier density).
Figure 6 additionally shows μdc

α for a larger coherence
time. Larger coherence times represent a case in which a
charge carrier has more time to localize (see Fig. 5) and the
differences between localized and delocalized states appear
more strongly. The localization leads to a lower overall mo-
bility and the relevance of the small amount of delocalized
states for the mobility increases slightly. Figure 6 shows an
emphasized high-T plateau behavior for larger coherence time
(τc = 270 fs). This indicates that the high-T plateau is mainly
driven by the influence of delocalized states in the diffusive
transport regime, which, in the middle of the conduction
band, are increasingly accessible upon thermal occupation.
Additionally, the high-T plateau is more pronounced at higher
charge densities. Both observations support the reasoning that
the high-temperature plateau is an effect of band occupation.

We want to note that decoherence is a complex phe-
nomenon, where all kinds of external and internal processes,
which are not part of the model, can contribute. Any assumed
value for the coherence time can therefore only be understood
as a simplification, where the whole complexity is reduced
to a single parameter. For this reason, we have considered a
possible variation of such a number. In general, the coherence
time could also be temperature-dependent and would probably
decrease with temperature. However, such models are beyond
the scope of the present work.

Experimental data on naphthalene electron transport
[14,78] show also a power-law behavior for small tempera-
tures and high-temperature plateaus in the b and c directions.
In the herringbone-plane (a and b direction) our results coin-
cide qualitatively. However, the simulations cannot describe
the out-of-plane direction c. One reason might be that the c
direction shows the smallest transfer integrals and therefore
possibly has the largest numerical error. More likely, however,
we believe the reason lies in the fact that our approach does
not contain any inelastic phonon creation or annihilation pro-
cesses, which might be necessary and have been conjectured
in literature [20].

D. Simultaneous modeling of EPC to high-frequency
and quasistatic phonon modes

So far, we have discussed EPC due to low-frequency
phonon modes only. Now, we want to include the high-
frequency modes in a combined model. Below, we discuss the
phonon mode spectrum and the associated polaron renormal-
ization, which is used in Sec. III D 2 to calculate the mobility
in the presence of low- and high-frequency phonons.

1. Polaron-renormalization and coupling to
high-frequency phonon modes

From the EPC parameters gs(a) λ
i j , we obtain the polaron

renormalization for high-frequency local phonon modes by
applying Eq. (18). We consider all phonons as high-frequency
modes whose phonon energy is above a certain threshold.
Figure 7 shows the cumulative polaron renormalization of
the transfer integrals for different threshold energies over the

FIG. 7. Polaron renormalization of transfer integrals due to local
phonon modes that are above an energy cutoff (abscissa). The cumu-
lated plot indicates no renormalization on the right and increasingly
stronger renormalization from right to left due to an increased num-
ber of involved modes. Vertical gray lines indicate phonon energies.

whole spectrum and for two temperatures. High threshold
energies mean only a few modes are considered, whereas low
thresholds correspond to situations, where almost all phonons
are treated as high-frequency modes. Figure 7 shows that for
threshold energies above 70 meV no significant temperature
dependence exists, because those modes are not thermally
active for either temperatures and only contribute via their
quantum mechanical zero-point fluctuations. For threshold
energies below 70 meV the occupation of phonon modes
(thermal activation) becomes significant and a difference be-
tween high and low temperatures is clearly visible.

In the subsequent transport calculation we treat all qua-
sistatic modes below 4.9 meV with the method of vibrational
disorder as before. Higher-frequency modes are treated by
polaron renormalization. For this cutoff energy, the polaron
renormalization becomes temperature dependent. The corre-
sponding renormalization factor varies from P = 0.453 at 60
K to P = 0.399 at 300 K.

2. Transport properties

Figure 8 shows the temperature-dependent mobility in the
herringbone plane for coupling to high- and low-frequency
modes (solid lines), which are compared to simulations with
only low-frequency modes from above (dashed lines). We
can see that the coupling to high-frequency modes counter-
acts the formation of the high-temperature plateau at elevated
temperatures, but does not add new characteristic features.
Surprisingly, polaron renormalization causes an increase of
the mobility for all temperatures. Usually, one would expect
the opposite since polaron renormalization reduces the trans-
fer integrals, which is expected to impede transport.

A detailed analysis of the DOS in the presence of phononic
renormalization shows a narrowing of the band according to
Eq. (18) in Fig. 9. The narrowing of the band counteracts the
band broadening from vibrational disorder. We can see that
the energy rescales but the Fermi-Dirac distribution, which de-
termines the band occupation and density of transport states,
remains broad. Only the chemical potential changes to ensure
the same charge-carrier density for every simulation. This
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FIG. 8. Combined effects of vibrational disorder and polaron
renormalization on electron mobility (solid lines) compared to the
case of absence of renormalization (dashed lines). Phonon modes
with energies below Ecut = 4.9 meV are treated as vibrational disor-
der. Coherence time is consistent with energy cutoff for quasistatic
modes at 135 fs. Charge density is constant at 10−3.

FIG. 9. Occupation of density of states (colored areas) and asso-
ciated density of transport states ∝ f (E )[1 − f (E )]D(E ) (solid lines)
for three different charge densities at 60 K (a) and 300 K (b). (a)
and (b) use the same legend. Polaron renormalization leads to band
narrowing, which enables the occupation of delocalized states in the
middle of the band.

leads to an occupation of states in the middle of the band,
which did not contribute before. States in the middle of the
band are more delocalized and by occupying those states the
effect of the renormalization of the transfer integrals can be
overcompensated, which leads to higher mobilities. We want
to emphasize that this is a feature of the band structure of
naphthalene. Whether polaron renormalization has generally
a positive or negative impact on the overall mobility depends
on the relative increase of delocalization towards the middle
of the band. Microscopic investigations by Vukmirović et al.
[23] suggest that polaron-renormalization has only a small
influence on transport, while we find a factor below two for
the present case that is not negligible.

Finally we note that the high-temperature plateau seen in
the experiment and our simulations, cannot be associated to
polaron renormalization because we observe a stronger de-
crease of mobility at high temperatures, which counteracts the
plateau formation. In any event, our results stress again the
importance of EPC to low-frequency modes and the role of
band occupation.

IV. CONCLUSIONS

In this paper, we have presented an efficient way to cal-
culate transport properties of a 3D organic molecular crystal
in the presence of EPC based on a tight-binding-like repre-
sentation of the DFT electronic structure and a thoughtful
evaluation of the Kubo formula for the electrical conductivity.
By splitting the phonon spectrum into quasistatic and dynami-
cal modes, we were able to find effective descriptions in terms
of vibrational disorder for low-frequency modes and polaron-
renormalization for high-frequency modes. We have shown
that not only the variance of vibrational disorder is important,
but also the symmetries of the phonon modes. Depending on
the symmetry, different regions of the conduction band are
affected by EPC to low-frequency phonons, which contribute
to charge transport depending on the band occupation.

An in-depth analysis of electron transport in naphthalene
has shown the importance of band occupation effects and the
role of charge-carrier density. The overall temperature de-
pendency of transport properties originates from the thermal
occupation of electronic states, the temperature-dependent
broadening of the DOS (due to vibrational disorder), and po-
laron renormalization when EPC to high-frequency phonons
is considered. We found that the experimentally observed
high-temperature flattening in the b direction can be caused by
band occupation and the coupling to low-frequency phonons
even when inelastic phonon creation and annihilation pro-
cesses are not included.

Finally, we investigated the combined effects of EPC to
high- and low-frequency modes simultaneously and found
the interesting result that the mobility increases by including
the interaction to high-frequency modes, i.e., formation of
polarons. This counterintuitive finding could be explained as
the combined effect of band narrowing and vibrational disor-
der, which leads to an occupation of delocalized states in the
middle of the band that would not contribute otherwise. The
occupation effect overcompensates the decrease of transfer
integrals between molecular sites due to polaron renormaliza-
tion.

165136-11



MERKEL, PANHANS, HUTSCH, AND ORTMANN PHYSICAL REVIEW B 105, 165136 (2022)

ACKNOWLEDGMENTS

We thank the Deutsche Forschungsgemeinschaft for fi-
nancial support [CRC 1415 and projects No. OR 349/1 and
No. OR 349/3 and the Cluster of Excellence e-conversion

(Grant No. EXC2089)]. Grants for computer time from the
Zentrum für Informationsdienste und Hochleistungsrechnen
of TU Dresden and the Leibniz Supercomputing Centre in
Garching are gratefully acknowledged.

[1] M. E. Gershenson, V. Podzorov, and A. F. Morpurgo, Rev. Mod.
Phys. 78, 973 (2006).

[2] O. Ostroverkhova, Chem. Rev. 116, 13279 (2016).
[3] S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, Rev. Mod.

Phys. 85, 1245 (2013).
[4] Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B.

Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, and
Z. Bao, Nat. Commun. 5, 3005 (2014).

[5] A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J.
Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao,
Nature (London) 444, 913 (2006).

[6] A. J. Gillett, A. Privitera, R. Dilmurat, A. Karki, D. Qian, A.
Pershin, G. Londi, W. K. Myers, J. Lee, J. Yuan et al., Nature
(London) 597, 666 (2021).

[7] M. K. Riede, R. Schueppel, K. Schulze, D. Wynands, R.
Timmreck, C. Uhrich, A. Petrich, M. Pfeiffer, E. Brier, E.
Reinold et al., in Photonics for Solar Energy Systems II, edited
by A. Gombert (SPIE, New York, 2008), p. 70020G.

[8] S. Xing, V. C. Nikolis, J. Kublitski, E. Guo, X. Jia, Y. Wang, D.
Spoltore, K. Vandewal, H. Kleemann, J. Benduhn et al., Adv.
Mater. 33, 2102967 (2021).

[9] N. Karl, in Organic Semiconductors (Landolt-Börnstein Nu-
merical Data and Functional Relationships in Science and
Technology (New Series), Group III), edited by O. Madelung,
M. Schulz, and H. Weiss (Springer, Berlin, 1985), Vol. 17i.

[10] N.-E. Lee, J.-J. Zhou, L. A. Agapito, and M. Bernardi, Phys.
Rev. B 97, 115203 (2018).

[11] F. Ortmann, F. Bechstedt, and K. Hannewald, New J. Phys. 12,
023011 (2010).

[12] K. Hannewald and P. A. Bobbert, Appl. Phys. Lett. 85, 1535
(2004).

[13] N. Karl, K.-H. Kraft, J. Marktanner, M. Münch, F. Schatz,
R. Stehle, and H.-M. Uhde, J. Vac. Sci. Technol. A 17, 2318
(1999).

[14] N. Karl, Synth. Met. 133–134, 649 (2003).
[15] S. I. Pekar, Zh. Eksp. Teor. Fiz 16, 335 (1946).
[16] S. I. Pekar, J. Phys. USSR 10, 341 (1946).
[17] T. Holstein, Ann. Phys. 8, 343 (1959).
[18] K. Hannewald and P. A. Bobbert, Phys. Rev. B 69, 075212

(2004).
[19] K. Hannewald, V. M. Stojanović, J. M. T. Schellekens, P. A.
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