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Topological band insulators and (semi-)metals can arise out of atomic insulators when the hopping strength
between electrons increases. Such topological phases are separated from the atomic insulator by a bulk gap
closing. In this paper, we show that in many (magnetic) space groups, the crystals with certain Wyckoff positions
and atomic orbitals being occupied must be semimetals in the atomic limit, e.g., the hopping strength between
electrons is infinitesimal but not vanishing, which then are termed atomic semimetals (ASMs). We derive a
sufficient condition for realizing ASMs in both spinless and spinful systems. Remarkably, with both symmetries
and electron fillings of system preserved, increasing the hopping strength between electrons may transform an
ASM into an insulator, and the induced insulators inevitably are topologically nontrivial. Particularly, using
silicon as an example, we show the ASM criterion can discover the obstructed atomic insulators (OAIs) that
are marked as trivial insulators on the topological quantum chemistry website. Our paper not only establishes
an efficient way to identify and design topologically nontrivial insulators, but also predicts that the group-IV
elemental semiconductors are ideal candidate materials for OAI.
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I. INTRODUCTION

The past decade has witnessed the prosperity and develop-
ment of the band topology in condensed-matter physics [1–4].
The topology in electronic bands has been recognized for a
long time, such as the quantum Hall effect and the quan-
tum anomalous Hall effect [5,6]. However, in the early stage
the topological phases in crystals were considered very rare
and required strict external conditions [7]. The discovery of
the topological insulator and the topological Weyl semimetal
open up a new direction for realizing topological phases
in noninteracting systems by exploring spin-orbit coupling
(SOC) effect [8–10]. Many materials constructed by heavy
atoms are predicted as topological materials with nontrivial
boundary states [11–25]. However, compared with the real-
istic materials in the database, the number of the topological
materials is still very small.

The breakthrough comes from the establishment of sev-
eral equivalent theories: topological quantum chemistry
(TQC) [26,27], symmetry indicator theory [28–30], and
related theories [31–33], all of which present a quan-
titative description of the atomic insulators, respectively,
based on the elementary band representations (EBRs) and
the symmetry eigenvalues of the bands at high-symmetry
points. The application of these two theories to the material
database predicted that thousands of realistic materials are
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topologically nontrivial [34–37]. However, there is a caveat
for the classification due to the definition of the topologically
trivial insulator. In the definition, the topologically trivial in-
sulator is the material that its band representation (BR) of
valence bands can be represented by a sum of EBRs [26],
which means the trivial state can be described by a set of
exponentially localized Wannier functions [38]. Furthermore,
based on the Wyckoff positions where the orbitals that induce
the BRs are locating at, the trivial insulator can be divided
into two classes, i.e., obstructed atomic insulators (OAIs) and
atomic insulators. For atomic insulators, the BRs are induced
from the orbitals locating at occupied Wyckoff positions.
However, for OAIs, the BRs cannot be induced only from
the orbitals centered at the occupied Wyckoff positions, but
also need orbitals locating at empty sites [26,38–41]. Phases
that are inequivalent to atomic insulator including stable topo-
logical insulator, fragile topological insulator (FTI), and OAI
are topologically nontrivial. Remarkably, one can find out the
surface states of OAIs in certain surface where the Wannier
centers can be cut as terminal [42–45].

Meanwhile, the group-IV elemental semiconductors, such
as silicon (Si), diamond, and germanium, play a central role
in the modern microelectronics industry. These elementary
materials are widely studied and were considered as topo-
logically trivial semiconductors with an indirect band gap
due to negligible SOC and a sizable band gap. According
to both the database [44] and filling-enforced OAI [45], the
group-IV elemental semiconductors indeed are classified into
topologically trivial insulators. However, a recent study shows
the silicon has a surface state [46–48], similar to the OAI.
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FIG. 1. (a) and (b) Schematic of the crystal structure in the
atomic limit and crystal phase. The occupied bands are highlighted
in yellow. See Fig. 3 for silicon as a specific example.

Thus, several natural questions arise: Does the silicon and
the other group-IV elemental semiconductors be OAI? If they
are, then does there exist an efficient method to identify
OAIs? And even more, is there a sample approach to identify
all of the topologically nontrivial phases without the time-
consuming density functional theory (DFT) calculations?

In this paper, we address these questions in the affir-
mative. We point out that, for many crystals with certain
Wyckoff positions and orbitals being occupied, they must be
(semi-)metal, i.e., atomic semimetal (ASM) when the hop-
ping strength between electrons is infinitely weak but not
vanishing due to the presence of partially filled EBRs [see
Fig. 1(a)]. By increasing the hopping strength, the systems
can be transformed into insulators due to band inversion when
both symmetries and electron fillings of the crystal are pre-
served as illustrated in Fig. 1(b). The insulators transformed
from atomic semimetal must be topologically nontrivial due
to inequivalence between such an insulator phase and the
atomic limit semimetal phase. For example, the topological
crystalline insulator (TCI) SnTe can be emerged from ASM.
Since the stable and fragile topological insulators have been
presented on the TQC website, here, we focus on the emerging
of OAIs from ASMs. In other words, materials classified as
trivial insulator should be OAIs if they are ASMs. We also
present a sufficient condition for the ASMs in spinless and
spinful systems, which only depend on the crystal structure
and the orbitals of the atoms. Thus, using the condition of
ASM to diagnose OAI will be very efficient as it is indepen-
dent of the DFT calculations. By applying the criterion to the
group-IV elemental semiconductors, we find they fall into the
condition of ASM, indicating that they would be OAI rather
than a trivial semiconductor. This result is further confirmed
by DFT calculations. Particularly, the condition of ASM also
offers useful guidance for designing topological states with
light atoms as in such a case no matter whether the system is a
semimetal or an insulator, it must be topologically nontrivial.

II. CONDITION OF ATOMIC SEMIMETAL

We consider a three-dimensional material system be-
longing to (magnetic) space-group G. The atoms in this
system can be divided into N nonequivalent sets, and the ith

TABLE I. The atomic orbitals and IRRs of the Td point group.
The third column are the BRs induced by the corresponding atomic
orbitals in 8a Wyckoff position of the 227 space group.

Orbital IRRs BRs

s (l = 0) A1 A1 ↑ G(2)
p (l = 1) T2 T2 ↑ G(6)
d (l = 2) E ⊕ T2 E ↑ G(4) ⊕ T2 ↑ G(6)
f (l = 3) A1 ⊕ T1 ⊕ T2 A1 ↑ G(2) ⊕ T1 ↑ G(6) ⊕ T2 ↑ G(6)

(i = 1,2,...,N) set of atoms can be labeled as {i; wi,
∑

l Onl
l }

where wi denotes the occupied Wyckoff position. (Here we as-
sume that if the coordinates of Wyckoff position depend on the
parameters, the value of i is different for changing the param-
eters), Ol is the atomic orbital of the atom with (total) angular
momentum l , and nl is the number of electrons residing at the
corresponding orbital. For spinless systems, l = 0, 1, 2 · · ·
is an integer, and for spinful systems, l = 1

2 , 3
2 · · · is a half

odd integer. Assuming the site symmetry of the wi Wyckoff
position is gwi

, and the mth irreducible representations (IRRs)
of gwi

are ρm=1,2···
wi

. The atomic orbital Ol of the atom at wi

generally would be splitted into different IRRs (ρm
wi,l

) of gwi

by the crystalline field with symmetry of gwi
. For example,

in spinless systems the five l = 2 (d) orbitals would be two
levels, represented two IRRs E and T2 by the crystalline field
with symmetry of the Td point group as listed in Table I.
According to TQC, the IRRs ρm

wi,l
in space-group G can be

expressed as ρm
wi,l

↑ G, for which the dimension is denoted as
d (ρm

wi,l
↑ G). Then a sufficient condition for a system to be an

atomic semimetal phase is equivalent to there does not exist a
solution for the following equation:

Nocc = χ
∑
i,l,m

ci,l,md
(
ρm

wi,l ↑ G
)
, ci,l,m ∈ {0, 1}, (1)

where Nocc is the total number of the electrons of the ma-
terial and χ = 2 for spinless systems and χ = 1 for spinful
systems. Note that the summation in Eq. (1) is constrained
in the occupied Wyckoff position and the occupied atomic
orbitals. Besides, whereas the ASM also is filling enforced, it
cannot be fully captured by the theory proposed by Watanabe
et al. [49] as the ASM predicted here can be transformed
into a gapped state with maintaining the electron fillings as
shown in the following discussion of silicon. Particularly,
the criterion of the vASM is quite different from that of the
filling enforced OAI where the occupied Wyckoff positions
always have higher multiplicity than that of a necessary empty
Wyckoff position. Thus, applying the criterion of ASM that
was built upon the theory of EBRs to the trivial insulators in
TQC database can discover the OAIs that cannot be diagnosed
by the criterion of the filling enforced OAI. The proposal of
ASM is fundamentally interesting in that it shows the hopping
strength of electrons can transform semimetal phase into topo-
logically nontrivial insulator phase. This also indicates that
all the material systems fall into the ASM criterion would be
topologically nontrivial as they inevitably cannot be adiabati-
cally transformed into atomic insulator without a gap closing
or opening.
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FIG. 2. (a) Crystal structure of group-IV elemental semiconduc-
tor materials. The Wannier charge centers are denoted by small red
balls located at Wyckoff position 16c. The three kinds of surface
termination, e.g., (111)1, (001), and (111)2 are highlighted in green,
blue, and orange, respectively. (b) Bulk Brillouin zone (BZ) of group-
IV elemental semiconductor materials.

III. SILICON AND ASM-INSULATOR TRANSITION

We take Si as an example to check the ASM criterion and
study the hopping strength-driven ASM-insulator transition.
Since the SOC effect of Si is negligible, the bulk silicon
can be considered as a spinless system. Moreover, the bulk
silicon is well known to have a tetrahedral crystal structure
with space-group Fd3m (No. 227) as shown in Fig. 2(a). Each
unit cell of elemental Si contains eight Si atoms with perfect
tetrahedral sp3 bonding residing at the Wyckoff position 8a,
and there are two Si atoms in each primitive unit cell. Thus,
the multiplicity of Wyckoff position 8a whose site symmetry
group is Td , and the point group is 2 for the primitive unit
cell. The arrangement of electrons of the Si atom in the outer
shell is 3s23p2, indicating the total number of electrons in a
primitive unit cell of silicon is 8. According to the crystalline-
field splitting, the IRRs from the s and p orbitals at 8a are A1

and T2 (e.g., ρ1
8a,l=0 = A1 ↑ G and ρ5

8a,l=1 = T2 ↑ G), respec-
tively. From Ref. [50], one knows the dimension of the two
IRRs induced from A1 and T2 orbitals are d (A1 ↑ G) = 2 and
d (T2 ↑ G) = 6. According to Eq. (1), we immediately have

�ci,l,m ∈ {0, 1}, such that 8 = 2(2c1,0,1 + 6c1,1,2), (2)

showing that in the atoms limit the silicon must be a semimetal
as illustrated in Figs. 3(a) and 3(c).

However, as we know the pristine silicon is a semiconduc-
tor [see the band structure of silicon in Fig. 3(d)], and then
there would exist a strain-driven ASM-insulator transition in
silicon. To directly demonstrate it, we calculate the electronic
properties of silicon under different tensile stresses. The re-
sults and the obtained phase diagram are shown in Fig. 3(e).
Without stress, the silicon is calculated as a semiconductor as
it should be. By applying stress, the band gap at the � point
will decrease and finally closes under ∼11% tensile stress.
The band inversion occurring at � leads to a semimetal state
for the silicon. Keep increasing tensile, there does not exist
another phase transition, namely, the silicon under the atomic
limit is a semimetal state, consistent with the above analysis.
Moreover, by calculating the BRs of the silicon under 40%
stress, we find that the BR of the lower eight bands (four
valence bands and four conduction bands) indeed are induced
by the s and p orbitals at the 8a position, and a clear diagram
of band inversion is shown in Figs. 3(a) and 3(b).

(a) (b)

(c) (d)

(e)

FIG. 3. (a) Schematic of the EBRs (A1)8a ↑ G(2) and (T2)8a ↑
G(6) induced from s and p orbitals at Wyckoff position 8a with
eight electrons (four bands are occupied in the spinless case).
(b) Schematic of the EBRs that undergo a band inversion between
�−

2 (1) and �+
5 (3). (c) The band structure of silicon under 40% tensile

stress. (d) The band structure of silicon with the fully optimized
lattice constant. The BRs of bands at the high-symmetry points
are also given. The superscript ± denotes the parity. (e) The phase
diagram and band gap between �−

2 (1) and �+
5 (3) as a function of the

lattice constant.

IV. OAI AND FLOATING SURFACE STATES

Since the semiconductor state of silicon is transformed
from ASM, pristine silicon would be topologically nontrivial.
According to the database of TQC and Ref. [45], silicon does
not have stable and fragile topologies. Thus, one can expect
that the silicon would be an OAI. To confirm it, we calculate
the BRs of the valence bands of pristine silicon [see Fig. 3(d)
and details in the Appendices] and find the BRs are solely
induced by the A1g orbital in the D3d point group at Wyckoff
position 16c of space-group Fd3m, which is an unoccupied
position in silicon. In Fig. 2(a), we also marked the 16c
Wyckoff position with red and small balls. In other words,
there is obstructed Wannier charge centers locating at the
Wyckoff position 16c. Hence, the result directly demonstrates
that silicon is an OAI.

We then study the surface state of silicon. Distinguished
from the Chern insulator and topological insulator where the
surface states always cross the bulk gap regardless of the
boundaries, the surface states of OAI are floating bands ap-
pearing in the bulk gap and only occur on the boundaries
that cut through the unoccupied Wyckoff position where the
Wannier charge centers is locating at. This means that whereas
the surface state of OAI is not as robust as that in the Chern
insulator and topological insulator, which indicates that the
floating surface state in OAI can be tunable under suitable
perturbations. Interestingly, when we chose the three crystal
planes labeled as (111)1, (001), and (111)2 planes in Fig. 2(a)
as cleavage terminations, there would exist three completely
different surface states on the corresponding boundaries.
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FIG. 4. (a)–(c) Surface spectra on (111)1, (001), and (111)2 sur-
faces. The surface Brillouin zone and paths of surface bands are
provided in the Appendices.

The calculated surface states of silicon for the three bound-
aries are plotted in Figs. 4(a)–4(c). One finds that (111)1,
(001), and (111)2 boundaries exhibit one–three floating
surface bands, respectively. This is because the three bound-
aries cut one–three obstructed Wannier charge centers [see
Fig. 2(a)].

Since the mismatch between the obstructed Wannier charge
centers and the atom’s position can lead to a bulk electric
polarization, the floating surface states can also be understood
in terms of the Zak phase along a straight line normal to
the boundary. The expression of Zak phase generally can be
expressed as [51]

Z (k‖) = −i
∑

n

∫ 2π

0

〈
unk

∣∣∣∣ ∂

∂k⊥

∣∣∣∣unk

〉
dk⊥, (3)

where the summation is performed on the occupied bands, k‖
(k⊥) denotes the momentum parallel (normal) to the boundary,
and |unk〉 is the lattice periodic part of the Bloch wave func-
tion. For the Zak phases Z (k‖) of a straight line normal to
(111)1 and (111)2 boundaries, it is calculated as π for any k‖,
showing the nontrivial properties of silicon. However, the Zak
phase Z (k‖) of a straight line normal to the (001) boundary is
calculated as 0 for any k‖. The inconsistency between the triv-
ial Zak phase and the two floating surface bands on the (001)
boundary is due to the fact the Zak phase is a Z2 topological
quantum number and cannot capture the topological nature
of systems with even floating surface bands. Therefore, for
the prediction of the floating surface bands of OAIs, the ob-
structed Wannier charge centers calculated by TQC are more
advantageous and can provide more accurate information.

V. DISCUSSION AND CONCLUSION

The group-IV elemental materials, such as diamond, sili-
con, germanium, and tin, have the same crystal structure and
similar arrangement of electrons in the outer shell, e.g., ns2np2

with n = 2–5 for C, Si, Ge, and Sn atoms, respectively. Hence,
all the group-IV elemental materials satisfy the criterion of
ASM and are topologically nontrivial, except that group-IV
elemental semiconductors, e.g., diamond, silicon, and germa-
nium are OAI, whereas Sn naturally is in the ASM phase.

It should be noted that Eq. (1) is a sufficient but not a
necessary condition for the ASM. To obtain a sufficient and
necessary condition for ASM, one should have the informa-
tion of the energy level of all the induced BRs, which cannot
be inferred from the crystalline structure and the atomic
orbitals. One possible way to find out all the topological

materials satisfying the ASM criterion is to calculate the band
structure of each realistic material in the database under suf-
ficiently large tensile stress and check whether it is gapless
or not. Besides, since there does not exist a sufficient and
necessary condition for diagnosing all the possible topological
materials, comparing the BRs induced by the valence band of
each realistic material with a sufficiently large tensile stress
and the BRs of the corresponding material without stress may
be a possible effective method to address this task.

To summarize we propose the concept of the ASM and
establish a sufficient condition for ASM. We find s group-IV
elemental semiconductor: silicon satisfies the ASM criterion
and then would be topologically nontrivial. Further calcu-
lations show silicon is an OAI. Based on the location of
obstructed Wannier charge centers, we also discuss the float-
ing surface states for three different boundaries of silicon,
which presents a quantitative and physical description of
the surface states of silicon. Due to mature theology, sil-
icon would be the most ideal material for studying much
more novel phenomena associated with OAI. Moreover, the
criterion of ASM is a very powerful tool that cannot only iden-
tify topological nontrivial phases, but also be used to design
topological materials by placing specific atoms at Wyckoff
positions in a given space group.
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APPENDIX A: METHODS

The first-principles calculations are performed based on the
DFT using the Vienna ab initio simulation package [52,53].
The exchange-correlation potential is taken within the gen-
eralized gradient approximation of Perdew-Burke-Ernzerhof
type [54] and the projector augmented-wave pseudopoten-
tial [55] in the main text. The cutoff energy is set as 500 eV,
and �-centered k mesh with size 16 × 16 × 16 are used for the
primitive cell. The energy and force convergence criteria are
set to be 10−7 eV and 10−3 eV/Å, respectively. The surface
states are calculated by constructing the maximally localized
Wannier functions [56] via the WANNIERTOOLS package [57]
based on the iterative Green’s function method. In this
Appendix, the more sophisticated Heyd-Scuseria-Ernzerhof
hybrid functional method (HSE06) [58] was used to check
the obstructed topology of group-IV elemental materials. The
BRs are obtained by the IRVSP program [59].

APPENDIX B: BAND STRUCTURE AND EBRS
DECOMPOSITION

The band structure of C, Si, Ge, and Sn have been cal-
culated by applying the hybrid functional method as shown
in Fig. 5. To determine the topological properties of the
systems, we have calculated the BRs of occupied bands at
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(a) (b)

(c) (d)

C Si

Ge Sn

FIG. 5. (a)–(d) Band structures of group-IV elemental materials,
e.g., C, Si, Ge, and Sn calculated via the HSE06 method. The BRs for
each band at the high-symmetry points of C, Si, and Ge are labeled.

four high-symmetry points: L, Γ , X , and W [see labels in
Figs. 5(a)–5(c)]. It can be found that C, Si, and Ge are in-
sulators with different band gaps and have the same BRs at
high-symmetry points. Thus, they can constitute same decom-
posable symmetry-data vector. The concept of symmetry-data
vector B is defined to characterize the symmetry proper-
ties [26,60], and its explicit form is

B = {
n1

1G1
K1

⊕ n2
2G2

K1
⊕ . . . , n1

2G1
K2

⊕ n2
2G2

K2
⊕ · · · }, (B1)

here, Gj
Ki

is the jth irrep of the little group at the maximal

momenta Ki, and n j
i is the multiplicity of irrep Gj

Ki
. B can be

decomposed on the basis of EBRs. And, the decomposition
subject to

B =
∑

i

pi(EBR)i. (B2)

The topological properties of the system rely on the value of
coefficient pi [26,61]. The symmetry-data vector for X (X =
C, Si, and Ge) can be written as

BX = {Γ +
1 (1) ⊕ Γ +

5 (3), X1(2) ⊕ X3(2), L+
1 (1) ⊕ L−

2 (1)

⊕L−
3 (2),W1(2) ⊕ W2(2)}, (B3)

and X belongs to the space-group Fd3m, which has 22 EBRs
for the vspinless case (see Ref. [50]). The result of decom-
position shows that coefficient p(A1g)16c↑G = 1 and others are
zero. This indicates the symmetry-data vector of X is exactly
a single EBR (A1g)16c ↑ G. As a result, the Wannier charge
centers of X reside at the Wyckoff position 16c, which are
mismatching with occupied Wyckoff positions (8a). There-
fore, C, Si, and Ge are indeed OAI. In addition, one can find
from Fig. 5(d) that Sn is a semimetal and is equivalent to the
atomic limit case.
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FIG. 6. Projection of bulk Brillouin zone onto (111) and (001)
surfaces.

APPENDIX C: SURFACE BRILLOUIN ZONE

We now give the suface BZ and the high-symmetry points
in Fig. 4 in the main text as shown in Fig. 6. Both (111)1 and
(111)2 surfaces belong to Fig. 6(a), whereas the (001) surface
belongs to Fig. 6(b).

APPENDIX D: THE ASM-TCI TRANSITION

As mentioned in the main text, an insulator derived from
ASM must be a topological nontrivial insulator. Such an in-
sulator belongs to a nontrivial phase (TI, TCI, FTI, OAI, and
other phases that are not equivalent to the ASM). Here, we
can take the famous TCI material SnTe as an example to
study this transformation. The band structure of SnTe with
SOC is presented in Fig. 7(b), which is consistent with the
previous result [16]. Then we can apply tensile stress for SnTe
to explore the atomic limit case. The stress applied should
be large enough to ensure that the system is equivalent to
the state of the atomic limit. The band structure of SnTe
under a 90% tensile stress is presented in Fig. 7(a). One can
clearly find that it is a ASM phase, a zoom view of the bands
near the Fermi level is shown in Fig. 7(c). The number of
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FIG. 7. The electronic structure of SnTe. (a) The band structure
of SnTe under 90% tensile stress with SOC. (b) The band structure
with SOC of SnTe with the fully optimized lattice constant. (c) The
zoom view of the blue area in (a). (d) Bulk Brillouin zone of SnTe.
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electrons is 10 in a primitive unit cell, and four sets of bands
with doubly degeneracy occupied eight electrons. As a result,
the remaining two electrons can not completely fill EBRs of
(F u)4b ↑ G(4) [denoted by the blue solid line in Fig. 7(c)].
This EBR was induced by the Te atom at the 4b Wyckoff

position, and such a partially filled EBR leads to an atomic
semimetal. On the other hand, we have known that SnTe is
a TCI in the natural state [16]. Thus, SnTe can be used as
an example from ASM to a conventional topological insulator
material.
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