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Interaction-expansion inchworm Monte Carlo solver for lattice and impurity models
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Multiorbital quantum impurity models with general interaction and hybridization terms appear in a wide range
of applications, including embedding, quantum transport, and nanoscience. However, most quantum impurity
solvers are restricted to a few impurity orbitals, discretized baths, diagonal hybridizations, or density-density
interactions. Here, we generalize the inchworm quantum Monte Carlo method to the interaction expansion,
and we explore its application to typical single- and multiorbital problems encountered in investigations of
impurity and lattice models. Our implementation generically outperforms bare and bold-line quantum Monte
Carlo algorithms in the interaction expansion. For the systems studied here, our implementation remains inferior
to the more specialized hybridization expansion and auxiliary field algorithms. The problem of convergence to
unphysical fixed points, which hampers so-called bold-line methods, is not encountered in inchworm Monte
Carlo.
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I. INTRODUCTION

The efficient solution of quantum impurity problems is one
of the fundamental challenges in computational condensed-
matter physics. Impurity models, in general terms, consist
of a “local” Hamiltonian with a small number of interacting
orbitals, coupled via a hybridization term to an infinite num-
ber of noninteracting reservoir orbitals. Much of the current
interest in impurity models stems from their use in embedding
theories [1–3]. They are also used directly, in the description
of, e.g., atoms adsorbed onto surfaces [4,5] and magnetic im-
purities embedded in a metallic host [6]. Their nonequilibrium
properties are important in nanoscience and quantum trans-
port, where impurity models are used to describe quantum
dots [7,8] and molecular conductors [9–11].

“Diagrammatic” Monte Carlo (DiagMC) methods, i.e.,
Monte Carlo methods that sample diagrammatic perturbation
theories [12,13], have proven to be effective solution methods
for quantum impurity models, along with exact diagonal-
ization (ED) [14,15], renormalization group [16,17], tensor
network [18–20], and several quantum chemistry approaches
[21–24]. In particular, continuous-time methods (CT-QMC)
[25] are currently the gold standard for the solution of im-
purity problems generated by most embedding approaches.
This includes the interaction expansion (CT-INT) [26,27], the
hybridization expansion (CT-HYB) [28–30], and the auxiliary
field method (CT-AUX) [31,32], each of which has different
advantages and regimes of applicability [25].

These methods nevertheless reach their limit in impurity
models with general interactions and off-diagonal hybridiza-
tions, as they appear in ab initio embedding setups. In these
systems, the various expansions generically encounter sign
problems. This means the computational cost of simulations
increases exponentially as a function of system size [25],

interaction strength, inverse temperature, or some other con-
trol parameter. Diagrammatic Monte Carlo methods based
on expansions of an observable such as the Green’s func-
tion [33–35], the self-energy [36–38], or bold-line strategies
[39–42] may then present an alternative path toward the solu-
tion. These methods incorporate resummation techniques into
their design, and therefore truncation of the perturbation series
at relatively low orders becomes accurate. The cost is typically
giving up on absolute convergence [39] and relying on self-
consistency conditions that may converge to an unphysical
fixed point [43]. Many of these techniques also face problems
with series convergence, so that their use in practice requires
analytical continuation [44].

The inchworm Monte Carlo method [45,46] is a resum-
mation technique, much like bold-line methods. However, in
contrast to bold-line methods, inchworm methods lack a self-
consistency cycle and cannot converge to unphysical fixed
points. As shown in Ref. [46], the inchworm hybridization
expansion is able to address multiorbital systems where CT-
HYB suffers from a severe sign problem.

Inchworm methods have been pioneered in the context
of quantum impurity models in nonequilibrium situations
[47–50], and they were successful in particular as DMFT
solvers [51] and in describing full counting statistics and
noise [52–55]. An early success consisted of overcoming the
so-called “dynamical” sign problem in real-time Monte Carlo
[45]. This sign problem, which is due to the oscillatory nature
of the time propagation, limits the times accessible in tradi-
tional real-time Monte Carlo methods and is different from
other sign problems, such as those in imaginary-time Monte
Carlo methods of frustrated systems [56].

In this paper, we present an inchworm method constructed
around the interaction expansion. We examine the perfor-
mance of the method in comparison to bare and bold-line
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interaction expansion impurity solvers, as well as the CT-
HYB [28,29] and CT-AUX [31] continuous-time methods.
We find that the method performs better than the diagram-
matic Monte Carlo methods, but that for the simple models
investigated here, CT-AUX and CT-HYB outperform the inch-
worm method. Nevertheless, the flexibility of the framework
presented here is such that many generalizations and improve-
ments are possible, including a combination with some of the
approaches mentioned above. It may therefore be the first step
on a path to the development of highly efficient new methods
in the future.

The paper will proceed as follows. Section II explains the
main idea of inchworm methods, and it shows how they can
be used in the context of the interaction expansion. Section III
presents applications to impurity models, and Sec. IV dis-
cusses conclusions.

II. METHOD

A. Imaginary-time perturbation theory

We derive our method for the generic electronic structure
Hamiltonian

Ĥ = Ĥ0 + V̂ , (1)

with

Ĥ0 =
∑
i j,σ

hi j ĉ
†
iσ ĉ jσ , (2)

V̂ = 1

2

∑
i jkl

∑
σσ ′

Ui jkl ĉ
†
iσ ĉ†

kσ ′ ĉlσ ′ ĉ jσ . (3)

Here, ĉ†
i , ĉi are electron creation and annihilation operators

in orbital i, h is the single-particle Hamiltonian, and U is the
electronic interaction tensor. In the context of lattice models
and electronic structure setups, U spans all orbitals. For im-
purity models, U is restricted to a small “impurity” subspace.

We take a perturbative approach following the interaction
expansion formalism by treating the noninteracting Hamilto-
nian Ĥ0 as the unperturbed system and the interaction V̂ as the
perturbation. The partition function of the system at inverse
temperature β can be expanded as a series in the interaction
picture [57,58],

Z = Tr e−βĤ = Tr[e−βĤ0ÛI (β )] = Z0〈ÛI (β )〉0, (4)

ÛI (β ) := eβĤ0 e−βĤ =
∞∑

k=0

(−1)k

k!

∫ β

0
dτ1

∫ β

0
dτ2 · · ·

∫ β

0
dτkTτ {V̂I (τ1)V̂I (τ2) · · · V̂I (τk )}, (5)

where the subscript I denotes operators in the interaction
picture, ÛI (τ ) = eτ Ĥ0 e−τ Ĥ is the time evolution operator,
Z0 = Tr e−βĤ0 is the noninteracting partition function, 〈·〉0 =
Z−1

0 Tr[e−βĤ0 (·)] is the noninteracting thermal expectation
value, and Tτ is the time ordering operator. Similarly, the
electronic Green’s function in imaginary time, defined as

Gi j (τ, τ
′) = Gi j (τ − τ ′) = −〈Tτ ĉi(τ )ĉ†

j (τ
′ + 0+)〉, (6)

where 〈·〉 = Z−1 Tr[e−βĤ (·)] can be expanded as [25,27,58]

G(τ, τ ′) = −Z0

Z

∞∑
k=0

(−1)k

k!

∫ β

0
dτ1

∫ β

0
dτ2 · · ·

∫ β

0
dτk

× 〈Tτ ĉI (τ )ĉ†
I (τ ′)V̂I (τ1)V̂I (τ2) · · · V̂I (τk )〉0. (7)

It will be convenient to introduce a parameter θ ∈ [0, β]
and define an auxiliary partition function

Zθ := Z0〈ÛI (θ )〉0 = Tr[e−(β−θ )Ĥ0 e−θĤ ]. (8)

Since ÛI (0) is the identity operator, Zθ connects Z0 =
Z0〈ÛI (0)〉0 and Z = Z0〈ÛI (β )〉0 continuously via the param-
eter θ , such that Zθ=0 = Z0, Zθ=β = Z . With ÛI from Eq. (4),
Zθ can be expanded as

Zθ = Z0

∞∑
k=0

(−1)k

k!

∫ θ

0
dτ1

∫ θ

0
dτ2 · · ·

∫ θ

0
dτk

× 〈TτV̂I (τ1)V̂I (τ2) · · · V̂I (τk )〉0, (9)

corresponding to the expression for Z with all upper inte-
gration bounds replaced by θ . Zθ = Tr[e−(β−θ )Ĥ0 e−θĤ ] can
be understood as a trace of a “partially dressed” time evo-
lution: from 0 to θ the system is propagated with the full
Hamiltonian Ĥ , and then from θ to β with the noninteracting
Hamiltonian Ĥ0.

The equivalent change of the integration bounds in Eq. (7)
to θ defines an auxiliary Green’s function

Gθ (τ, τ ′) = −Z0

Zθ

∞∑
k=0

(−1)k

k!

∫ θ

0
dτ1

∫ θ

0
dτ2 · · ·

∫ θ

0
dτk

× 〈Tτ ĉI (τ )ĉ†
I (τ ′)V̂I (τ1)V̂I (τ2) · · · V̂I (τk )〉0. (10)

Gθ continuously connects the noninteracting Green’s func-
tion at θ = 0 to the full Green’s function G at θ = β. In
Appendix A, we show an explicit nonperturbative definition of
Gθ . Since θ breaks time-translational invariance, Gθ is defined
as a function of two time parameters and cannot be defined as
a function of a single time parameter as in Eq. (6).

B. Diagrammatic evaluation of auxiliary quantities

The expansions of physical quantities Z and G, when ap-
plied to the electronic Hamiltonian (1), can be represented
graphically as a sum over Feynman diagrams in the usual way
[57]. A diagram at order k is composed of k interaction ver-
tices representing Ui jkl , each assigned to an imaginary-time
index τi ∈ [0, β], i = 1, . . . , k. Propagator lines representing
the noninteracting Green’s function G0 connect these vertices.
For the partition function Z , the noninteracting expectation
values in Eq. (4) can be evaluated using Wick’s theorem,
which generates closed “vacuum” diagrams that can be either
connected or disconnected. The Green’s function expansion
in Eq. (7) involves two “external” operators ĉI (τ ) and ĉ†

I (τ ′),
which become external “legs” in Feynman diagrams, and
the disconnected components are canceled by the partition
function diagrams of Z in the denominator, leaving diagrams
in which all internal vertices and external legs are fully
connected [57,59]. Figure 1 shows examples of such “bare”
Feynman diagrams.
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(a)

(b)

FIG. 1. Examples of bare Feynman diagrams. (a) Disconnected
third-order diagram for Z . (b) (Connected) third-order diagram for
G(τ, τ ′). Filled squares are vertices representing Ui jkl , lines with
arrows indicate bare propagators representing G0, and open/closed
circles represent external operators.

Since expansions of the auxiliary quantities, Eqs. (9) and
(10), only differ from Eqs. (4) and (7) in the integration
bounds of internal time indices, the same diagram rules can
be applied to compute Zθ and Gθ , as long as the vertices U are
confined to the imaginary-time interval [0, θ ], as illustrated in
Fig. 2. The expansions of G and Gθ can be formally written as

G(τ, τ ′) =
∞∑

k=0

(−1)k

k!

∫ β

0
dτ1

∫ β

0
dτ2 · · ·

∫ β

0
dτk

× Dbare(τ, τ ′; τ1, τ2, . . . , τk ),

Gθ (τ, τ ′) =
∞∑

k=0

(−1)k

k!

∫ θ

0
dτ1

∫ θ

0
dτ2 · · ·

∫ θ

0
dτk

× Dbare(τ, τ ′; τ1, τ2, . . . , τk ), (11)

where Dbare denotes the sum of all connected bare diagrams
[57,59].

Inchworm diagrammatics aims to reuse knowledge of
propagators up to some time in order to calculate propaga-
tors to a larger time [45]. In the context of the interaction
expansion, we assume knowledge of Gθ for some time θ ,
and we aim to express Gθ ′ for θ ′ > θ . Crucially, we write the

(a)

(b)

FIG. 2. Illustration of valid vertex coordinates on the imaginary-
time axes. (a) Vertices can take any τ value from 0 to β in the
diagrammatic expansion for G or Z . (b) Vertices can only take τ

values from 0 to θ in the diagrammatic expansion for Gθ or Zθ . The
dashed red circle indicates an invalid vertex.

diagrammatic series for Gθ ′ in terms of Gθ rather than G0. The
series is therefore partially “dressed,” and every contribution
to Gθ contains infinitely many bare diagram components. The
latter diagrams are valid terms in the standard bare series for
Gθ , in which all internal vertices residing in the interval [0, θ ]
are already accounted for at order zero. As panels (d) and
(e) in Fig. 3 demonstrate, some diagram topologies would
be overcounted if the unmodified diagram rules were applied
to this expansion. The diagrammatics therefore needs to be
modified.

We now summarize the diagram rules for computing Gθ ′

from Gθ . For a given set of vertices U at τ1, . . . , τk ∈ [0, θ ′]
and external operators ĉ, ĉ† at τ, τ ′:

(i) Generate all possible graphs by connecting vertices and
operators with propagator lines.

(ii) Eliminate all disconnected graphs.
(iii) Sort the vertices into two categories: (a) “Type 1” if

0 < τi < θ , and (b) “Type 2” if θ < τi < θ ′.
(iv) Eliminate all graphs that only contain Type-1 vertices.
(v) Eliminate all graphs that contain subgraphs of Type-1

vertices connected with exactly two propagators to the re-
mainder of the graph.

Figure 3 illustrates these rules. The first three rules are
equivalent to those of bare perturbation theory [57,59], and
the additional rules exclude overcounted diagrams. Note that
rule (v) is analogous to the “skeleton” diagram rules of the
self-energy for bold-line perturbation theory [60].

The diagrammatic series can be formally written as

Gθ ′ (τ, τ ′) =
∞∑

k=0

(−1)k

k!

∫ θ ′

0
dτ1

∫ θ ′

0
dτ2 · · ·

∫ θ ′

0
dτk

× Dθ (τ, τ ′; τ1, τ2, . . . , τk ), (12)

where Dθ denotes the sum of all diagrams following the up-
dated diagram rules in which Gθ is used as the propagator. We
emphasize here that all the internal time indices τ1, . . . , τk are
integrated from 0 to θ ′, whereas the external indices τ and τ ′
are unconstrained and can take on all values between 0 and β.

For θ ′ → θ , Gθ ′ continuously approaches Gθ , and the ex-
pansion Eq. (12) includes substantially fewer diagrams than
the bare expansion Eq. (11). As we will show in Sec. III,
Gθ is typically a much better starting point for a perturbation
expansion of Gθ ′ than G0, and this is especially true when
θ ′ − θ � β.

C. Inchworm Monte Carlo algorithm

The ability to efficiently obtain Gθ ′ from Gθ with θ < θ ′
suggests an iterative algorithm where N simulations are per-
formed sequentially with different values of θ : θ1 = 0 < θ2

< · · · < θN = β. For each N > 0, Gθn is obtained from Gθn−1 .
We expect the similarity between Gθn and Gθn−1 to reduce
the number of diagrams that need to be evaluated, thereby
reducing the difficulty of the simulation. In analogy to the
inchworm algorithm for the hybridization expansion [45,46],
which utilizes the same strategy for gradually increasing the
range of propagators, we call the parameter θ the “inchworm
time,” and we refer to the expansion from Eq. (12) as the
“inchworm expansion.” For any choice of intermediate time
points, the final solution is guaranteed to be exact if (i) the
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Type 1:

(a)
(b)

(c)

(d) (e)

(f)

Type 2:

FIG. 3. Diagram rules for the inchworm expansion from Gθ to Gθ ′ with θ < θ ′. (a) The thin lines stand for the bare propagator G0, and the
“dressed” lines for Gθ . Green (red) crosses represent Type 1 (2) vertices. (b) Type 1 vertices can only be inserted in [0, θ ] (green segment),
and Type 2 vertices in (θ, θ ′] (red segment). Neither type of vertices is allowed in (θ ′, β] (dotted segment). (c) Each “dressed” line can be
expanded into a bare series following Eq. (10), in terms of a connected diagrams with only Type 1 vertices. Diagram (d) is an example of a
connected diagram that needs to be excluded from the inchworm expansion, since it is already included in diagram (e). In box (f), the top row
of diagrams is excluded by the diagram rules, where the overcounted components are enclosed by dashed red curves; the bottom row shows
valid diagrams in the expansion Eq. (12).

perturbation series converges in each inchworm expansion
calculation, and (ii) the series is computed to all orders.

By making the difference in inchworm time �θ = θ ′ − θ

sufficiently small, such that Gθ ′ is well approximated by Gθ ,
we observe that in practice the first assumption is satisfied for
all systems we study in Sec. III. In Appendix B, we connect
the convergence of inchworm series to the skeleton expansion
[60]. Unlike inchworm results, which are obtained by a simple
forward propagation, skeleton series are typically obtained
self-consistently and may converge to an unphysical fixed
point [43].

The summation of diagrams to all orders is not feasible
for most systems of interest. However, one may calculate
the contribution to an observable of interest as a function of
expansion order. If a decay of the contribution is observed as
a function of expansion order, results can be obtained without
summing all diagrams to infinite order. Section III shows
examples where this procedure succeeds, and systems where
contributions do not decay within the accessible orders.

We briefly comment on the choice of inchworm times.
With a uniform discretization, N = β/�θ Monte Carlo sim-
ulations are needed for the final result. As evident from
Eq. (12), the inchworm expansion stays exact for any choice
of �θ for converged series. This is a major difference from
certain Monte Carlo algorithms that employ a Trotter-Suzuki
decomposition, where the time discretization �θ introduces
an approximation, and final results need to be extrapolated to
the limit of �θ → 0 (e.g., Ref. [61]). The choice of time grid
is therefore given by the following empirical considerations:
If �θ is chosen small, the expansion becomes efficient but
more simulations are needed for the final result. On the other
hand, if �θ is large, higher diagram order is required to obtain
the same quality of results. In practice, in the simulations

discussed in Sec. III we often chose 8–16 time slices, far fewer
than in typical Trotter-Suzuki simulations.

A complete inchworm simulation proceeds as follows. We
first construct two imaginary-time grids: one “inchworm grid”
{θn|n = 0, . . . , N ; θn > θn−1} for the sequence of inchworm
times θ , and one “interpolation grid” {τi|i = 0, . . . , Nτ } for
measuring and interpolating the auxiliary Green’s function.
The final Green’s function is then computed via N “inchworm
steps”: In the nth step, we perform an inchworm expansion
of Gθn with respect to Gθn−1 , and we calculate Gθn (τi, τ j ) for
each pair of i, j = 0, . . . , Nτ using Monte Carlo as detailed in
Sec. II D, with the noninteracting initial condition Gθ0 = G0.
Figure 4 illustrates the “inching” process, in comparison with
the bare expansion, which is equivalent to performing only a
single inchworm step. Gθn is evaluated on the interpolation
grid for continuous-time evaluations within the next inch-
worm step.

For simplicity, we chose equidistant time points for both
grids, and we perform linear interpolation for measured auxil-
iary Green’s functions. This provides decent accuracy at high
temperatures. Since Gθ (τ, τ ′) is generally not smooth when
τ = θ or τ ′ = θ , we required the interpolation grid {τi} to
include all points on the inchworm grid {θn} so that the sharp
corners at these points are well-resolved. Nevertheless, we
note that nothing in the algorithm precludes using a nonuni-
form (e.g., Chebyshev) interpolation grid [62–64], and this
will most likely be advantageous at lower temperatures.

D. Continuous-time Monte Carlo evaluation
of inchworm expansions

We evaluate each inchworm expansion step (12) in a stan-
dard diagrammatic/continuous-time quantum Monte Carlo
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(a) Expansion:

Expansion:(b)

FIG. 4. Schematic comparison of bare and inchworm Monte
Carlo for the Green’s function. Part (a) shows a vertex configuration
for the bare expansion in Eq. (7) which is equivalent to an inchworm
simulation with N = 1. Part (b) shows configurations for an inch-
worm Monte Carlo simulation with N = 4 at each inchworm step. In
Monte Carlo samplings of each expansion, Type-1 (Type-2) vertices
are sampled in green (red) segments on the imaginary-time axis.

approach [12,13,25–27,31,34]. We employ a finite cutoff
kmax of the expansion order, and we perform Monte Carlo
importance sampling of the internal spacetime coordinates
following the a priori distribution

p(C) ∝ |Dθ (τ, τ ′; C)|. (13)

Here, C = {τ1, . . . , τk} is a Monte Carlo configuration. Since
Dθ has varying signs due to its fermionic nature, the absolute
value is necessary to ensure p(C) is positive, whereas the
fermionic sign sgn(Dθ ) enters measurements of all physical
observables. For a given vertex configuration, Dθ is computed
explicitly by summing over all proper inchworm diagrams
according to the diagram rules of Sec. II B. Similar to most
diagrammatic methods, the total number of proper-diagram
topologies at each order grows combinatorially as order in-
creases. In our implementation, we rely on a graph theory
library to precompute and save all valid diagram topologies
for each expansion order to avoid having to perform graph
theory computations during the Monte Carlo sampling. Future
development of the diagram summation or sampling tech-
nique may further increase the efficiency of the method.

We generate Monte Carlo samples as a Markov chain using
the Metropolis-Hastings algorithm. From each configuration
C, a new configuration C ′ is proposed following some proposal
probability distribution wprop(C ′|C). To ensure detailed bal-
ance, an acceptance ratio R is calculated after each proposal
as

R(C ′|C) = wprop(C|C ′)p(C ′)
wprop(C ′|C)p(C)

. (14)

The proposal C → C ′ is accepted with probability

wacc(C ′|C) = min (1, R(C ′|C)). (15)

This ensures the detailed balance of the Markov process, i.e.,

w(C ′|C)p(C) = w(C|C ′)p(C ′), (16)

where

w(C ′|C) = wacc(C ′|C)wprop(C ′|C). (17)

This procedure generates samples drawn from the equilibrium
distribution p(C). We employ the same Monte Carlo updates
as in CT-INT [27], which guarantee ergodicity for all the
systems studied in this work. Those include random insertions
and removals of a single vertex or a pair of vertices. The
auxiliary Green’s function Gθ is measured during the Monte
Carlo procedure and normalized against quantities that are
analytically tractable, such as low-order diagrams.

III. RESULTS

For most of the discussion below, we limit ourselves to
small isolated lattices such as the Hubbard atom, dimer, and
trimer, i.e., models with one to three spin-half orbitals. These
are systems that, in the case of the interaction expansion
inchworm method, have the same complexity as quantum
impurity models with the same number of orbitals. How-
ever, unlike impurity models, which also feature an infinite
noninteracting bath, they can be exactly diagonalized with-
out further approximations, such that a reliable benchmark
is available. In all cases, the hopping parameter t is used as
the unit of energy. We start our discussion of the results with
Fig. 5, which illustrates the two-time Green’s function Gθ of
Eq. (11). Results are shown for the half-filled Hubbard atom
(the one-site Hubbard model) at interaction U = 1 and inverse
temperature β = 2 for a discretization of �θ = β/4. Interme-
diate inchworm steps are shown on the left three panels, and
the final inchworm step for the last one. Black dashed lines
in the upper panels show the exact result obtained from ED.
Gθi−1 (τ, 0) from the previous step is plotted in red dotted lines,
and blue lines show the currently computed result Gθi (τ, 0).
The bottom panels illustrate the two-time function Gθ as a
contour plot with the two-time arguments.

The inchworm algorithm starts from the noninteracting
Green’s function and, while “inching” forward, gradually
advances toward the interacting Green’s function. The propa-
gation breaks the time-translational symmetry, such that only
the initial and the final solution are time-translation invariant,
i.e., Gθ4 (τ, τ ′) = Gθ4 (τ − τ ′), and the same is true for G0;
however, this is not the case for Gθ1 , Gθ2 , and Gθ3 . Note
also that while only four inchworm times θ j are used, the
Green’s function is evaluated on a much finer interpolation
grid. Figure 6 shows the result of three methods for the Hub-
bard dimer (the two-site Hubbard model) at half-filling and
U = 2, at three inverse temperatures: β = 2, 8, and 32. We
show the exact results obtained from ED; bare DiagMC results
obtained by summing the first six orders in perturbation theory
and truncating all remaining terms; and the inchworm Monte
Carlo result, where each inchworm step is summed up to sixth
order. The two perturbation series are performed around the
noninteracting system at the mean-field level, which already
includes the Hartree correction.

The results from ED (dashed black) and bare DiagMC
(orange) differ slightly, indicating that the bare diagram-
matic series is convergent—nevertheless, diagrams in the bare
expansion beyond sixth order are not entirely negligible. Inch-
worm results at the same order are in better agreement with
ED, indicating somewhat faster convergence of the resummed
series.
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FIG. 5. Auxiliary Green’s functions of a Hubbard atom at half-filling, U = 1, β = 2. Top panel: Gθi (τ, 0) at each step, compared to the
previous inchworm step and the exact G. Bottom panel: Gθi (τ, τ

′) − G0(τ, τ ′) in both τ and τ ′ dimensions.

We employed a constant �θ , resulting in an approximately
linear increase of computer time with inverse temperature.
This is better than the typical case for CT-QMC methods,
which scale cubically in the absence of a sign problem [25].
An exponential increase of complexity, such as the need to
go to higher diagram truncation orders when temperature is
lowered, is not observed here.

Inchworm series converge more rapidly due to the renor-
malized propagators they employ. One might therefore expect
that the method should become more advantageous when the

FIG. 6. Inchworm results for a Hubbard dimer at half-filling us-
ing Hartree-shift at different temperatures, U = 2, kmax = 6. Results
are compared with ED and bare DiagMC results. The left (right)
column shows the diagonal (off-diagonal) components.

bare series diverges. Since the convergence behavior of the
diagrammatic series depends on the starting point, we remove
the Hartree correction from the noninteracting starting point
for the same system as in Fig. 6, and the results are shown
Fig. 7. For high temperatures (β = 2, top panel) the bare
perturbative series is not converged by order 6. For lower
temperatures, signatures of a divergence in the bare series
are visible.

In contrast, the inchworm series remains convergent for
all parameter ranges studied here, and yields answers that are

FIG. 7. Inchworm results for a Hubbard dimer at half-filling
without Hartree-shift at different temperatures, U = 2, kmax = 6. Re-
sults are compared with ED and bare DiagMC results. The left (right)
column shows the diagonal (off-diagonal) components.
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FIG. 8. Convergence comparison between bare and inchworm
Monte Carlo for the Hubbard dimer. The top panel shows the same
results as in the middle panel of Fig. 7. The middle panel shows
contributions from each expansion order in the final step of the
inchworm calculation. The bottom panel shows corresponding order
contributions in the bare DiagMC result.

reasonably close to the exact result. We attribute the remaining
discrepancies between the converged inchworm solution and
the exact solution to the order truncation, as well as the effect
of stochastic noise from the Monte Carlo procedure.

To further analyze the effect of order truncation, we dis-
entangle the contributions from each diagram order to the
final result in Fig. 8. The top two panels show the diagonal
and off-diagonal Green’s functions as discussed in Fig. 7.
The middle panels show the order-by-order contribution of
the inchworm simulation to the final result. The bottom panel
shows the order-by-order contribution of the bare series.

Evidently, in the inchworm expansion the magnitude of
contributions decreases rapidly with increasing order. This is
in sharp contrast to the bare result, where contributions grow
with order. Any resummation of these results would rely on
cancellations between these contributions in order to obtain a
converged result.

Next, we compare the performance of the inchworm algo-
rithm to the bold diagrammatic method [39]. In that method,
a self-energy is estimated via the summation of skeleton di-
agrams in terms of an approximate Green’s function. The
Dyson equation then provides an improved estimate of the
Green’s function, which is used to improve the guess for
the self-energy, until both the self-energy and the Green’s
function are self-consistent. The method is known to en-
counter difficulties, such as the convergence to unphysical
fixed points, in areas where multiple self-consistent solutions
exist [43].

As a test case, we use the three-site periodic Hubbard
chain with on-site interaction U = 2. Figure 9 shows results

FIG. 9. Inchworm results for a triangular Hubbard cluster at
different temperatures and chemical potentials at U = 2, kmax = 6,
compared to bold DiagMC results and ED. Each row (column) cor-
responds to a different value of μ (β). Only the diagonal elements of
the Green’s function are shown.

for the on-site Green’s function from ED, bold DiagMC, and
inchworm, for two temperatures (left column: β = 1; right
column: β = 4) and three values of the chemical potential. It
is evident that bold-line Monte Carlo does not converge to the
right result for all parameters shown. This behavior is caused
by a truncation of the bold series at order 6, and we expect that
a higher diagram order would eventually lead to convergence.

In contrast, inchworm results for the same expansion or-
der show good agreement with ED for all cases except μ =
0.3, β = 4. While the primary discrepancy at these values
comes from the truncation of the series, the effect of Monte
Carlo noise is also clearly visible. The fact that inchworm
converges to the exact solution at the same order while the
bold-line sampling does not shows that the two sampling pro-
cedures are very different, even though a precise connection
between the inchworm expansion to the skeleton series can
be made (see Appendix B). In contrast to the bold algorithm,
which “dresses” the propagator lines via a self-consistent it-
eration, inchworm dresses the propagator incrementally with
well-defined auxiliary Green’s functions at each iteration, and
thus it does not suffer from the misleading convergence prob-
lem as reported in Ref. [43]. However, because Gθ breaks
time-translational symmetry, such a symmetry breakage could
persist in the final inchworm result in the presence of large-
order truncation errors.

Next, we test the inchworm method for a two-site
quantum impurity problem with off-diagonal hybridizations.
Figure 10 shows a comparison to CT-HYB and CT-AUX
[25,31,32] for a problem with hybridization function �i j =
[δi j + r(1 − δi j )]t2D(ω), D(ω) = 1/(2πt2)

√
4t2 − ω2. We

emphasize that the retardation effects of the bath in the
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FIG. 10. Inchworm results for a two-site Anderson impurity
model with an off-diagonal hybridization at different temperatures,
U = 2, kmax = 6, r = 0.5. Results are compared with CT-HYB and
CT-AUX results. The left (right) column shows the diagonal (off-
diagonal) components.

impurity model are encapsulated in the bare impurity
propagators, such that no explicit bath discretization is
needed. All algorithmic steps are therefore identical to
the case of a lattice model, as in interaction expansion
QMC [27].

Convergence in the diagonal and the off-diagonal Green’s
functions of the model is observed (within errors) between all
methods within the six inchworm orders we employed here.
The inchworm result shows no systematic trend of deviation
as temperature is lowered, although it can be observed that
the statistical error becomes larger, due to the increasing num-
ber of inchworm steps required. For the parameters explored
here, both established algorithms (CT-HYB and CT-AUX)
provide substantially more accurate results than the inch-
worm method for the same amount of computer time. Further
optimizations of the inchworm algorithm are necessary for
a more extensive comparison with these highly optimized
methods.

Finally, for stronger interactions, the inchworm algorithm
requires more expansion orders at each step to obtain con-
verged results. As Fig. 11 shows for the Hubbard dimer,
increasing the interaction strength typically also increases
the contributions from higher orders. The truncation errors
associated with neglecting high orders cannot be controlled
by simply decreasing �θ (see Appendix B for an analysis
at �θ → 0). This is the major limitation of the inchworm
interaction method, and it is due to the perturbative nature
of the formalism. Nevertheless, with faster series conver-
gence (compared with bare DiagMC) and no instability due to
self-consistency (compared to bold DiagMC), the inchworm

FIG. 11. Inchworm results for a Hubbard dimer at half-filling
with Hartree-shift with different interaction U at β = 2, kmax = 6.
The top row shows results for diagonal components of the Green’s
function compared with ED results. The bottom row shows the order-
by-order contribution to the final Green’s function.

interaction algorithm provides an alternative path in the de-
velopment of DiagMC methods.

IV. CONCLUSION

In conclusion, we have shown that the idea of inchworm
expansions, originally applied to the hybridization expansion
for quantum impurity models, is also relevant to interaction
expansions. The method is shown to converge in regimes
where bare Monte Carlo diverges, and it is shown to give the
correct answer at low order in regimes where bold-line Monte
Carlo is observed to converge to an incorrect result at the
same expansion order; the connection between the (iterative)
summation of the inchworm series and the (self-consistent)
summation of the skeleton series is discussed in Appendix B.
An explicit bath discretization, such as that needed in ED or
wave-function-based quantum chemistry approaches, is not
needed.

We considered applications of the method to very strongly
correlated impurity systems, such as those typically em-
ployed within dynamical mean-field theory and self-energy
embedding theory. We found that for typical applications of
quantum impurity solvers within these domains, the interac-
tion inchworm method is not yet competitive with established
CT-QMC techniques like CT-HYB and CT-AUX. Changes in
this assessment may develop if improvements to the algo-
rithm are implemented: for example, fast diagram summation
schemes [34,65] could enable the method to reach much
higher orders. Looking forward, however, we believe the main
advantages of the interaction inchworm method will come
into play when we begin to take advantage of its flexibility to
inch in space rather than time, which would be challenging
for the hybridization-expansion inchworm method, because
it begins from the many-body solution of the atomic limit,
which already scales exponentially in the number of orbitals.
This will allow us to use it in conjunction with other impurity
solvers, potentially resulting in a powerful new set of tools.
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APPENDIX A: EXPLICIT DEFINITION OF THE
AUXILIARY GREEN’S FUNCTION

Introducing

ŜI (τ, τ ′) = ÛI (τ )Û −1
I (τ ′), (A1)

we can write the physical Green’s function G in the interaction
picture as

G(τ, τ ′) =
{

− 1
Z Tr[e−βĤ0 ŜI (β, τ )ĉI (τ )ŜI (τ, τ ′)ĉ†

I (τ ′)ŜI (τ ′, 0)], τ > τ ′,
1
Z Tr[e−βĤ0 ŜI (β, τ ′)ĉ†

I (τ ′)ŜI (τ ′, τ )ĉI (τ )ŜI (τ, 0)], τ < τ ′.
(A2)

The auxiliary Green’s function can be formulated in a similar manner:

Gθ (τ, τ ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
Zθ

Tr[e−βĤ0 ĉI (τ )ĉ†
I (τ ′)ŜI (θ, 0)], τ > τ ′ > θ,

1
Zθ

Tr[e−βĤ0 ĉ†
I (τ ′)ĉI (τ )ŜI (θ, 0)], τ ′ > τ > θ,

− 1
Zθ

Tr[e−βĤ0 ĉI (τ )ŜI (θ, τ ′)ĉ†
I (τ ′)ÛI (τ ′)], τ > θ > τ ′,

1
Zθ

Tr[e−βĤ0 ĉ†
I (τ ′)ŜI (θ, τ )ĉI (τ )ÛI (τ )], τ ′ > θ > τ,

− 1
Zθ

Tr[e−βĤ0 ŜI (θ, τ )ĉI (τ )ŜI (τ, τ ′)ĉ†
I (τ ′)ÛI (τ ′)], θ > τ > τ ′,

1
Zθ

Tr[e−βĤ0 ŜI (θ, τ ′)ĉ†
I (τ ′)ŜI (τ ′, τ )ĉI (τ )ÛI (τ )], θ > τ ′ > τ.

(A3)

One can verify that this is equivalent to Eq. (10) by plugging in the Dyson series for ŜI [58]:

ŜI (τ, τ ′) =
∞∑

k=0

(−1)k

k!

∫ τ

τ ′
dτ1

∫ τ

τ ′
dτ2 · · ·

∫ τ

τ ′
dτkTτ {V̂I (τ1)V̂I (τ2) · · · V̂I (τk )}. (A4)

Expanding all interaction picture operators explicitly, we have

Gθ (τ, τ ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
Zθ

Tr[e−(β−τ )Ĥ0 ĉe−(τ−τ ′ )Ĥ0 ĉ†e−(τ ′−θ )Ĥ0 e−θĤ ], τ > τ ′ > θ,

1
Zθ

Tr[e−(β−τ ′ )Ĥ0 ĉ†e−(τ ′−τ )Ĥ0 ĉe−(τ−θ )Ĥ0 e−θĤ ], τ ′ > τ > θ,

− 1
Zθ

Tr[e−(β−τ )Ĥ0 ĉe−(τ−θ )Ĥ0 e−(θ−τ ′ )Ĥ ĉ†e−τ ′Ĥ ], τ > θ > τ ′,
1

Zθ
Tr[e−(β−τ ′ )Ĥ0 ĉ†e−(τ ′−θ )Ĥ0 e−(θ−τ )Ĥ ĉe−τ Ĥ ], τ ′ > θ > τ,

− 1
Zθ

Tr[e−(β−θ )Ĥ0 e−(θ−τ )Ĥ ĉe−(τ−τ ′ )Ĥ ĉ†e−τ ′Ĥ ], θ > τ > τ ′,
1

Zθ
Tr[e−(β−θ )Ĥ0 e−(θ−τ ′ )Ĥ ĉ†e−(τ ′−τ )Ĥ ĉe−τ Ĥ ], θ > τ ′ > τ,

(A5)

which can be used to compute Gθ numerically by exact diagonalization for small models.

APPENDIX B: CONNECTION BETWEEN THE
INCHWORM EXPANSION AND THE SKELETON SERIES

The diagram rules for the inchworm expansion are remi-
niscent of the skeleton diagram rules [60] due to the exclusion
of two-particle reducible Type 1 components. The connection
between the inchworm expansion (12) and the skeleton series
can be revealed in the limit where θ ′ = β, θ = β − �θ , and
�θ → 0. For convenience, rewrite Eq. (9) as a coherent state
path integral [59]

Zθ =
∫

D[c̄, c]e−S0 exp

(
−

∫ θ

0
dτ V (τ )

)
, (B1)

where c̄(τ ) and c(τ ) are Grassmann fields, S0 is the noninter-
acting action, and V (τ ) is the Grassmann function obtained by
replacing operators ĉ† and ĉ in V̂ with the Grassmann fields.
The generating function Wθ of the auxiliary Green’s function

is the logarithm of Zθ with a bilinear source term J [59]:

Zθ [J] =
∫

D[c̄, c] exp

(
−S0 −

∫ θ

0
dτ V (τ )

+
∫ β

0
dτ ′dτ c̄(τ ′)J (τ ′, τ )c(τ )

)
,

Wθ [J] := ln Zθ [J],
δWθ

δJ (τ ′, τ )

∣∣∣∣
J=0

= Gθ (τ, τ ′). (B2)

When �θ → 0, we have

Gθ − Gθ−�θ ≈ ∂Gθ

∂θ
�θ = δ

δJ

∂Wθ

∂θ

∣∣∣∣
J=0

�θ. (B3)

If the series expansion of ∂θWθ uniformly converges near
J = 0, its derivative is also expected to converge. The conver-
gence of this infinitesimal inchworm expansion for Gθ is thus
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directly related to the convergence properties of ∂θWθ |J=0 =
∂θ ln Zθ .

From (B1), we have

∂

∂θ
ln Zθ = 1

Zθ

∂Zθ

∂θ
= 1

Zθ

∫
D[c̄, c][−V (θ )]e−S0

× exp

(
−

∫ θ

0
dτ V (τ )

)
. (B4)

When taking θ = β, Zθ becomes Z , and the integral of V (τ )
recovers the interacting action SV and we have

∂

∂θ
ln Zθ

∣∣∣∣
θ=β

= 1

Z

∫
D[c̄, c][−V (β )]e−S = −〈V̂ 〉, (B5)

where S = S0 + SV is the full action of the system. For a
standard four-fermion interaction V̂ , the expectation value can
be formulated in terms of the Green’s function G and the
self-energy �,

〈V̂ 〉 = 1

2β

∑
n

Tr[�(iωn)G(iωn)]. (B6)

� can be obtained as a functional derivative of the Luttinger-
Ward functional �[G] [60]:

δ�

δG
= �[G], (B7)

and the skeleton series can be formally written as [60,66]

�[G] =
∞∑

k=1

�(k)[G], �[G] =
∞∑

k=1

�(k)[G],

�(k) = 1

2k
Tr[�(k)G] = 1

2k

∑
n

Tr[�(k)(iωn)G(iωn)],

(B8)
where �(k) is the sum of all kth-order skeleton diagrams.
Combining Eqs. (B5), (B6), and (B8), we have

∂

∂θ
ln Zθ

∣∣∣∣
θ=β

= −
∞∑

k=1

1

2β

∑
n

Tr[�(k)(iωn)G(iωn)]

= − 1

β

∞∑
k=1

k�(k). (B9)

This directly relates the inchworm expansion at θ = β to
the skeleton expansion of the Luttinger-Ward functional. If
the skeleton series (B8) is absolutely convergent, so should
Eq. (B9), which implies a convergent inchworm expansion at
Gθ=β .
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