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Quantum Monte Carlo simulation of spin-boson models using wormhole updates
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We present an exact quantum Monte Carlo method for spin systems coupled to dissipative bosonic baths
which makes use of nonlocal wormhole updates to simulate the retarded spin-flip interactions originating from
an off-diagonal spin-boson coupling. The method is closely related to the stochastic series expansion and extends

the scope of the global directed-loop updates to nonlocal moves through a world-line configuration. We test our
method for the U(1)-symmetric two-bath spin-boson model, where the off-diagonal components of a spin-1/2
particle are coupled to identical independent baths with power-law spectra, and get a precise estimate of the
critical coupling between the critical and the localized phase. Our method applies to impurity systems and lattice
models in any spatial dimension coupled to bosonic modes with arbitrary spectral distributions.
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I. INTRODUCTION

The development of global updating schemes for Monte
Carlo methods [1-4] has enabled high-precision numerical
studies of critical phenomena that appear in a wide range of
strongly correlated physics. For quantum systems, the worm
and directed-loop algorithms [5-7] have become the state of
the art to simulate either bosonic or spin models, respectively.
While these methods stochastically sample the perturbation
expansion of the partition function, the worm/directed-loop
updates change the world-line configurations along a closed
loop that is constructed in an extended configuration space.
The computational cost to construct these loops scales only
linearly in system size and inverse temperature and therefore
allows for efficient simulations in any spatial dimension, as
long as the sign problem is absent. Consequently, it is highly
desirable to extend these algorithms to new classes of models
which cannot be simulated efficiently otherwise.

A major challenge in computational many-particle the-
ory is the simulation of quantum systems coupled to local
bosonic modes that do not obey particle-number conservation.
Among the most studied examples are lattice models with a
local coupling to phonons. Matrix product state (MPS) based
approaches require large bond dimensions to deal with the
unbound bosonic Hilbert space of each mode, making them
less efficient than for purely electronic or spin models; how-
ever, optimized basis sets can lead to notable improvements
[8]. Quantum Monte Carlo (QMC) simulations often suffer
from long autocorrelation times when the bosons are sam-
pled in first quantization [9]. The absence of particle-number
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conservation in their second-quantized form so far inhibited
a simple and efficient formulation of the worm/directed-loop
updates (for exceptions see Refs. [10,11]), leaving inefficient
local updates as the only available option to simulate the
bosons [12,13]. The difficulties of direct boson sampling can
be avoided if the Hamiltonian is quadratic in the bosonic
fields. Then, the bosons can be integrated out exactly using
the path integral and we obtain a retarded interaction in the
system’s degrees of freedom. A recent generalization of the
directed-loop algorithm to retarded interactions [14] has been
shown to overcome the autocorrelation problem and was suc-
cessfully applied to phonon-coupled systems in one [15,16]
and two dimensions [17].

The coupling to bosonic modes plays an important role in
many areas of quantum physics, e.g., in solid-state systems
bosonic excitations appear in the form of quasiparticles like
phonons or magnons, trapped-ion quantum simulators rely on
long-range interactions mediated by the vibrational modes of
the ions [18,19], and in quantum optics the atoms interact with
the quantized electromagnetic field [20,21]. A central problem
is the dissipation of a quantum system when connected to a
bosonic bath with an infinite number of degrees of freedom
[22]. One of its simplest realizations is the spin-boson model:
a two-level system that is coupled to a continuum of bosonic
modes. In this model, the competition between bath-induced
localization and delocalization due to an applied magnetic
field leads to a quantum phase transition whose critical prop-
erties had only been resolved with the development of an
efficient cluster QMC method that simulates the coupling to
the bath in terms of a diagonal retarded interaction [23]. A
variational MPS approach revealed that the coupling of two
noncommuting spin components to independent baths can
lead to even more complex phase diagrams [24] including a
critical phase [25,26] that emerges due to frustration effects in
the decoherence mechanism [27]; however, generalizations of
the MPS approach to multiple baths are limited by the large
dimensions of local bosonic Hilbert spaces. Lattice models
with onsite dissipation have been simulated using classical
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Monte Carlo methods for long-range interactions [28,29]; full
QMC simulations have only been applied to diagonal spin-
boson couplings using the worm algorithm [30]. So far, we
are still lacking efficient QMC updating schemes for more
generic spin-boson interactions that work on an equal footing
for impurity and lattice models.

Quantum impurity models are at the core of dynamical
mean-field theory where the coupling to an infinite bath mim-
ics the interaction effects with neighboring particles on a
lattice [31]. The need for efficient impurity solvers has moti-
vated the development of continuous-time QMC methods for
fermions where the coupling to the bath is treated in terms of
a retarded interaction [32-34]. The most prominent of these
methods is based on a hybridization expansion and samples
fermionic world-line configurations [33]. The method avoids
the negative sign problem by combining the fermionic bath
propagators into a determinant which only allows for local
Monte Carlo updates and eventually leads to a cubic scaling
in inverse temperature. Here, worm sampling is only used
to obtain improved estimators for the Green’s function [35].
The method has been extended to include bosonic baths [36]
to solve bosonic impurity problems [37], spin-boson models
[38], or Bose-Fermi Kondo models [38—41], but the Monte
Carlo sampling remained restricted to local updates, even in
the absence of the fermionic determinant in pure spin-boson
models [38,41]. The self-consistent solution of spin-boson
impurity models, e.g., plays an important role for spin glasses
[42-45] and extensions of dynamical mean-field theory to
spin systems [46]. Bosonic modes have also been included in
the interaction-expansion QMC method which can be applied
to fermion-boson models on finite lattices [47—49].

In this paper, we introduce a continuous-time QMC method
for dissipative spin models that combines the advantages of
impurity solvers with the global worm/directed-loop updates
developed for lattice models. Our method is based on the
stochastic series expansion (SSE) [50] with global directed-
loop updates [7] and their recent generalization to retarded
interactions [14]. In contrast to phonon-coupled systems, the
spin-boson models considered below do not conserve the total
S' quantum number, which inhibits the local construction of
the worm/directed-loop updates. To overcome this difficulty,
we introduce the new wormhole update: the two operators of
the nonlocal interaction in imaginary time can act as sources
and sinks for the worm/directed loop and therefore allow
for nonlocal moves through a world-line configuration. It
turns out that the rules for constructing the directed loops
are equivalent to regular spin models with nearest-neighbor
interactions—the lattice-site indices are just replaced with
imaginary-time variables—which allows for an easy trans-
fer of the methodology developed in Ref. [7]. The time
dependence of the retarded interaction does not affect the
construction of the loops because it is sampled during the
diagonal updates [14]; the bath propagator can be sampled
efficiently for any spectral distribution of the bath modes. In
the following, we formulate our QMC method for impurity
models but the wormhole updates can be trivially extended
to spin-boson models on a finite lattice, as we will discuss
at the end of our paper. We demonstrate the efficiency of
our QMC method for the two-bath spin-boson model. Our
method reaches significantly lower temperatures than previ-

ous QMC approaches [38,41], which allows us to get a precise
estimate of the quantum critical coupling between the critical
and the localized phase that is in excellent agreement with
previous results of an MPS based approach [24]. In future,
our QMC method will enable efficient simulations of a variety
of quantum impurity and lattice models coupled to bosonic
modes like photons, phonons, magnons, etc., as they appear,
e.g., in quantum optics, trapped-ion simulators, or solid-state
systems.

Our paper is organized as follows. In Sec. II we define
the spin-boson models, in Sec. III, we show how retarded
interactions can be derived from the interaction picture, in
Sec. IV, we introduce our QMC method, in Sec. V, we present
our results, in Sec. VI, we discuss extensions of our method,
and in Sec. VII, we conclude.

II. SPIN-BOSON MODELS
We consider a generic spin-boson model of the form
H = H, + H, + Hy, (D

that can be split into a spm part Hj, a bosonic part Hy, and a
spin-boson interaction Hsb For now, H; describes a local spin-
1/2 degree of freedom S[ 50@ where 6y, £ € {x,y, z}, are
the Pauli matrices (we set i = 1). The bosonic bath is given

by a sum of harmonic oscillators,

By =Y w,a}a,. )

n

where &L (&u) creates (annihilates) a boson in a state |u)
with frequency w,,. Below, the superindex p will refer to a
continuum of oscillators and different components of the bath
modes, but it could also label the lattice sites of a finite system.
The spin-boson interaction

Ay, = (a0, +0}a,) 3)
y

couples the bath to a spin operator @,L[S’a] that is model de-
pendent and also contains the spin-boson coupling constant.
In the following, we define two types of spin-boson models
that fit into the generic form.

The original spin-boson model is given by a two-level
system which is coupled to a bosonic bath via the z component
of the spin, i.e.,

A=-hS +) wa,
q

The magnetic field 4, induces a finite tunneling between the
two levels, whereas the coupling to a continuous bath with a
mode-dependent coupling constant y, will localize the spin.
The spin-boson model has been generalized to an interaction
with up to three baths, i.e.,

H = thS[ + qu qlaqf + Z Vql(aq[ + an)Sg,
qt ql
(%)

where each bath couples to a different spin component £. We
set Ygr = Vg and refer to this model as the XXZ spin-boson
model due to its similarity to the XXZ model (this will become

+) y@ +a)s. @
q
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apparent when we introduce the retarded interactions further
below). For y,, = 0 we recover the two-bath spin-boson model
and for y,x = ¥,y = Y. the Bose Kondo model. In the absence
of the magnetic field, the former model has a U(1) symmetry,
whereas the latter is SU(2) symmetric. Further details on the
U(1)-symmetric case will be discussed in Sec. V. A review of
impurity properties can be found in Ref. [51].

Another Hamiltonian that is often studied in quantum op-
tics is the Jaynes-Cummings model [52]

= —h,S, +Zw,/“ +qu(5ﬁ +8:a,), (6

where the quantized electromagnetic field interacts with a
two-level system via the spin-flip operators Sy = §, + iS‘y.

‘We consider a coupling to a continuum of bath modes. The
physical properties of the impurity are fully determined by the
spectral functions for each bath,

J(@) =7 )y 8w — wy). @)

q

We assume that J,(w) has a power-law form with exponent s,

Ji(w) =2may wcl’sa)x, 0<w< w, ®)
where s = 1 corresponds to an ohmic bath and 0 < s < 1
to the sub-ohmic regime. Here, «, is the spin-bath coupling
constant which we use in the following and we choose the
frequency cutoff w. = 1 as the unit of energy.

III. INTERACTION PICTURE AND RETARDED
INTERACTIONS

The spin-boson models introduced in the previous sec-
tion are quadratic in the bosonic operators, such that the
bath can be integrated out exactly. Typically, we use the
path-integral formalism to derive a retarded interaction in
the system’s degrees of freedom. To avoid the intricacies of
the spin path integral, we will show how retarded interactions
arise from a perturbation expansion in the interaction picture.
In this way, we will see how the difficulties of previous QMC
approaches are overcome that directly simulate the bosons.
Our formalism is very similar to the hybridization expansion
used for fermionic impurity models [33,34].

We split the Hamiltonian of the full system, H = Hy + V,
into the unperturbed part Hy and the perturbation V. The
Dyson expansion of the partition function reads

7 = Z( l)nz/ d'C]/ dTZ / dfm

m=0
x Te[e PPV (1) V(1y)... V(z,)], )

where all operators V (1) = ey e~ gre ordered according
to their imaginary-time variable, ie., 211 212> --- 2
T = 0 (B = 1/T is the inverse temperature; we set kg = 1).
For our derivation, it is convenient to introduce the time-

ordering operator 7. and rewrite Eq. (9) in the form

7 = Z( l)m/ d‘[l'/ d‘[z / dTm
m=0

x Tr[e PRT- V(1) V (12) ... V()] (10)
For the generic spin-boson model in Eq. (1), we identify
Hy=H,, V=Hy=) a0, (1)

ue

similar to the hybridization expansion used for fermionic im-
purity models [34]. For our derivation of the retarded spin
interaction, we set Hy, = 0 to simplify the notation. Later, we
can include A, in V without loss of generality. To distin-
guish between regular and adjoint operators in Eq. (11), we
introduced the superscript ¢ and its opposite ¢. With this, the
interaction expansion becomes

Z = Z(l)m/dtl /dtmzz

Hm €C1e-Cm
X Trb[ ﬁHbﬁ ACI (Tl) cee &Z:n(fm)]
X Tr[F: 6% (7)) .. 00 (5)]. (12)

The trace splits into separate contributions for spins and
bosons. Because tl}e boson particle-number is conserved,
(o)p = Z, ' Trp[e ™ o] only gives a nonzero contribution if
m = 2n and the number of creation and annihilation operators
is the same. The bosonic trace can be further simplified using
Wick’s theorem. For example, consider the expectation value
with operators ordered as follows:

(Tra,, (11)..

Lay, (T) ), (Tar) . a, (Tan)h

n
= Z l_[D(kav Tk = Tnt (k) Sk ptnpi- (13)

eS8, k=1

Here, S, is the symmetric group of order n and 7 € S, is a
permutation of n objects. We introduced the free-boson prop-
agator D(w,, t — 1) = (T; &M(r)&;(r/))b which is given by

—wT

D(w,7) = 0<t <8, (14)

e
1 —eFo’

and fulfills D(w, T + B8) = D(w, t). The left-hand side of
Eq. (13) represents only one possible combination of choosing
{c1, ..., c,} such that we obtain the same number of creation
and annihilation operators. In total, there are (2,1") combina-
tions. Inserting Eq. (13) into Eq. (12), we obtain (we define
T, = Tptk)

7 1 B B
Z_bzznﬁ//o drldtfz.../fo dr,dz)y
n=0 1

X Z D(wp,, Tt = Typyy) - -

TesS,

x Try[ T2 8}, (t1) 0, (thpy) - - -

D(@y,, T = Typ)

05 (t) @, (Top)]-
(15)
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The sum over all permutations can be evaluated by relabeling
the variables, which gives another factor of n! in Eq. (15).
Eventually, the perturbation expansion can be recast as

z
7= 2 —Trs{ﬁ[// dvdt Zgu(r)

x D(wy, T — ‘[,)@M(‘L’/)] } (16)

After reexponentiation of the resulting interaction term in
Eq. (16), the partition function becomes

Z = ZyTr, T e o, (17)

As a result, the spin-boson coupling has generated a retarded
spin-spin interaction

. B
Hm=—// drdt' Y () D@, T — )0, (18)
m

0

that is mediated by the free-boson propagator (14). Note that
for our choice of Hy the time evolution of the spins is trivial
because H, does not include any spin operators. However, we
still need the 7 labels for the time ordering of the spins in the
perturbation expansion as well as for the time dependence of
the boson propagators.

Finally, we want to specify the retarded spin interactions
for the spin-boson models introduced in the previous section.
For the XXZ spin-boson model, we get

. 1 00 B
oot = ——Z/ dwJy (@) // drdt’
T Jo 0

x Se(r) Di(w, 7 — ) Se(7)), (19)

whereas the Jaynes-Cummings Hamiltonian leads to

. 1 [ p
Hiet = ——f dwJ(w) ff dtrdt’
T Jo 0

x 8, (1)D(w, T — ') 8_(1"). (20)

Here, we have already taken the continuum limit for the
bosonic bath. We explicitly see that the spectral function
defined in Eq. (7) completely determines the effect of the
bath on the spin subsystem. For the power-law spectrum in
Eq. (8), the frequency average of D(w, t) induces a long-
range interaction in imaginary time that vanishes as 1/7*"!
for w.t > 1. Because the retarded interaction for the XXZ
spin-boson model is symmetric under t <> t’, we have re-
placed D(w, t) with the symmetrized propagator D (w, T) =
[D(w, ) + D(w, B — 7)]/2 in Eq. (19).

IV. QUANTUM MONTE CARLO METHOD
A. Basic ideas of the Monte Carlo method

Before we describe the mathematical formalism of our
QMC method, we first want to introduce the main ideas that
underlie our approach. We use the framework of the directed-
loop algorithm [7], which was originally formulated in the
SSE representation [50] and recently generalized to retarded

interactions [14]. We have shown in the previous section that
a generic spin-boson model of the form of Eq. (1) can be
mapped to a spin problem with a retarded interaction. In this
way, we can avoid the difficulties of direct boson sampling
which often occurs when the particle number is not conserved.
As the resulting retarded spin interaction in Eq. (18) does not
conserve the total S‘Z, either, we will introduce the nonlocal
wormhole update to provide an efficient sampling using the
directed-loop algorithm.

As a starting point for the formulation of our method,
we consider the partition function in Eq. (17), where the
bosonic bath has been integrated out to obtain a retarded spin
interaction. Following Ref. [14], we expand the time-ordered
exponential in the full interaction ?qm, i.e., we perform an
interaction expansion around the trivial spin part Ho =0, to
obtain Eq. (16). Such an expansion in the full Hamiltonian is
the characteristic feature that leads to the SSE representation,
even if we start from the interaction representation. Then, the
time evolution of the spin operators Sy(7) becomes trivial
and their t labels are only required to perform the time or-
dering. For equal-time (i.e., time-independent) Hamiltonians,
the imaginary-time integrals in the resulting expansion can be
calculated exactly, leading to an exact mapping to the SSE
representation [10,12], which does not have an explicit time
dependence. In the presence of retarded interactions, which
is the focus of this paper, imaginary-time variables have to
be sampled explicitly in our Monte Carlo scheme to take
the time dependence of the boson propagator correctly into
account. It was shown in Ref. [14] that the exact sampling
of the continuous times only enters during the diagonal up-
dates (as discussed below), so that the remaining parts of
the directed-loop algorithm can be formulated as in the SSE
representation.

We first want to discuss how the trace over the spin
operators is related to the original SSE formulation. The time-
ordered product of spin operators corresponds to the operator
sequence in the SSE representation. From our derivation in
Sec. I1I, it is clear that the time ordering does not lead to any
negative signs. The trace over the spins, Tre = )~ (] @ |),
runs over the initial state |o) which is usually chosen in the S,
basis. We assume that the operators in 7:Lret are nonbranching,
i.e., 0, (tp) lorp) ~ lap—1) uniquely propagates a basis state
to another basis state; here we define the time ordering as in
Eq. (9) (with a decreasing propagation index) and set |cg) =
|aa,) = |a). The imaginary-time evolution of the initial state
can be visualized using a world-line picture (note that a world
line is defined by the time dependence of the propagated spin
state and not by the operators). Because the propagated state
|op) only changes when an operator is applied, it is sufficient
to find a graphical representation of the interaction vertex. The
possible vertex types for He are illustrated in Fig. 1. Each
vertex consists of two operators, the boson propagator, and the
spin states before and after the operators are applied, which
are represented by two black bars, a dashed line, and four legs,
respectively. For our spin-1/2 models, the legs are illustrated
as filled (open) circles and correspond to S, eigenstates with
eigenvalue 1/2 (—1/2). In total, there are six vertex types for
the retarded interactions in Egs. (19) and (20): four diagonal
vertices which leave the world-line configuration unchanged
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FIG. 1. Graphical representation of the retarded interaction ver-
tex. The black bars at times t and t’ correspond to the two operators
of a vertex, whereas filled (open) circles illustrate the spin states with
8. eigenvalue 1/2 (—1/2) before and after an operator is applied.
The two operators are connected by a dashed line representing the
free-boson propagator. Diagonal vertices are identified by vertex
types v = 1-4, whereas the off-diagonal terms S_(t)S8,(z’) and
8. (1)8_(7) are labeled by v = 5 and v = 6, respectively.

and two off-diagonal vertices where the spin states are flipped.
The latter correspond to §_(7)8,(z) and S, (z)S_(7). A
typical world-line configuration that includes both types of
vertices is shown in Fig. 2(a). For a more formal definition
of the interaction vertices and the configuration space of our
QMC method see Sec. IV B.

We use Markov chain Monte Carlo sampling to evaluate
the sum over all world-line configurations stochastically. To

0 S — add  remove 5
(a) | o5 0i6 dio Gie [ A\
B SN o /
b) | i  0id cio  die oio ol |
e TTTIIIIT start [oop ~_-=—-o
()| @id  0io dio Oie e—eie  eie |
P = S propagate __-----._
(d) | o9ic"  0i5 dio  Gie ¥—eie  eie—]
P closeloop .-~ .
(e) |—ei0  0i0 Gio Cie—k—oie el
eI fliplegs _mm-el,
® | oid  oi6 dio S0 oie eio |

FIG. 2. (a) Illustration of a world-line configuration with two
retarded vertices. Imaginary-time propagation of the initial state |o)
is from left to right. Because the propagated state can only change
when an operator is applied, it is sufficient to denote the spin con-
figuration at the legs of each vertex. The addition or removal of a
diagonal vertex between (a) and (b) does not change the world-line
configuration. (c) To initialize the directed-loop updates, we pick
a random starting time and propagate the head of the loop until
it reaches the entrance leg of a vertex. (d) We choose an exit leg
according to the probabilities determined by the directed-loop equa-
tions. Here, the loop head uses the nonlocal connection established
by the free-boson propagator to perform a wormhole move. (e) This
procedure is repeated until the loop head returns to its starting point.
(f) Eventually, the world-line configuration is updated, i.e., we flip
all legs connected by the loop and in our case also the initial state.
Thereby, diagonal vertices can be transformed into off-diagonal ones
and vice versa.

formulate an ergodic algorithm, we need two types of updates:
the diagonal updates and the directed-loop updates.

The main purpose of the diagonal updates is to change the
average expansion order, to replace existing vertices with new
ones, and—in addition to the original SSE method—to sample
the imaginary-time variables. Because diagonal operators do
not change the world-line configuration, we propose to add
or remove diagonal vertices using the METROPOLIS scheme
defined in Sec. IVC. An example for the addition or the
removal of such a vertex is given in Figs. 2(a) and 2(b). The
acceptance rates for adding a new vertex can be significantly
improved by sampling the time difference between the vertex
operators according to the free-boson propagator. A block of
diagonal updates requires O(n) proposals in order to replace
an extensive number of vertex variables with new ones.

The efficiency of our Monte Carlo method relies on the
directed-loop updates [7], a global updating scheme that
changes an extensive subset of world-line segments along a
closed loop. The loop is constructed as follows: First, we pick
a random starting time to insert a pair of spin-flip operators.
One of these operators is identified as the head of the loop that
can move through imaginary time as a world-line discontinu-
ity, whereas the other operator becomes the tail of the loop that
remains fixed at the starting time. Because the time evolution
for the spin operators is trivial (Hy does not contain any spin
terms), the head will proceed until it reaches the leg of an
operator that is part of a vertex. In the conventional directed-
loop update, we would choose an exit leg of a local vertex
with a probability determined by the directed-loop equations,
a local version of detailed balance. It turns out that this is
still true for the nonlocal vertex of the retarded interaction.
As a result, the loop head entering the vertex in Fig. 2(c)
via the left leg of the left operator can either bounce and
reverse its direction of propagation, continue straight through
the left operator, or exit at the right operator. In Fig. 2(d),
we selected the last option which we call a wormhole update
because the loop head uses the connection established by
the free-boson propagator as a wormhole to instantly tunnel
between well-separated points in imaginary time—the name
is also chosen in analogy to the worm algorithm where the
loop is called a worm [5]. Once the loop exits the leg of a
vertex, it will propagate to the entrance leg of the next vertex
and the same procedure will apply again until the loop head
returns to its tail, as depicted in Fig. 2(e). When the loop is
closed, we flip all spin configurations along the loop, as shown
in Fig. 2(f). Thereby, diagonal vertices can be transformed into
off-diagonal ones and vice versa. Because the directed loop is
able to touch an extensive number of vertices, it represents a
global update move. The computational effort to construct the
loop scales linearly in the number of touched vertices. Further
details on the construction of the directed loops are given
in Sec. IV D.

With the diagonal and directed-loop updates described
above, our QMC algorithm samples the entire diagrammatic
expansion of diagonal and off-diagonal operators and there-
fore fulfills ergodicity. The diagonal updates sample the
expansion order n by adding and removing diagonal vertices
at arbitrary imaginary times, whereas the directed-loop up-
dates transform diagonal operators into off-diagonal ones and
vice versa. The latter transformation reaches all vertex types
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with a nonzero weight, as described in the original formula-
tion of the directed-loop updates [7].

Altogether, we combine the framework of retarded
interactions—that is commonly used for impurity solvers to
avoid the difficulties of direct boson sampling [34]—with the
global directed-loop updates originally developed for lattice
models [7]. The local construction of the wormhole updates is
possible for bosonic baths with positive-definite propagators,
whereas fermionic baths require the numerically expensive
calculation of a determinant to avoid the negative-sign prob-
lem [33]. The formulation of our algorithm is closely related
to the standard formulation of the directed-loop algorithm [7].
However, the nonlocality in imaginary time requires some
changes in the implementation which we will discuss in Ap-
pendix. Although we have developed the wormhole updates in
the framework of the directed-loop algorithm, their underlying
ideas can be transferred to related QMC methods based on
worm/directed-loop updates.

B. Configuration space and vertex weights

A Monte Carlo configuration C = {n, C,, |«)} is defined
by the expansion order n, the ordered vertex list C, =
{v1, ..., v}, and the initial state |&) in the local S, basis. Each
vertex variable v = {tjy, @, , T, T’} includes a frequency w
and two imaginary-time values T and 7’. The operator type a
distinguishes between diagonal and off-diagonal parts of the
vertex, whereas the interaction type f;,, labels different kinds
of interactions —the latter is only relevant if we combine the
spin-boson models with additional interactions, as discussed
in Sec. VI. The interaction vertex for our spin-boson models
is given by

00 B
H = —/ dwj(a))// dtdr’z
0 0 P

x P(w, T — ') ha(z, 7). (1)

Here, we have rescaled the free-boson propagator and the
spectral density,

J(w)/w

Plw,7) =wD(w, 1), W,

J(w) = (22)

such that the former becomes a probability distribution in T
and the latter in w. For the power-law spectrum in Eq. (8),
we obtain J(w) = sw, S@w’~!. The normalization factor for
the spectral density can be absorbed into the operator part
ha(z, ).

Our Monte Carlo method samples the perturbation ex-
pansion of the partition function, Z = Z, ZCW(C), as in
Eq. (16). The total weight of a configuration is given by

1 n
W(C) = = ]_[1 W,,, where (23)
p=
W, = J(0)P(w, T — T )W[hy(z, t)dodtdt’  (24)

is the weight of a single vertex. The expectation value of the
operator part W[h,(z, t’)] is fully determined by the weight
W, of one of the six vertex types v in Fig. 1.

For the XXZ spin-boson model, the off-diagonal operator
part is given by

7 )‘X o o ’ o o l
hi(zr,7') = 7y[5+(f)s_(f )+5-(0)34(t)],  (25)

whereas the diagonal part becomes

hy(r,7') = C+ 1. 8.(t)S.()) + %[&(r) +8.(z)]. (26)

Here, we have defined the couplings A, = 20pw./s which
include the normalization of the spectral function. Note that
we have dropped unit operators at times t and 7/, e.g., C cor-
responds to C 1(r) 1(z’). We can include the magnetic field &,
in the retarded interaction because [ dw J () [ dt’ P(w, T —
7') = 1. We have added a constant C to Ay (7, t’) to obtain
positive weights. For the different vertex types v defined in
Fig. 1, the weights are given by

VV]—C—F)LZ—E W2=W3=C—)\;z
4 2° 4’
W4=C+)£+E W5=W6=ﬁ. (27)
4 2’ 2
We choose C > max [%, @ - %] to get positive weights.

The weights W, for the XXZ spin-boson model are equivalent
to the ones for the ferromagnetic XXZ model with a nearest-
neighbor spin exchange [7].

For the Jaynes-Cummings model, we have

7~ )‘xv R R /
hi(z.7') = == 5:(0)S-(@), (28)

ha(z,7)=C+ %[Sz(r) +8.(tH1. (29)

The vertex weights are similar to the ones in Eq. (27) but
A;=0and W5 = 0.

C. Diagonal updates

The diagonal updates involve adding or removing a single
vertex M, (t, t’) using the METROPOLIS-HASTINGS algorithm.
The METROPOLIS acceptance probability

A(C — C) =min[l,R(C = C"] (30)
is determined by the acceptance ratio
W) TH(C"— C)
- WO Th(C—C)
which depends on the Monte Carlo weight W (C) defined in
Eq. (23) and the proposal probabilities 75(C — C’) specified
in the following.

We propose the addition of a new vertex with probability
density

R(C — () , (3D

J()P(w, 7 — 1) p, dodrdt’
B(n+1)

where only the first time variable is chosen randomly, but
the frequency and the second time variable are sampled from
J(w) and P(w, T — 1'), as explained below. Note that there
are n + 1 possibilities to insert the new vertex into the ordered
list C,+1. We included an additional probability p, to pick an
interaction type fi,, from a set of interaction terms, as further

To(Cyp — Coy1) =

, (32)
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discussed in Sec. VI; for now, p,, = 1. For the removal of a
randomly chosen diagonal vertex, we get

1
n +1 ’
where n, is the number of all diagonal vertices in C,.
With the ratio of the Monte Carlo weights in Eq. (23),
Wo(Coi1) / Wo(Cr) = T(w)P(w, T — ) Wydwdt dt'/(n +
1), we obtain the METROPOLIS ratios

To(Cop1 — Cy) = (33)

BW,
R(Cy — Cpyy) = — 20 34
¢ = ¥ Do, Gd
ny py,
R(C, — Cpy) = Lt 35
€, = Chy) BW, (35)

for the addition and removal of a vertex, respectively. Because
we included J (w) and P(w, T — t’) in the proposal probabil-
ities, they drop out of the acceptance rates. In this way, we
ensure high acceptance probabilities for all parameters.

We use inverse transform sampling to draw w and t — t’
from the probability distributions J(w) and P(w,t — '),
respectively. Given a probability distribution function f(x),
we calculate its cumulative distribution function F(x) =
fg dx' f(x'). If we choose a uniformly distributed random
number £ € [0, 1), then F~'(£) returns a random number
drawn from f(x). In our case, the cumulative distributions for
J(w) and P(w, T — t’) can be inverted analytically. We first
draw o from the power-law spectrum in Eq. (8), i.e.,

w=w. (1 —&)~. (36)

Afterwards, we use the chosen w value to draw t — 7’ from
the boson propagator in Eq. (14), i.e.,
l 1 —Bw
T—7 =——In[l -&(1 —e "*)]. 37
w

To draw the time difference from the symmetrized propagator
Py (w, T — t’), we can derive a similar formula or just replace
T — 17— B — (t — t/) in Eq. (37) with probability 1/2. Note
that we draw w € (0, w.] and T — 7’ € [0, B).

D. Directed-loop and wormhole updates

We have introduced the ideas behind the directed-loop
updates and their extension to wormhole updates already in
Sec. IV A. In the following, we want to elaborate on their
mathematical formulation.

The directed-loop updates use an extended configuration
space to connect two regular Monte Carlo configurations that
require an extensive number of local changes. The corre-
sponding world-line configurations only differ by the presence
of a closed loop along which the spins are flipped. To construct
this global update, we need to fulfill the detailed-balance
condition. It was shown in Ref. [7] that this global requirement
reduces to a set of local conditions for each vertex, known as
the directed-loop equations, because the Monte Carlo weight
in Eq. (23) factorizes. The proof in Ref. [7] does not make
any assumptions on the structure of the vertex, therefore it
is also valid for our retarded interaction. Because 7 (w) and
P(w, T — t’) are global prefactors for each vertex, i.e., they
do not depend on the vertex type in Eq. (24), they drop

(a) (b)

—

@I0 - 0le

@10
ole

eI0> @16 OIO»

Ool® OlIO0 OIOo
@I0 e@le OIOo
oleées OlIo» OIO»

Ool® OlIO0 OIOo

@10 «01® D10

FIG. 3. (a) For the directed-loop updates, the retarded vertex of
a spin-boson model is equivalent to the nearest-neighbor vertex of a
lattice model. (b) The assignment tables to solve the directed-loop
equations are constructed in the same way as for lattice models (see
the main text for further explanations). Here, we have assigned a
directed-loop segment to each vertex and colored those vertex legs
in red which get flipped during the directed-loop update.

out of the directed-loop equations [14]. Hence, the latter can
be formulated for the vertex weights W, as for the original
method [7]. In the extended configuration space, each vertex is
assigned an entrance and exit leg for the directed loop and the
corresponding weights become W, (lin, loy ). The directed-loop
equations,

Wo(li, b)) = Wi(l, 1), (38)

D Wi, b) =W, (39)
2}

correspond to a local version of detailed balance and the
conservation of probability. Here, the vertex type v is related
to v by flipping the spins along the assigned loop segment. If
the directed loop enters a vertex at leg [;, W, (Iy, [)/W, gives
the probability to exit at leg /.

Before we explain how to solve the directed-loop equa-
tions, we want to take another look at the vertex structure
depicted in Fig. 1. As for regular spin models on a finite
lattice (e.g., Heisenberg or XXZ models), each vertex has
four legs. We have argued before that the nonlocality of our
vertex does not play a role in the directed-loop equations. We
find that the vertices in Fig. 1 map to the ones for regular
spin models with nearest-neighbor interactions if we take the
subvertex at T/ and place it to the right of the subvertex at
T [as illustrated in Fig. 3(a)]. Hence, we can use the same
techniques as for regular spin models to solve the directed-
loop equations. Moreover, the vertex weights for the XXZ
spin-boson model in Eq. (27) are equivalent to the ones for the
ferromagnetic XXZ spin model on a finite lattice. As a result,
the directed-loop equations have the same solution for both
cases. In particular, loops can be constructed deterministically
in the SU(2) symmetric case [6].

For reasons of completion, we give a short outline on
how to solve the directed-loop equations analytically for the
spin-boson models considered in this paper. In more general
situations, the directed-loop equations can be solved using
linear programming techniques [53]. Consider the assignment
table illustrated in Fig. 3(b). It is constructed in such a way
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that each row corresponds to Eq. (39) and the off-diagonal
elements are related by Eq. (38). The bounce probabilities are
given on the diagonal. For the assignments chosen in Fig. 3(b),
we obtain the set of equations

bi+a+b=W,
a+by+c=W,, (40)
b+ c+ by =Ws,

which we can solve for a, b, and ¢ as follows:
a=3[Wi + W, — W5 — by — by + b3],
b= 3[Wi — W+ Ws — by + by — bs], (41)
c= %[_Wl + Wy 4+ Ws 4+ by — by — b3].

Our guiding principle is to minimize the weights by, b,, and
b3 for the bounce moves as they reduce the efficiency of the
algorithm. If we plug in the weights for the XXZ spin-boson
model, we get an explicit solution,

17 h, Ay
=_|2C— =22 —b —by+bs|,
a 2| 5 > 1—by+ 3}
b—l_’\z hz+’\” by +by—b (42)
—2_2 ) ) 1 2 30
1T A hy oy
= |- 2+ 2 +Z2 4 b —by—bs|.
c 2| 2+2+2+1 2 — b3

We can always obtain positive solutions if we adjust the
constant shift C and one of the bounce weights b; or b,. In
the absence of an external magnetic field /,, we can obtain
bounce-free solutions for A; < Ay,. For the SU(2) symmetric
case, i.e., A; = Ay,, we can choose C = A;/4 to construct
loops where the entrance leg exactly determines the exit leg,
as it is also the case for the Heisenberg model [6]. The
directed-loop equations have to be solved for all possible
assignment tables. Similar solutions can be derived for the
Jaynes-Cummings interaction.

E. Observables

The calculation of observables is equivalent to standard
world-line QMC methods. In the following, we only give a
short overview over the most common ones.

The properties of the spin system can be accessed from the
imaginary-time correlation functions

Co(r — 1) = (8e(x) 8u(z)) (43)

and the corresponding susceptibilities

1 [[? : ,
X () = E// drdt e C,(r — T)). (44)
0

Here, 2, = 2nm/B, m € Z, are the bosonic Matsubara fre-
quencies. We also define the static susceptibilities x; =
xe(i€20). The z components of these observables do not
change the world-line configurations and can be obtained di-
rectly from the propagated state |«,), whereas the off-diagonal
components can be accessed by tracking the propagation of
the directed loop during the directed-loop updates. The lat-
ter is possible because the loop head and tail are identified
with spin-flip operators—depending on the model, it might be

more convenient to identify them either with 6, operators or
with S, and §_ operators. In contrast to the SSE represen-
tation, we have direct access to the imaginary-time values of
each vertex which simplifies the calculation of time-displaced
observables for both cases. For a detailed discussion of the
diagonal and off-diagonal measurements see Refs. [12,54].

The properties of the bath cannot be accessed directly from
the world-line configurations because the bosons have been
integrated out. However, bosonic observables can be derived
from higher-order spin-spin correlation functions with the
help of generating functionals and eventually be recovered
from the distribution of vertices [55]. For example, (n) =
—,B(ﬁS + ﬁsb) relates the average expansion order to the en-
ergy of the spin subsystem. Estimators for the bosonic energy,
the boson propagator, or the specific heat have been derived
in Refs. [15,55] for a single bath frequency. They can be
generalized to a continuous bath, but one has to define an ad-
ditional mapping from discrete frequencies to the continuum
following Refs. [56,57] leaving some ambiguity for the bath
properties.

V. RESULTS

To demonstrate the efficiency of our QMC method, we
consider the quantum phase transition between the critical
and the localized phase in the two-bath spin-boson model
for hy = 0, s = 0.8, and as a function of the spin-boson cou-
pling «. For these parameters, the critical coupling has been
determined using a variational MPS approach that is based
on a Wilson chain with a logarithmic discretization for the
bosonic bath [24,58]. We show that our QMC method reaches
low-enough temperatures to distinguish the two phases via the
spin susceptibility and get a precise estimate of the critical
coupling from a finite-size analysis.

For bath exponents 0 < s < 1, the perturbative renormal-
ization group has predicted an intermediate-coupling fixed
point where partial screening of the impurity leads to a crit-
ical phase with power-law spin-spin correlations C,,(7) ~
1/t~ [25,26,59-61]. Numerical simulations revealed that
the critical phase is only stable for s* < s < 1 [s* ~ 0.76] and
o < o beyond which a local moment is formed that fulfills
lim;—, o Cuy(7) = mi, . > 0 [24,58]. For a detailed discussion
of the phase diagram, the fixed-point structure, and the critical
properties of the two-bath spin-boson model see Ref. [58].
The QMC method developed in this paper allows us to ap-
proach the two phases from finite temperatures. Figure 4(a)
illustrates the emergence of a local moment in the order
parameter Cy,(8/2) for a > o, whereas Cy,(8/2) scales to
zero for @ < a.. The critical and the localized phases can
also be distinguished by the low-temperature response of the
static spin susceptibilities x,, and x;, as shown in Fig. 4(b).
Fora =0orT/w. > 1, we have x,, = x, = 1/4T. For low-
enough temperatures and deep in the localized phase, x.,
approaches a Curie law, x,, = m2_/T, with a finite local
moment my... When entering the critical phase, yx,, clearly
deviates from the Curie behavior and slowly converges to
Xxy ~ T7%; we do not show x,, for @ < 0.7 because all graphs
are parallel to x,, at @ = 0.7 but intersect with the others
which reduces their distinguishability. On the other side, x,
also shows a power-law dependence with an exponent that is
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FIG. 4. (a) Order parameter C,,(8/2) as a function of the spin-
boson coupling « for different temperatures. In the localized phase,
limg_, o Cyy (B/2) = mlzoC converges to a finite local moment, whereas
mye. = 0 in the critical phase. (b) Spin susceptibilities y., and x, as
a function of temperature for different o. We show x,, (x.) for a €
[0.7, 1.5] (@ € [0.1, 0.9]) with step size Ao = 0.1 as indicated by the
color bars. The black line corresponds to a free local moment with
x = (4T)7" and the dashed line indicates the asymptotic behavior in
the critical phase, x ~ 7. Here, s = 0.8.

steadily reduced as « increases and eventually becomes zero
in the localized phase. Although our QMC method reaches
temperatures as low as T /w. = 1077, Cyy(B/2) and y, still
experience finite-temperature effects which leads to a slow
convergence towards the expected T — 0 behavior.

Our QMC method is powerful enough to determine a pre-
cise estimate of the critical coupling. To this end, Figs. 5(a)
and 5(b) show the rescaled susceptibility Ty, and the sus-
ceptibility ratio

_ Xxy(igzl)
T X (Q0)

respectively. The latter is a generalization of the correlation
ratio and its inverse can be related to a finite-size estimator of
the correlation length in imaginary time [41]. For T — 0, both
observables remain finite within the critical phase, whereas
T* x.y diverges and Ry, goes to zero in the localized phase. We
can estimate the critical coupling from a finite-size analysis

(45)

0.23 T T T

_1}

s
¢
—
5
Nasg

0.225 ]

0.22 + 1

0.215

0.21 ¢ J

0.108

0.106

0.104

0.102

0.1

susceptibility ratio R,, susceptibility 7% x,, [w;

0.098 L . -
0.74 0.75 0.76 0.77 0.78

spin-boson coupling «

crossings o, (7))
o
=

T Xay
Ry

—_—

0 0.1 0.2 0.3 0.4
temperature 1/1ogy(we/T)

FIG. 5. Finite-temperature analysis of (a) the rescaled suscepti-
bility T*x, and (b) the susceptibility ratio Ry, as a function of the
spin-boson coupling «. (c) Temperature dependence of the crossings
o, (T) between pairs of data sets in (a) and (b) with temperatures
{T, T/10}. We estimate the critical coupling as o, = 0.76213(6)
using a power-law fit of the form «.(T) = o +AT* for Ty, (red
dashed line). It is in good agreement with the variational MPS result
of Ref. [58] which has a systematic error of up to 1%, indicated by
the shaded area. Here, s = 0.8.

of T* x,y and R,y; here the inverse temperature plays the role
of the system size, but in the imaginary-time direction. For
each pair of data sets with temperatures {T', 7 /10}, we extract
the crossing points o, (7') and collect them in Fig. 5(c). For
low-enough temperatures, the crossings are expected to follow
a power-law behavior a,(T) = a. + A T¢, from which we can
estimate ¢, using a least-squares fit. From the crossings of
T* x.y we estimate o = 0.76213(6); the nonmonotonic tem-
perature dependence of o, (T') for R, does not allow for a
reliable fit, but the data is consistent with the estimate from
T* x.y. Consistent crossings can also be obtained from the
order-parameter ratio Cy,(8/2)/C,,(8/4), but larger statistical
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errors prohibited a precise estimation of o.. Our estimate of
the critical coupling is in good agreement with the previous
MPS result oMPS = 0.765058 [58]; note that the latter has a
systematic error of up to 1% due to the logarithmic discretiza-
tion of the bosonic bath in the Wilson chain [58]. Taking this
systematic MPS error into account, our QMC estimate gives a
more precise estimate of the critical coupling. In a follow-up
study [62], we also determine the correlation-length exponent
at this quantum phase transition, which is in excellent agree-
ment with the MPS result.

Finally, we want to emphasize again that the wormhole
updates and the efficient sampling of the boson propagator
allow us to reach temperatures as low as T /w. = 10~ ’—this
is several orders of magnitude lower than in previous QMC
studies which only reached T /w, ~ 10~ [38,41]. Based on
our algorithmic developments, we are able to resolve the
characteristic low-temperature behavior of the critical and
the localized phases in Fig. 4, in particular the difference
between y., ~ T and y,, ~ T~!, and get a precise estimate
of the critical coupling in Fig. 5. A systematic study of the
closely related SU(2)-symmetric spin-boson will be presented
in Ref. [62]. The directed-loop updates work efficiently for
all parameter regimes considered in this paper, because the
average length of the loops is given by yx,, and therefore
diverges with the characteristic temperature scale of the prob-
lem. For the lowest temperatures and strongest couplings, we
have reached expansion orders of approximately 20 million
vertices.

VI. GENERALIZATIONS TO OTHER
INTERACTION TYPES

We have introduced our QMC method for the XXZ
spin-boson model and the Jaynes-Cummings model. In the
following, we discuss how other interaction types can be
included for impurity models and how the wormhole updates
can be applied to lattice models.

A. Impurity models
1. Magnetic field in the xy plane

For the impurity models discussed before, it might be of
interest to apply a magnetic field also in the xy plane. We can
decompose the additional field as follows:

H,, = —hS, — hS,
= —3[(hy — ihy)S4 + (he + ihy)S_]. (46)

Because the retarded spin-boson interactions in Egs. (19)
and (20) always contain a pair of S, and §_ operators, the
magnetic-field terms in the perturbation expansion have to
appear in pairs as well and therefore do not lead to a sign
problem.

We can treat the xy magnetic field as an additional in-
teraction type. To formulate a full updating procedure, we
add the diagonal term —C f dt 1(7) to the interaction vertex.
It is convenient to choose the constant prefactor equal to

hyy/2 where hy, =

the same absolute value, which simplifies the solution of the
directed-loop equations. If the directed loop enters one of

[h2 + hf Then, all vertex weights have

these vertices, we want to transform a unit operator into a spin-
flip operator or vice versa which prohibits the loop head from
propagating any further locally. However, we can choose a
random magnetic-field vertex in our world-line configuration
(including the original vertex) and continue the construction
of the loop from there. The exit leg has to be chosen in
such a way that it is consistent with the propagating opera-
tor and the world-line configuration. The construction of the
loop is completed when the loop head returns to its original
starting point. Including the magnetic field in this way has
the advantage that we can measure (h,S, + hy3'y> = (Ny1)/B
from the number of off-diagonal magnetic-field vertices in the
perturbation expansion.

2. XYZ spin-boson model

Our discussion of the spin-boson model in Eq. (5) was
restricted to the XXZ case. Here, we want to mention that
one can also simulate the full problem with three independent
couplings A¢. Then, the off-diagonal vertex in Eq. (25) has to
be replaced by

. MAAy a e s A,
hi(r, 7)) = 4 [S+(r)S-(v) + 5-(v)5+(7)]
Ay —

4

Ay A A A A
81 () $4(7) + 8- (1) S ("]
(47)

+

The new terms S, (7)S,(¢") and S_()S_(z’) have to be
considered as additional vertex types v, i.e., v =7 and v = 8.
With these vertex types present, the directed loop can exit
all four legs of a vertex and the solution of the directed-loop
equations becomes a bit more complicated than before. As
long as we do not apply an additional field in the xy plane,
the second term in Eq. (47) will not lead to negative weights
because it always has to appear in pairs in the perturbation
expansion.

3. Original spin-boson model

For completeness, we also want to mention how to simulate
the original spin-boson model in Eq. (4). Because the bosonic
bath only couples to the z component of the spin, we cannot
immediately apply the wormhole updates as defined above.
To obtain a retarded spin-flip interaction, we can formulate
our QMC method in the S, basis. This corresponds to a rota-
tion of the spin operators using the Hadamard matrix (which
exchanges S, <> S. in the absence of S'y). The interaction part
becomes

~ Ar A ~ ~ N
I, t) = 7808 () +8.(1) 8,7
+8: ()8 (x)+8_(1)S_(z)],  (48)

R he .
ho(r, ') =C+ ?[SZ(T) + 8.(z"], 49)

and leads to positive Monte Carlo weights for C > |h,|/2. The
off-diagonal term now contains two additional vertex types.
As a result, the directed loops can exit all of the four ver-
tex legs and the directed-loop equations can be solved using
linear-programming techniques [53].
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For the spin-boson model, a cluster algorithm had already
been formulated in Ref. [23] in terms of a retarded interac-
tion between S, operators. The spin-boson model has close
similarities with the long-range Ising model in a transverse
magnetic field which can be simulated efficiently in the SSE
representation [63]. It might also be possible to extend this
method to long-range interactions in imaginary time.

B. Lattice models

We have developed our QMC method for a single spin cou-
pled to a dissipative bosonic bath, but the wormhole updates
trivially extend to lattice models. In the simplest case, each
lattice site is coupled to an independent bath, so that the inter-
action vertex only gets an additional site index i. The details
of our method stay exactly the same, we only have to draw a
random i € [1, L] when proposing the addition of a diagonal
vertex, which leads to an extra factor of 1/L in Eq. (32). To
couple the spins at different lattice sites, we can include any
interaction vertex that can be simulated in the SSE represen-
tation without a sign problem, e.g., an XXZ spin-exchange
coupling between nearest neighbors. The additional vertex A
transfers into the interaction picture as A= f dt H(t). The
spin operators obtain dummy time variables that are sampled
during the diagonal updates to determine their position in
the world-line configuration. The diagonal updates have to be
formulated using the Metropolis scheme in Sec. IV C, whereas
the probability tables for the directed-loop updates stay the
same. Note that the vertex structure need not be the same
for different interaction types, as long as the loop updates
can be formulated for each type individually. Eventually, the
wormbhole updates introduced in this paper allow us to study
the effects of dissipation on a variety of lattice models. While
the worm algorithm can be applied when a diagonal operator
couples to a bosonic bath [30], our formulation with directed
loops allows us to simulate more generic couplings that also
include off-diagonal terms. Results for a Heisenberg chain
coupled to an ohmic bath will be presented elsewhere [64].

We have introduced the wormhole updates for boson-
mediated interactions that are local in space but nonlocal in
imaginary time. In general, the wormhole updates can be ap-
plied to long-range interactions in space or time, as long as the
Monte Carlo weights are positive. Examples arise in quantum
optics where global bosonic modes couple to the spins at
different sites, e.g., in the Dicke model [65] or in trapped-ion
simulators [18]—for the latter, the absence of a sign problem
has to be assessed from case to case. However, we expect that
polariton models like the Jaynes-Cummings-Hubbard model
will introduce a sign problem in our formulation because
integrating out the bosonic hoppings &IT& ; leads to a nonlocal
boson propagator that has negative contributions for i # j
[66]; in that case, it is better to simulate the bosons directly
[67,68]. Moreover, we can design long-range interactions in
space and time that are not related to a spin-boson Hamilto-
nian but can be simulated with the wormhole updates.

VII. CONCLUSIONS

We developed an exact QMC method to simulate spin sys-
tems coupled to dissipative bosonic baths in terms of retarded

spin interactions. Our method makes use of the directed-loop
updates which were originally formulated in the SSE repre-
sentation [7] and recently generalized to retarded interactions
[14]. To include the retarded spin-flip interactions into the
framework of the directed-loop updates, we introduced the
nonlocal wormhole updates which allow the loop to tunnel
between the two operators of a vertex. The formulation of
the directed-loop updates remains as simple as in the SSE
representation [7] since the time-dependence of the retarded
interaction is fully accounted for in the diagonal updates
[14]. Our method applies to any spectral distribution of the
bath, which can be sampled efficiently —along with the time
dependence of the boson propagator—during the diagonal
updates. The ideas developed in this paper are also applicable
to related QMC methods like the worm algorithm [S] which
make use of worm/directed-loop updates to sample world-line
configurations.

We demonstrated the efficiency of our QMC method for
the two-bath spin-boson model. Our method reached signif-
icantly lower temperatures than previous QMC approaches
[38,41], which allowed us to identify the characteristic finite-
temperature response of the spin susceptibility in the critical
and the localized phase. To estimate the quantum critical cou-
pling between these two phases, we compared the finite-size
behavior of different observables. Our estimated ¢ is in good
agreement with previous results from a variational MPS study
[24,58].

In future studies, our QMC method will enable us to de-
termine the phase diagrams of spin-boson models coupled
to multiple baths [62]. Open questions include the quantum
critical properties of these models and their relation to spin
systems with long-range interactions in space. Spin-boson
interactions also play an important role in the more complex
Bose-Fermi Kondo model which is a central model for our
understanding of the quantum critical behavior appearing in
heavy-fermion systems [69]. For the local spin-boson cou-
plings considered in this paper, the wormhole updates can be
combined with any lattice model that can be simulated already
in the SSE representation, which will allow us to study the
effects of dissipation on finite systems [64]. We expect that
our QMC method will be able to simulate more general lattice
models coupled to bosonic modes which describe light-matter
interactions in quantum optics or trapped-ion systems—spin-
boson models can be realized, e.g., in quantum simulators
[70]. In general, the wormhole updates not only apply to
long-range interactions in imaginary time but also in space.
Our algorithmic developments therefore open up a route to
study a completely new class of models within the framework
of the well-established directed-loop algorithm.
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APPENDIX: IMPLEMENTATION

The implementation of the directed-loop algorithm in the
SSE representation is well documented and we refer to
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Refs. [7,71] for a detailed description of the necessary data
structures. In the following, we will give a quick overview
over the modifications that become necessary in the interac-
tion representation due to the nonlocality in imaginary time.
In the SSE representation, the vertices are saved in an op-
erator string with a fixed length that is traversed sequentially
during the diagonal updates; in this process, unit operators are
exchanged with diagonal ones and vice versa. In our formu-
lation, the vertices are saved in an unsorted list where each
element has a structure that contains all vertex variables. For
the spin-boson vertices defined in this paper, each vertex has
variables v = {fi, v, w, T, T'}; note that it is more useful to
save the vertex type v than the operator type a. Before we start
a block of diagonal updates, we once go through the vertex list
and set up a new list that includes all time variables at lattice
site i where an off-diagonal operator is applied. After sorting
this list, we can access the spin configuration at each position
in the world-line configuration from the knowledge of the ini-
tial state o). Although sorting algorithms require O(8 In )
operations for each site and are mathematically more expen-
sive than the directed-loop updates, the construction of the
loops remained the most expensive task for all temperatures
accessible to our simulations. To add a diagonal vertex, we
can access the spin configurations from the sorted list, draw
the vertex variables as described in Sec. IV C, calculate the
METROPOLIS acceptance, and eventually add the vertex as
element n + 1 of the vertex list. To remove a diagonal vertex,
we randomly pick a diagonal vertex, exchange it with element
n saved in the vertex list, and then reduce the integer n that
counts the number of vertices by one. Although the diagonal
updates change the number of vertices, we can work with a

fixed length for the vertex list and only take into account the
first n elements.

The implementation of the directed-loop updates is very
similar to Ref. [7]. To create the doubly linked vertex list,
we first traverse through the vertex list again and make sep-
arate lists for the time variables and subvertex labels—the
latter is a combination of the vertex number and a label for
operator 1 or 2. We create an index list for the time variables
to sort the list of subvertex labels. From this, we can setup
the linked vertex list. The construction of the directed loops
then follows the description in Ref. [7]. When we enter a
vertex of type v at leg [;, we can determine the exit leg /,
from a probability table. Even for the wormhole moves, the
combination of the vertex variable and the exit leg exactly
determines the label of the exit vertex in the linked vertex
list. During the construction of the loop, we also update the
vertex configurations in the vertex list. Note that the correct
measurement of the off-diagonal time-displaced correlation
functions requires that we choose a random starting time for
the directed loop. After we have finished a block of directed-
loop updates, we also update the initial state |«), as described
in Ref. [7].

The number of proposals during the diagonal updates and
the number of constructed loops in the directed-loop updates
get adjusted during the Monte Carlo warmup—in such a way
that every vertex is touched at least once on average—and
remain fixed afterwards. We start the warmup from a ran-
domly chosen |«) and an empty vertex list. To speed up the
warmup procedure, we use a beta-doubling scheme. For the
measurement of certain observables, we might have to sort
parts of the vertices again.
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