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Electron dynamics in α-quartz induced by two-color 10-femtosecond laser pulses
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The time dependent density functional theory (TDDFT) is used to study the femtosecond laser induced
excitation dynamics of electrons in bulk α-quartz, and evaluate the laser energy deposition into this material.
In order to properly distinguish the contributions of ionization (electron transitions from the valence band to
the conduction band) and laser heating (electron transitions in the conduction band), two 10-femtosecond laser
pulses exhibiting different wavelengths are used. Short wavelengths are expected to enhance the ionization rate,
whereas longer wavelengths should be more suitable for excitation in the conduction band, thus providing a
possible control of the whole electron dynamics. The influence of the pulse-to-pulse delay and intensities is
studied. A significant enhancement of the interaction efficiency, in terms of excited electron density and their
energy density, is observed for zero pulse-to-pulse delay. It is attributed to the opening of new ionization
pathways involving various combinations of both photon energies ensuring the energy conservation, i.e., the
sum of photon energies bridges the bandgap. This analysis is supported by a semi-analytical quantum model in
the multiphoton absorption regime. The role and strength of direct interband transitions for the electron dynamics
in the conduction band are highlighted. The associated laser energy deposition into the material is shown to be
as efficient as collisional processes.
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I. INTRODUCTION

The interaction of femtosecond laser pulses with dielectric
materials is theoretically studied since the development of
such laser facilities, see for example [1–3]. The interest of
such works is twofold. First, on the fundamental point of view,
this physical system exhibits a complex dynamics due to vari-
ous mechanisms including electron excitation and relaxation.
Despite the main laser induced electron dynamics is now rel-
atively well theoretically described, some points remain to be
elucidated as the relative role of intra- and interband electron
transitions, and the influence of the real band structure more
generally. Advances have been made recently but modeling
still include assumptions on the band structure [4–10]. Sec-
ond, the theoretical study of the interaction of femtosecond
pulses with dielectric material is of interest for application
purposes including local modification of the refractive index,
material structuring, or surface ablation [11–16]. A deep un-
derstanding of the processes at play allows one to clearly
interpret experimental observations and ultimately allows one
to design future experiments and may pave the way to new
applications. Such material modifications are generally due to
the laser energy deposition into the material, which results
from the primary stage of laser induced electron dynamics
[14]. Theoretical advances on the interaction of femtosecond
laser pulses with dielectric materials are thus still desirable.
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The phenomenology of the femtosecond laser induced
electron dynamics in dielectric materials is as follows. The
first excitation step consists of electron transition from the
valence band to the bottom of the conduction band through
multiphoton absorption or tunneling [17]. This is the so called
photoionization process. The promoted electrons may then
further absorb photons in the conduction band, i.e., make
conduction-conduction transitions; it is the so-called laser
heating. This process may be assisted by a third particle to
satisfy both energy and momentum conservations, i.e., photon
absorption takes place during the collision with a phonon, an
ion, or another electron [18]. In that case intraband transitions
mainly take place. The photon absorption may also lead to
interband transitions where the lattice ensures the momen-
tum conservation [8,9,19–21]. Collisional processes also take
place without involving a photon absorption. They lead to
a relaxation of the conduction electrons in the sense their
distribution tends towards a Fermi-Dirac distribution, and they
have transferred some energy to the lattice. Depending on
laser parameters, conduction electrons may reach an energy
of the order of the bandgap, leading to impact ionization: the
collision of a high-energy conduction electron with a valence
electron lead to two electrons in the bottom of the conduction
band. The last relaxation process consists of the recombi-
nation of excited electrons to the valence band or defective
states. The timescale for significant relaxation processes is in
excess of ∼100 fs [9,18], i.e., they are not significant on an
ultrashort timescale corresponding to few-cycle laser pulses
(∼10 fs).

Most of theoretical and numerical approaches to describe
the previous laser induced electron dynamics, within the
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framework of above mentioned applications, consider the
collisional/relaxation processes associated with long enough
laser pulses. For instance, a simple and computationally effi-
cient approach is based on rate equations, which only consider
the temporal evolution of a few electron populations [22].
A more elaborated description relies on the resolution of
Bloch equations [23–28]. Despite such approaches have been
shown to provide insights on the electron dynamics, they
do not account properly for the material band structure (for
instance the assumption of parabolic bands is often used). The
laser-induced dynamics in the conduction band thus is only
partially described, and not correctly describes the interband
transitions (transition between two states in the conduction
band). First-principles calculations as the time dependent den-
sity functional theory (TDDFT) is able to predict accurately
the full band structure and account properly for the interband
transitions [29–37]. Such approaches describe all processes
including photoionization and laser electron heating in the
conduction band (except collisions for standard ab initio cal-
culations, see below). However due to this completeness, the
evaluation of the contribution of each process to the overall
electron dynamics and subsequent energy deposition into the
material is not straightforward. Such a distinction could be
carried out by shaping the laser pulse or using a complemen-
tary theoretical approach.

The present paper aims at investigating in detail by us-
ing the TDDFT approach such excitation processes including
in particular the direct interband valence-conduction and
conduction-conduction transitions. For that purpose, two ul-
trashort (∼10 fs) laser pulses with different colors are used.
Such a color shaping have been shown to be efficient to
control the contribution of different processes to the whole
electron dynamics in case of relatively long pulses [38–43].
For instance the shorter the wavelength, the larger the pho-
toionization rate, and the lesser efficient the laser heating of
conduction electrons. In particular, by providing a realistic
description of the material band structure, a further goal of
the present paper is to study whether the conclusions on the
importance of direct interband transitions for the laser energy
deposition stand (previous approaches assumed simplified
band structures including the parabolic band approximation
[5,9,19–21]). The use of two-color pulses is also of interest
for application purposes. It has been shown experimentally
and theoretically that changing the delay between relatively
long pulses allows one to control the energy deposition into
the material (i.e., the electron dynamics), with a possible
maximum energy deposition for a nonzero delay [39,44,45].

Section II presents briefly the TDDFT approach used in
the present paper. In order to distinguish the contribution of
various interband transitions to the electron dynamics and
study conditions optimizing the laser energy absorption with
ultrashort laser pulses, simulations are conducted by vary-
ing both the pulse-to-pulse delay and pulse intensities. The
obtained results are shown in Sec. III. For various laser in-
tensities, both the produced electron density in the conduction
band and their energy density as a function of the pulse-to-
pulse delay are calculated, showing their enhancement in the
shortest delay region. The energy distribution of electrons is
also evaluated with various laser parameters, providing an
in-depth understanding of the electron dynamics. In particular,

the influence of the band structure on the energy distribution
of laser induced conduction electrons and their absorption
is evidenced, together with the role of the pulse color on
the electron dynamics. Finally the contribution of interband
transitions compared with collisional absorption is evaluated.
Main conclusions of this paper are drawn in Sec. IV. In
order to support analysis of TDDFT results regarding the
photoionization, the so-called BVkP semi-analytical model is
used [46,47]. Such an approach has been shown to be able
to capture the main trends of the ionization process. The
main ingredients of the BVkP approach and some results are
presented in Appendix for the sake of clarity, together with an
analytical demonstration devoted to the two-color interaction.

II. THEORETICAL DESCRIPTION OF LASER
PULSES INTERACTION WITH ELECTRONS

IN DIELECTRIC SOLIDS

This section aims at presenting briefly the theoretical
model used in the present paper, references are provided for
further details. For all calculations, a linearly-polarized two-
color laser electric field is used. A fundamental laser pulse
and its second harmonics are considered. The amplitude of
the total laser electric field reads:

E (t ) = E1 cos(ωt ) f (t ) + E2 cos ( 2ω(t − �t )) f (t − �t ),
(1)

where the field envelope f (t ) is defined as

f (t ) = sin4(πt/τ ) if 0 < t < τ

= 0 otherwise.

E1 and E2 are the electric field amplitudes of the fundamental
pulse and it second harmonics, respectively, which are related
to the intensity Ii as Ei = √

8π Ii/c where i = 1, 2, and c is
the speed of light. In the present paper, we choose h̄ω =
1.55 eV (2h̄ω = 3.1 eV) for the fundamental pulse (second
harmonics), which corresponds to the widely-used femtosec-
ond Titanium:Sapphire laser facility. The pulse duration is set
to τ = 26 fs, which roughly corresponds to 10 fs FWHM. The
pulse-to-pulse delay �t is positive when the fundamental laser
pulse first irradiates the target.

To describe electron dynamics induced by a laser pulse,
the first-principles calculation based on TDDFT is carried
out by using our developed open source software, SALMON
[34]. The computational method is briefly explained in this
section. Full explanations were given in previous publications
[48–50].

The real-space electron orbitals {ψi(�r, t )} in a periodic
crystalline solid can be expressed based on the Bloch theorem
by introducing the reciprocal k space,

ψi(�r, t ) = ei�k·�rub�k (�r, t ), (2)

where ub�k is the bth Bloch orbital in a unit cell at the �k
point. To calculate the time-evolution of the orbitals in the ex-
ternal electric field, the time-dependent Kohn-Sham (TDKS)
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equation [51],

ih̄
∂

∂t
ub�k (�r, t ) =

[
1

2me

{
− ih̄∇ + h̄�k + e

c
�A(t )

}2

+ vH (�r, t )

+vxc(�r, t ) + v̂ion

]
ub�k (�r, t ), (3)

is solved using real-space and real-time method [52]. The four
terms of the Kohn-Sham Hamiltonian in the right-hand side
represent the kinetic energy operator with electron mass me,
Hartree potential vH , exchange-correlation potential vxc, and
ionic potential vion, respectively. The kinetic energy operator
includes k-vector term h̄�k due to the Bloch theorem and vector
potential term e

c
�A(t ) in this gauge, where h̄, e, and c are

Planck constant, the speed of light and the electron charge,
respectively.

Our analyses in the next section are based on the excitation
energy Eex and the number of excited (conduction) electrons
nex at the end of the interaction. Eex is defined as the difference
of the total energy density relative to the ground state. In
general, this can be evaluated directly from the total energy
calculations. We however calculate it from the field work since
the TBmBJ exchange-correlation potential that is not derived
from energy density is employed in this paper, that is,

Eex(t ) =
∫ t

�E (t ′) · �J (t ′)dt ′, (4)

where �E (t ) = − 1
c

d
dt

�A(t ) and �J (t ) are the laser electric field
and the electric current density, respectively. �J (t ) is defined
from the probability flow of electrons integrated over the unit-
cell volume [33,51,53,54].

nex defined in the unit cell is evaluated by:

nex = ntot − 1

	

∑
bb′ �k

fb′ �k
∣∣〈u0

b�k
∣∣ub′ �k (te)

〉∣∣2
, (5)

where ntot denotes the total number of electrons in the unit
cell, 	 the unit-cell volume, and u0

b�k and fb�k are the Bloch or-
bital function and its occupation number in the ground state. te
stands for the time when the laser pulses end. The occupation
number distribution as a function of energy is calculated by

dn

dε
=

∑
bb′ �k

fb′ �kδ
(
ε − ε0

b�k
)∣∣〈u0

b�k
∣∣ub′ �k (te)

〉∣∣2
, (6)

where ε0
b�k is the orbital energy in the ground state.

The plots of nex and Eex in the next section are given by
dividing by the number of atom per cell, then are in units of
atom−1 and eV/atom, respectively.

Computational details of the TDDFT calculations are as
follows. The cuboid unit cell of SiO2 with the side length
of 4.913 Å, 8.510 Å, and 5.405 Å contains 18 atoms [55].
Uniform spatial grid points of 20 × 28 × 28 are set in the
cell and 43 k points are used in the reciprocal space. This
discretization is sufficient to obtain converged results [56,57].
Norm-conserving pseudopotential is employed for the ionic
potential. In the present analysis, it is important to use a
functional that reproduces accurately the bandgap. We use the

TBmBJ functional at the meta-GGA level for the exchange-
correlation potential that is known to reproduce bandgaps of
insulators systematically [58]. With a value of 1.0 for the
TBmBJ parameter, the calculated bandgap energy is 7.7 eV
and the first absorption peak obtained from the transition
moment analysis is at 9.05 eV, which are in a good agreement
with the experimental observations, including the optical re-
sponse through the dielectric function ([33,59] and references
therein). The TDKS equation is integrated with a time step of
0.48 as.

Since we use perfect crystalline structure with frozen
atomic coordinates corresponding to a lattice at 0 K, phonon-
assisted intraband and indirect interband transitions are not
described; only direct (vertical) interband transitions are re-
produced. The electron-electron collision is also not properly
taken into account in our calculation due to the adiabatic
approximation of the used exchange-correlation functional.
Since the interaction with 10-femtosecond laser pulses is
considered in the present paper, collisional processes are not
expected to provide a significant contribution to the whole
electron dynamics, neither the electron recombination, which
significantly contributes to the whole electron dynamics on a
longer timescale [12].

III. RESULTS AND DISCUSSION

A. Study of electron populations

1. Total excited electron density

Figure 1 shows the evolution of the number of excited
electrons per atom as a function of the pulse-to-pulse de-
lay, as predicted by TDDFT calculations. Various couples
of laser intensities are considered in order to explore dif-
ferent regimes of interaction: (a) I1 = 4.86 × 1012 W/cm2

and I2 = 1012 W/cm2; (b) I1 = 1.95 × 1013 W/cm2 and
I2 = 1013 W/cm2; (c) I1 = 1.26 × 1014 W/cm2 and I2 =
1014 W/cm2; (d) I1 = 1014 W/cm2 and I2 = 1013 W/cm2.
Cases (a), (b), and (c) corresponds to a configuration where
each single-color pulse produces a similar number of excited
electrons as the other color (a single-color pulse electron
production is evaluated by switching off the other pulse).
Going from cases (a) to (c), the intensity is increased, in-
ducing electron production through multiphoton absorption
and tunneling, respectively. In case (d), the number of excited
electrons produced by each single-color pulse are different.
These electron numbers for each configuration are summa-
rized in Table I.

For all configurations as shown in Fig. 1, the evolution
of the number of excited electrons with respect to the pulse-
to-pulse delay exhibits a similar shape: it is symmetric with
respect to the zero delay and, the longer the delay, the smaller
the electron excitation. In the region of short delays, i.e.,
shorter than ∼5 fs, there are oscillations with a period of
∼0.66 fs.

The main shape can be explained following results pro-
vided in the literature for longer pulses [39,43]. For the
longest delays where pulses do not overlap, each pulse pro-
duces independently excited electrons. In the multiphoton
regime, excited electrons are produced through simultane-
ous absorption of 6 photons and 3 photons by ω pulse and
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TABLE I. Excited electron densities (in units of atom−1) with various laser parameters as predicted by TDDFT calculations. n(1)
ex and n(2)

ex

correspond to the excited electron densities by a single laser pulse with frequency ω and 2ω, respectively.

n(1)
ex n(2)

ex nex (�t = 0) nex (�t = 0)/(n(1)
ex + n(2)

ex )

(a) I1 = 4.86 × 1012 W/cm2 and I2 = 1012 W/cm2 2.191 × 10−7 2.220 × 10−7 1.307 × 10−5 29.7
(b) I1 = 1.95 × 1013 W/cm2 and I2 = 1013 W/cm2 1.588 × 10−4 1.625 × 10−4 4.582 × 10−3 14.3
(c) I1 = 1.26 × 1014 W/cm2 and I2 = 1014 W/cm2 7.978 × 10−2 7.983 × 10−2 3.736 × 10−1 2.3
(d) I1 = 1014 W/cm2 and I2 = 1013 W/cm2 4.704 × 10−2 1.625 × 10−4 7.722 × 10−2 1.6

2ω pulse, respectively. The higher the intensity, the larger
the electron production, see Table I. In that case, the total
produced electron number is the sum of each single-pulse
contribution: nex(�t = ±τ ) = n(1)

ex + n(2)
ex (the decrease of va-

lence occupation induced by the first pulse is not significant
so that it does not affect the second-pulse excitation). For
shorter delays where pulses overlap, the total laser intensity
gets higher, and additional quantum excitation pathways ap-
pear. For instance the bandgap can be bridged through the

FIG. 1. Number of excited electrons per atom as a function of
the pulse-to-pulse delay obtained by TDDFT calculations. Various
couples of laser intensities are used: (a) I1 = 4.86 × 1012 W/cm2

and I2 = 1012 W/cm2; (b) I1 = 1.95 × 1013 W/cm2 and I2 =
1013 W/cm2; (c) I1 = 1.26 × 1014 W/cm2 and I2 = 1014 W/cm2;
(d) I1 = 1014 W/cm2 and I2 = 1013 W/cm2. Insets of (a), (b), and
(c) show a zoom in the short delay region with more data points to
better exhibit the oscillation-like behavior (see text).

simultaneous absorption of 2 photons at 3.1 eV and 2 photons
at 1.55 eV, or 1 photon at 3.1 eV and 4 photons at 1.55 eV.
The total excitation probability increases with respect to the
number of excitation pathways, explaining the curve rise when
the delay decreases. The latter influence is the most important
for a zero delay where pulses fully overlap, leading to the
highest total laser intensity and largest probabilities for each
photon combination. This situation thus corresponds to the
largest enhancement in the production of excited electrons.
The higher the intensities, the smaller the enhancement de-
fined as nex(�t = 0)/(n(1)

ex + n(2)
ex ) (see Table I). Indeed going

to the tunneling regime, i.e., departing from the multiphoton
absorption regime, the ionization process less depends on the
photon energy. The above mentioned combinational effect of
photon absorption is thus less important. In addition, in this
regime, the excitation probability less varies with respect to
intensity compared to the perturbative multiphoton regime.
It thus turns out that low intensities is the most favorable
configuration to enhance electron production by pulses over-
lapping. In perturbative conditions, since the population of the
valence band remains almost unchanged after the interaction
with one pulse, all previous processes little depend on the
delay sign leading to almost symmetric curves with respect
to the delay as observed in Fig. 1. Asymmetry is observed for
the deposited energy as shown later.

Regarding the observed oscillations in the region of short
delays, the local maxima of the excited electron number take
place at delays of 0, 0.66 fs, 1.33 fs, 2.0 fs, etc., and the
local minima at 0.33 fs, 1.0 fs, 1.66 fs, etc. The period of
oscillations of 0.66 fs corresponds to a frequency 4ω where
both electric fields are in phase so that the total field amplitude
is modulated. This behavior was also observed for atomic
target without delay but varying the pulse-to-pulse relative
phase [60] (which is similar to our conditions for not too large
delays). As shown in Appendix, the same oscillation-like be-
havior is retrieved with the BVkP approach with similar laser
parameters. The BVkP approach being computationally effi-
cient, simulations with various couples of laser intensity have
been performed (results not shown). The period of 0.66 fs is
always obtained, thus indicating this is a general feature of
the present interaction. To illustrate the origin of maxima and
minima in the excited electron number, the temporal evolution
of the total laser electric field is shown in Fig. 2 for delays of
(a) �t = 0 and (b) �t = 0.33 fs, which are representative of
above-mentioned other delays. The laser intensities are those
of Fig. 1(a). Note that despite fields are asymmetric with
respect to the horizontal axis, the vector potential is always
zero at the end of the interaction for all delays. Maxima and
minima in the excited electron number can be attributed to
the fact that the maximum total field is different depending
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FIG. 2. Temporal evolution of the total laser electric field for two
pulse-to-pulse delays: (a) �t = 0; (b) �t = 0.33 fs.

on the delay. Since the electron excitation takes place through
nonlinear interaction, the larger maximum field amplitude for
�t = 0, 0.66 fs, 1.33 fs, ... explains the observed local max-
ima in the electron number. Note that the higher the laser
intensities, the smaller the amplitude of these oscillations as
shown by Fig. 1. This behavior may be explained by the fact
that going to the tunneling regime, the excitation probability
is less sensitive to the electric field amplitude. The analysis
of previous TDDFT results is supported by numerical calcu-
lations with the BVkP approach as shown in Appendix.

Overall previous results clearly show that the higher the
laser intensities, the smaller the enhancement ratio, which
may be explained by two main reasons: (i) the enhanced ex-
citation based on combinational two-color photon absorption
requires a full perturbative regime, thus lowest intensities as
possible. The larger the intensity, the more significant excita-
tion though tunnel effect, the less efficient the combinational
patterns. (ii) For large laser intensities, a single pulse by itself
may significantly empty the valence band, the second pulse
thus can no longer excite removed valence electrons, reducing
the two-pulse cooperation.

2. Band occupation

In order to get a better picture of the laser induced full elec-
tron dynamics including transitions in the conduction band,
the band occupation with respect to the electron energy as pre-
dicted by TDDFT calculations is plotted in Fig. 3 for various
laser configurations: single pulses and two pulses with various
delays. The chosen intensities are I1 = 1.95 × 1013 W/cm2

FIG. 3. Band occupation with respect to the electron energy as
predicted by TDDFT calculations. Results with single pulses and two
pulses with various delays are shown (see legend at top). The chosen
intensities are I1 = 1.95 × 1013 W/cm2 and I2 = 1013 W/cm2.

and I2 = 1013 W/cm2, corresponding to results of Fig. 1(b).
We remind that the number of excited electrons induced by
each single pulse is the same.

The results of single-pulse irradiation are first considered.
Fig. 3(a) shows that the occupation of excited electrons (in the
conduction band) mainly mimics the DOS (density of states)
by reproducing the sub-structures (succession of bumps and
deep parts) as expected. However depending on the photon
energy, the energy distribution of excited electrons is differ-
ent: the occupation induced by the 2ω pulse below ∼10 eV
is larger than the ω pulse one, and the opposite behavior is
observed above 10 eV. These energy distributions can first
be explained by the fact that, at 2ω = 3.1 eV, the peaks in
the population at 8 − 9 eV can only be due to three-photon
absorption (two-photon absorption is forbidden) whereas the
population induced in this region at ω = 1.55 eV is due to
five-, six-, and seven-photon absorption. The latter process ex-
plains the spreading of excited electrons distribution and thus
smaller peaks (number of excited electrons induced by each
color is the same). The second influence explaining this dis-
crepancy is the further photon absorption by primary excited
electrons at the threshold of the conduction band (electron
transitions in the conduction band, or laser heating of con-
duction electrons). We have checked that the amplitude of the
transition moment is larger at 1.55 eV by a factor of ∼3 com-
pared with 3.1 eV. It follows that the excited electrons to the
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bottom of the conduction band can be further excited to higher
energies (through interband transitions) more efficiently with
1.55 eV photons than with 3.1 eV, further explaining the lower
ω population below 10 eV, and the higher for larger energies
with a non-negligible population up to ∼18 eV. The latter
observation is better supported by Fig. 3(b), which shows
the change in occupation distribution from the unperturbed
ground state within a linear scale. Note that I1 > I2 further
enhances the electron heating process.

Now the two-pulse case without overlap is considered
(delays of ±30 fs). The comparison with the previous re-
sults of single-pulse interaction is first carried out. Compared
with the single-pulse irradiation at 1.55 eV, the irradiation
of the material by the ω pulse followed by the 2ω pulse
at �t = +30 fs leads to a strong increase in the electron
population below 10 eV. An increase above 10 eV also
takes place but clearly in a lesser extent. The previously
discussed electron dynamics induced by the 2ω pulse is thus
retrieved: this frequency bridges the valence band to the con-
duction band more efficiently than states in the conduction
bands (conduction-conduction transitions). Compared with
the single-pulse irradiation at 3.1 eV, the following ω pulse
leads to the opposite behavior: the electron population be-
low 10 eV is decreased whereas the population above is
strongly increased. This dynamics is consistent with previ-
ous considerations indicating that the ω pulse is strongly
efficient to heat conduction electrons, thus depopulating 2ω-
induced electrons below 10 eV. It thus turns out that the
irradiation chronology by two pulses of different colors in-
fluences the electron dynamics. Within the present conditions
where each single pulse produces the same number of excited
electrons, the configuration where the shorter wavelength
pulse first irradiates the material leads to the larger total
electron energy, and subsequent laser energy deposition into
the material.

To conclude this section, the configuration of two pulse
with a strong overlap is considered. Figure 3(c) shows
the change in occupation distribution from the unperturbed
ground state for delays of 0 and 0.33 fs. We remind that the
zero delay corresponds to the production of the largest number
of excited electrons, and a delay of 0.33 fs to the first local
minimum in this number. This observation is retrieved here
since the average occupation is significantly larger with the
pulse overlap. The interesting resulting feature of this over-
lapped configuration is that the shape of the electron energy
distribution is strongly affected compared with the previous
case without overlap. Contrary to the previous distribution
where the highest occupations are in the range 0 − 10 eV,
here they are located slightly above 10 eV. If the peak at the
threshold is excluded, higher occupations even take place up
to roughly 17 eV. The laser heating efficiency is thus enhanced
through the simultaneous cooperation of both colors. We
suggest it is due to new possibilities to satisfy resonant con-
dition (interband transition in the conduction band) through
the possible sequential or simultaneous absorption of several
photons involving both colors. In particular the probability for
these new allowed transitions become larger owing to various
combinations of both photon energies as for the excitation
from the valence to the conduction band. Note that as shown
in the next section, the enhancement ratio in the total energy

FIG. 4. Energy of excited electrons per atom as a function of
the delay between pulses as obtained with TDDFT calculations.
Various laser intensities are used: (a) I1 = 4.86 × 1012 W/cm2

and I2 = 1012 W/cm2; (b) I1 = 1.95 × 1013 W/cm2 and I2 =
1013 W/cm2; (c) I1 = 1.26 × 1014 W/cm2 and I2 = 1014 W/cm2;
(d) I1 = 1014 W/cm2 and I2 = 1013 W/cm2. Insets of (a), (b), and
(c) show a zoom in the short delay region with more data points to
better exhibit the oscillation-like behavior (see text).

of excited electrons is of the same order as the one for the
number of excited electrons per atom, thus suggesting the
main contribution to the total electron energy density remains
the number of excited electrons.

B. Study of electron energy density

This section is devoted to study the laser energy deposition
into the material, i.e., the excited electron energy density.
Preliminary trends have been obtained by studying the energy
distribution of excited electrons. The ω pulse is more efficient
to heat primary produced conduction electrons, and subse-
quently the two-pulse configuration where the 2ω pulse first
irradiates (�t < 0) leads to the highest energetic electrons.

Figure 4 shows the energy per atom of excited electrons
as a function of the pulse-to-pulse delay for same couples of
intensities as in Fig. 1. The main shapes are relatively similar
to those of excited electron density, the longer the delay, the
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TABLE II. Excited electron energy per atom with various laser parameters. E (1)
ex and E (2)

ex correspond to the excited electron energy densities
by a single laser pulse with frequency ω and 2ω, respectively.

E (1)
ex E (2)

ex Eex (�t = −30 fs) Eex (�t = +30 fs)

(a) I1 = 4.86 × 1012 W/cm2 and I2 = 1012 W/cm2 2.267 × 10−6 2.112 × 10−6 4.660 × 10−6 4.453 × 10−6

(b) I1 = 1.95 × 1013 W/cm2 and I2 = 1013 W/cm2 2.254 × 10−3 1.765 × 10−3 5.168 × 10−3 4.421 × 10−3

(c) I1 = 1.26 × 1014 W/cm2 and I2 = 1014 W/cm2 3.141 2.427 10.0 7.720
(d) I1 = 1014 W/cm2 and I2 = 1013 W/cm2 1.540 1.765 × 10−3 1.546 1.709

smaller the electron energy. The oscillation-like behavior is
also observed, with the same period of ∼0.66 fs. However, the
curves are no longer symmetric with respect to the zero delay.
The higher the intensities, the more asymmetric the evolution
of the electron energy. A summary of representative data is
provided in Table II, including the excitation energy density
induced by a single-color pulse.

The fact that the evolution of the excited electron energy
exhibits similar trends as the number of excited electrons is
due to the ionization process (electron transition from the
valence to the conduction band), which contributes signifi-
cantly to the value of both quantities. Obviously the number
of excited electrons is fully due to the ionization process. The
latter induces a significant number of electrons in the 10 eV
range, which thus makes the total electron energy related to
the number of excited electrons. It follows the enhancement
in the energy density (between zero delay and ±30 fs delay)
is of the same order of magnitude as for the excited electron
densities. Actually the value of the excited electron energy
is due to two processes: (i) ionization and (ii) heating in
the conduction band. The energy density for process (i) is
of the order of Evc ∼ nexEg ∼ 6h̄ωnex. Since TDDFT cal-
culations provide the total electron energy density Eex, the
contribution of process (ii) is Ecc = Eex − Evc. In order to
highlight the electron dynamics in the only conduction band
(by not including the contribution of the ionization process),
the ratio Eex/nex can be considered, which corresponds to
the average energy of a single excited electron at the end of
the interaction. For illustration purpose, this ratio is plotted
in Fig. 5 for the intensity couple I1 = 1.95 × 1013 W/cm2

and I2 = 1013 W/cm2. A pure ionization process would have
lead to a value of Eex/nex not evolving with the pulse-to-
pulse delay, of the order of the bandgap energy. The observed
variations in Fig. 5 are thus the signature of the contribution
of conduction-conduction transitions. For this intensity con-
figuration, Eex/nex(�t = −30 fs) ∼ 16 eV and Eex/nex(�t =
+30 fs) ∼ 14 eV. Assuming the excitation energy from va-
lence to conduction band is evc ∼ 6h̄ω = 9.3 eV, the gained
energy in the conduction band is ecc = 16 − 9.3 = 6.7 eV
and ecc = 14 − 9.3 = 4.7 eV, respectively. Note that despite
the multiphoton order for conduction-conduction transitions
is lower than for valence-conduction one (see below), the
absorbed energy is smaller because this mechanism takes
place only when conduction electrons are produced. The re-
maining available laser energy is thus smaller than the whole
laser pulse, which has produced the conduction electron den-
sity. The asymmetry of curves [ecc(�t = −30 fs) > ecc(�t =
+30 fs)] is explained by the fact that the ω pulse excites
more efficiently conduction electrons than the 2ω pulse, as

discussed at the end of Sec. III A. Regarding the enhancement
of Eex/nex for small delays, as for the valence-conduction
excitation process, it is most probably due to the contribu-
tion of combinational absorption pathways, thus implying a
nonlinear absorption in the conduction band where at least
simultaneous absorption of two photons with different color is
possible at some points in the Brillouin zone. This scenario is
supported by the scaling law of ecc with respect to the intensity
in the single-color case. By fitting the curve with a power law,
the found exponents are 1.13 and 0.994 for the ω pulse and
2ω pulse, respectively. A standard linear absorption is thus
found for the 2ω pulse. However for the ω pulse, an exponent
larger than unity indicates that some transitions involving
two-photon absorption in the conduction band take place.
Finally, all previous results are compared with those obtained
with longer pulses where collisional and recombination pro-
cesses contribute significantly to the electron dynamics. First,
the enhancement of laser energy deposition into the material
is considered. The previous results show that the maximum
energy deposition takes place at a zero pulse-to-pulse delay
whereas longer pulses (at least 50 − 100 fs) lead to a delay in
between ∼100 fs and a few ps depending on the laser features
[38,39,44,45,59,61]. In case of longer pulses, electron re-
laxation, including various collisional processes and electron
recombination, play an important role on the electron dynam-
ics. In brief, first irradiation by the short wavelength pulse lead
to a significant free electron production, and subsequent irra-
diation by an infrared laser pulse induces a significant heating

FIG. 5. Ratio of energy of excited electrons over their density
as a function of the delay between pulses. Laser intensities are I1 =
1.95 × 1013 W/cm2 and I2 = 1013 W/cm2.
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of previously promoted free electrons. If the pulse-to-pulse
delay is too short, the population of free electrons is not large
enough for a significant absorption of the infrared pulse. If
the delay is too long, free electrons produced by the first pulse
have significantly recombined, which again lead to a small
absorption of the infrared pulse. Therefore there is an optimal
delay where the free electron populations produced by the first
pulse is the largest and most prompted to be heated by the
subsequent infrared pulse to lead to a final significant laser en-
ergy deposition. Impact ionization (collision of a conduction
electron with a valence electron leading to two conduction
electrons) also plays an important role on the delay value since
it modifies the free electron population and depends on the
subsequent infrared laser heating (this process takes place if
the energy of conduction electrons is at least of the order of
3Eg/2 [22]). In the present paper with ultrashort laser pulses
where such relaxation and recombination processes are less
important, the direct interband electron transitions drive the
whole electron dynamics. It turns out that enhancement of
laser energy deposition is due to the increased coupling be-
tween states through additional combinations of both photon
energies, which thus takes place when both laser intensities
are the highest, i.e., at zero pulse-to-pulse delay. However
note that in case of nonzero delay, as for longer pulses, this is
the configuration of first irradiation by the shorter wavelength
pulse, which leads to the larger energy deposition.

The longer wavelength pulse is the most efficient to heat
free electrons, whatever the pulse length. However, due to
the band structure, the present results for a single ω pulse
show that the scaling of the energy deposition (for a given
free electron density) with the laser intensity departs from the
linear behavior predicted by the Drude model. Since in gen-
eral both intra- and interband electron transitions contribute to
the electron dynamics in the conduction band [5] and subse-
quent laser energy deposition into the material, the presently
exhibited nonlinear absorption is expected to play a role for
long pulses (τ > 50 fs). For instance, this effect is expected to
modify predictions of energy absorption by free electrons as
predicted by models assuming it results from the independent
contribution of each color pulse, i.e., sum of single-color
contributions [38]. Finally, despite the present TDDFT does
not include properly collisional effects, an effective collision
frequency νeff associated with the energy deposition can be
estimated in a similar way as done in [62]. According to the
Drude model, the variations of energy density, Eex, of a gas of
independent free electrons reads [63]:

∂Eex

∂t
= 2enexνeff

cε0me
(
ω2 + ν2

eff

) (7)

where ε0 is the vacuum dielectric permittivity and other quan-
tities have been defined previously. Knowing the electron
density, the effective collision frequency can be evaluated
to retrieve the same absorbed energy as the one predicted
by TDDFT calculations. Assuming νeff � ω, simple calcu-
lations lead to νeff ∼ meω

2cε0Eex/e2nexIτ . By using values of
electron density and energy of Tables I and II, we obtain an
effective collision frequency of the order of 1 fs. The latter
value is of the same order of magnitude as standard collision
frequency including the electron-phonon collision (theoret-

ically predicted or obtained through a Drude model to fit
experimental data). The contribution of interband transitions
to the laser induced electron dynamics in the conduction band
is thus definitively significant whatever the pulse duration.

IV. CONCLUSION

The electron dynamics in α-quartz induced by femtosec-
ond laser pulses has been theoretically studied. Two pulses
with different wavelengths have allowed to well distinguish
electron transition from the valence band to the conduction
band, and the dynamics in the conduction band. Various
behaviors have been highlighted by varying both the pulse-
to-pulse delay and intensities.

TDDFT calculations show a possible enhancement in ex-
cess of one order of magnitude in the density of excited
electrons when both pulses fully overlap. This effect is due to
the appearance of new quantum ionization pathways involving
both photon energies. By varying the pulse-to-pulse delay
around the optimal zero value leads to an oscillating like
behavior of the excited electron density, which is attributed
to modulations in the total laser electric field. These analysis
have been supported by a semi-analytical approach (BVkP)
capturing the main ionization processes at play within the
present laser parameters. The observed trends are thus a gen-
eral feature of the present physical system.

Regarding the laser induced electron dynamics in the con-
duction band, the TDDFT calculations show that the coupling
between states is the most efficient for longest wavelengths,
suggesting the largest laser energy deposition into the material
is obtained by first irradiating with the shortest wavelength
pulse. The latter efficiently ionizes the material for a sub-
sequent efficient energy deposition through the absorption
of conduction electrons. The present results also show that
the nonlinear absorption of the laser pulses by conduction
electrons may play a role, in particular by combining the
simultaneous absorption of photons with different energies.
By using the Drude model, an effective collision frequency as-
sociated to the interband absorption has been evaluated. It lies
in the femtosecond range, which is comparable with values
obtained with longer pulses for which the electron collisions
are known to play an important role for the laser absorp-
tion (through intraband transitions). The present paper, which
includes a realistic band structure, thus also confirms that
both intra- and inter-band transitions contribute to the laser
energy deposition into dielectric materials. Such conclusions
may be considered to interpret experimental observations on
femtosecond laser processing of dielectric materials (resulting
from the energy deposition), and possibly included for design-
ing accurately future experiments.
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APPENDIX: THE BVkP APPROACH

1. Principle

The semi-analytical BVkP approach for describing ioniza-
tion (through multiphoton absorption) in dielectric materials
was developed in [46,47], among others as reviewed in [64]
for instance. This is a good candidate to support analysis of
TDDFT results since it is based on a time-dependent approach
well designed to capture specific properties of the two-color
pulse interaction. This kind of approach based on Volkov
states was validated against predictions of the time-dependent
Schrödinger equation for atomic and solid targets in the
multiphoton regime, i.e., laser intensities lower than about
1013 W/cm2 within the present conditions [17,46,60,65,66].
Here are recalled the main ingredients and assumptions of
this approach, together with an improvement proposed for the
present paper.

The BVkP approach is based on an analytical evaluation of
the quantum transition amplitude from the initial unperturbed
valence state ϕv (�r, t ) to the final perturbed conduction state
�c(�r, t ). Assuming a single-active electron and the electric
dipole approximation within the length gauge, the transition
amplitude reads:

Tcv (t ) = −i
∫ t

0
dt〈�c(t )|�r · �E (t )|ϕv (t )〉. (A1)

�c(�r, t ) is approximated by a Bloch-Volkov state, which de-
scribes an electron in both the laser electric field and the
crystalline field [67]. By using the �k · P̂ theory to evaluate the
matrix element [68], i.e., electron transitions are assumed to
take place in the center of the Brillouin zone, and developing
the Volkov phase as powers of the vector potential assuming
the latter is not too large, calculations leads to

Tcv (t ) = − P

meEg

∫ t

0
dt exp {iEgt} E (t )

(1 − iA(t )/α)2 (A2)

where Eg is the material bandgap, and α is the only parameter
of this approach, which is related to the spatial expansion of
the valence wavefunction, set to 1.55 a.u. as in [46]. P =√

Eg/2m∗
vc is related to the matrix element through the �k · P̂

theory, where m∗
vc is the electron effective mass.

In general, the excitation probability associated to the tran-
sition of a valence electron to the conduction band at the
end of the interaction is given by Pex = ‖Tcv (τ )‖2. We have
recently observed slight differences in the BVkP predictions
in out-of-resonance conditions through the transformation
�E (t ) → − �E (t ), whereas they should not depend on the field
orientation within the present symmetric system. This behav-
ior is due to the fact there is no integration over the Brillouin
zone so that both k direction are not included (where k is
the wave vector). To fix this behavior, Pex = (‖T (+)

cv (τ )‖2 +
‖T (−)

cv (τ )‖2)/2 is now calculated, where T (+)
cv (τ ) corresponds

to Eq. (A2) and T (−)
cv (τ ) to the same expression where − �A(t )

substitutes �A(t ). We have verified this modification still pro-
vides correct predictions compared with previously published
results including simulations solving optical Bloch equa-
tions [46].

To study whether several excited states may play a role
on the excitation probability (the highest occupied valence

state may bridge to states higher than the lowest unoccupied
conduction state, i.e., corresponding to above threshold ion-
ization), additional final states can be included in the BVkP
approach. The total excitation probability can be estimated as
the sum of each partial probability [46]. Note that a deviation
from this sum is possible due to interfering pathways [69].
We emphasize this approach is only used to evaluate whether
there is an influence or not of above threshold ionization in
the case of excitation by two-color laser fields, to support
forthcoming analysis of TDDFT results. Overall, the BVkP
approach is used in this paper only to support forthcoming
analysis of TDDFT results, because it is expected to account
for the main features of the photoionization process.

2. Numerical results

In order to support the analysis of TDDFT results presented
in the main text, numerical calculations with the BVkP ap-
proach have been carried out. The validity of this approach
is further supported by the fact that A/α < 1 within the
present conditions, which is required to involve the multipho-
ton absorption as the major ionization process [46]. Indeed, in
atomic units, A = E/ω  0.3 for I = 1013 W/cm2 and a pho-
ton energy of 1.55 eV. So that A/α  0.2 < 1. Figure 6 shows
the evolution of the excitation (ionization) probability as a
function of the pulse-to-pulse delay for three configurations
of intensity couples. Note that TDDFT and BVkP calculations
provide the number of excited electrons and excitation prob-
ability, respectively, so that only variations with parameters
are considered (which is enough to support previous TDDFT
analysis).

Figure 6(a) shows the BVkP predictions in the case of res-
onant excitation (Eg = 9.3 eV) with a single conduction state.
Intensities in the 1013 W/cm2 range are chosen for this first
calculation, comparable to those of Fig. 1(b), and have been
chosen so that the excitation probabilities induced by each sin-
gle pulse are similar. We obtain I1 = 6.5 × 1013 W/cm2, I2 =
1013 W/cm2, and P1 = P2 = 7. × 10−4 [I2 has been chosen as
in Fig. 1(b), providing a value for the excitation probability,
and I1 was then varied to retrieve the same probability]. The
fact that I1 exhibits a different value from the one obtained
with TDDFT calculations may be due to the influence of the
band structure including possible electron transitions out of
the center of the Brillouin zone, with various amplitudes of
dipolar matrix elements, which are not included in the BVkP
approach. Behaviors of Figs. 6(a) and 1(b) are in a good
agreement. The main shape and oscillating-like behavior are
retrieved confirming the above mentioned analysis based on
electron transitions between valence and conduction states
since only this process is included in the BVkP model (there
is no transition between conduction states). An analytical
demonstration exhibiting the combination of both photon en-
ergies leading to an increased transition amplitude, supporting
the previous analysis, is provided below. However, the BVkP
model predicts more pronounced oscillation-like structures, in
particular they still appear for relatively long delays of ∼10 fs.
Also the two-pulse excitation probability can be smaller than
the sum of independent contribution of each single pulse. This
observation is analysed in the following paragraph. The BVkP
enhancement factor is ∼23, which is also relatively close to
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FIG. 6. Evolution of the excitation (ionization) probability as
a function of the pulse-to-pulse delay as predicted by the BVkP
approach for three configurations: (a) only one conduction state,
Eg = 9.3 eV, I1 = 6.5 × 1013 W/cm2 and I2 = 1013 W/cm2; (b) 10
conduction levels separated by 0.25 eV, Eg = 9.05 eV, I1 = 1.95 ×
1013 W/cm2 and I2 = 1013 W/cm2; (c) 10 conduction levels sepa-
rated by 0.25 eV, Eg = 9.05 eV, I1 = 1.8 × 1013 W/cm2 and I2 =
1012 W/cm2.

the TDDFT prediction (14.3). Now the BVkP approach is
used within more similar conditions as TDDFT calculations,
i.e., Eg = 9.05 eV, and the conduction band is described with
ten states with an energy difference of 0.25 eV between two
adjacent states. The energy of the highest conduction state
is thus 2.5 eV (above the bottom of the conduction band),
possibly allowing above threshold ionization. Intensities are
the same as in Fig. 1(b), thus leading to different excitation
probability induced by each single pulse: P1 = 2.5 × 10−6

and P2 = 1.5 × 10−3. Figure 6(b) shows the predicted evo-
lution of the excitation probability as a function of the delay
within these conditions. Compared with Fig. 6(a), the general
shape is more similar to the TDDFT one of Fig. 1(b) where
the amplitude of oscillations decreases more by increasing the
delay. We have checked it is due to going from one conduction
state to ten. Summing the ten contributions break partially
the coherence because of using different bandgaps. Also this
configuration prevents from producing less excited electrons
with two-pulse irradiation than with the independent sum
of two single-pulse irradiation. With one conduction state, a
delay can lead to a two-pulse maximum electric field am-
plitude smaller than single-pulse one due to interference-like
effect (despite the photon energies are different, the broad

spectrum due to the very finite pulse duration includes such
an effect), leading to a lowered electron excitation. In case
of ten conduction states with partial loss of resonance, sum-
ming various contributions remove the dependence on the
interference-like effect. TDDFT calculations include an even
more complex band structure so that this effect is enhanced,
leading to observable oscillations only for the shortest delays
(Fig. 1). Regarding the enhancement ratio in the production
of excited electrons, it is 5.4 within these conditions, which
significantly departs from the TDDFT prediction of 14.3. This
discrepancy seems to be due to the significant difference in
the excitated electron probability induced by single pulses
(P1 = 2.5 × 10−6 versus P2 = 1.5 × 10−3). This result further
confirms the influence of mixing photon energies with various
combinations to bridge the bandgap. The latter process is the
most significant when both color contributions are similar,
leading to a similar contribution of each combination to the
excitation probability. In case of strong imbalance between
pure color excitation, such a cooperation is no longer possible,
explaining the smaller enhancement (we have checked this be-
havior reproduces whatever the number of conduction states).

Since the previous considerations on the enhancement
factor are based on pure multiphoton absorption, the last per-
formed BVkP calculation addresses this perturbative regime
by using the lowest intensities conditions of Fig. 1(a) in the
TW/cm2 range. To reproduce required conditions for a large
enhancement for which P1 = P2, the laser intensity of the ω

pulse is varied whereas the one of the 2ω pulse is the same
as in Fig. 1(a). With the same material parameters as previ-
ously for Fig. 6(b) (Eg = 9.05 eV and the conduction band
is described with ten states), we obtain P1 = P2 = 1.4 × 10−6

with I1 = 1.8 × 1013 W/cm2 and I2 = 1012 W/cm2. The en-
hancement in the excited electron production is of the order
of 35, which is again rather close to the TDDFT prediction
of ∼30.

3. Analytical analysis of the enhancement in the free electron
production based on the BVkP approach

Numerical results of the main text, predicted by both
TDDFT and BVkP approaches, exhibit an enhancement of the
laser produced conduction electron density when both pulses
overlap. Based on analytical considerations with the BVkP
approach, we show here this enhancement results from the
opening of additional quantum ionization pathways due to
combinations of both photon energies to bridge the bandgap.
To demonstrate these additional possibilities, we show that the
BVkP approach includes all this pathways by considering the
energy conservation. Eq. (A2) is rewritten as

Tcv (τ ) =
∫ τ

0
dt exp {iEgt}

∞∑
n=0

in−1

n!
A(t )nE (t )〈φc|rn|φv〉,

(A3)
where the temporal integral In = ∫ τ

0 dteiEgt A(t )nE (t ) ensures
the energy conservation. Indeed, in the case of a single field,
assuming the vector potential reads A(t ) = A1 exp(−iωt ) for
simplification purposes, In ∝ ∫ τ

0 dt exp (i(Eg − (n + 1)ω)t ),
which is the largest when Eg − (n + 1)ω = 0, i.e., when
the simultaneous absorption of n + 1 photons bridges the
bandgap. The sum over n in Eq. (A3) then selects the most
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probable ionization pathway corresponding to energy conser-
vation. Note that there is in general a single ionization path-
way. In case of two laser pulses with A(t ) = A1 exp(−iω1t ) +
A2 exp(−iω2t ), the temporal integration reads:

In = i
∫ τ

0
dteiEgt (A1 exp(−iω1t ) + A2 exp(−iω2t ))

×
n∑

k=0

Ck
n An−k

1 Ak
2e−i(n−k)ω1t e−ikω2t (A4)

where Ck
n is the combinational number. Here there are two

phases in the exponential functions, which make the inte-
gral the largest when they vanish, i.e., Eg − (n − k + 1)ω1 −

kω2 = 0 and Eg − (n − k)ω1 − (k + 1)ω2 = 0. Or, in the case
of a given field and its first harmonics where ω2 = 2ω1, Eg −
(n + k + 1)ω1 = 0 and Eg − (n + k + 2)ω1 = 0. Both sums
over n and k leads to various combinations of both photon
energies ensuring the energy conservation, thus increasing the
number of ionization pathways and the transition amplitude.
Therefore, the simultaneous irradiation with two pulses en-
hances the conduction electron production compared with two
independent irradiations (where the pulse-to-pulse delay is
such that pulses do not overlap). Note that considering fields
written as a real function with a temporal envelope leads to
more complicated calculations but with the same conclusion
on electron production enhancement.
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