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We demonstrate that in photonic gap antennas composed of an epsilon-near-zero (ENZ) layer embedded
within a high-index dielectric, hybrid modes emerge from the strong coupling between the ENZ thin film and
the photonic modes of the dielectric antenna. These hybrid modes show giant electric field enhancements,
large enhancements of the far-field spontaneous emission rate, and a unidirectional radiation response. We
analyze both parent and hybrid modes using quasinormal mode theory and find that the hybridization can be
well understood using a coupled oscillator model. Under plane-wave illumination, hybrid ENZ antennas can
concentrate light and achieve local electric field amplitudes more than two orders of magnitude greater than
that of the incident wave. This places them on par with the best plasmonic antennas. In addition, the far-field
spontaneous emission rate of a dipole embedded at the antenna hotspot can be increased by more than three
orders of magnitude as compared to that in free space, with nearly perfect unidirectional emission.
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I. INTRODUCTION

Resonances in naturally occurring materials or artificial
metamaterials can lead to values of the real part of the di-
electric permittivity εr ≈ 0 [1,2]. This leads to unusual optical
phenomena, such as infinite phase velocity, light bending
and squeezing without reflection, and vanishing local density
of optical states (LDOS) [3–5]. In particular, close to the
epsilon-near-zero (ENZ) frequency, thin films can support
two modes with a nearly flat dispersion relation—a radia-
tive (leaky) mode above the light line, often referred to as
the Ferrell-Berreman mode, and a nonradiative mode below
the light line, sometimes referred to as an ENZ mode [6,7].
The field enhancement, deep subwavelength confinement and
slow light characteristics of these modes have attracted sig-
nificant attention over the past decade [8,9]. In contrast to
bulk ENZ materials, ENZ thin films are not characterized
by a vanishing LDOS and have the potential to both modify
and improve the emission of nearby emitters [6,10]. These
peculiar properties of ENZ films have brought about new
possibilities for control of light emission and nonlinear phe-
nomena [11–15].

Optical antennas based on subwavelength resonant struc-
tures have been at the core of efforts in near-field optics to
control light emission and reception [16–19]. Recent efforts
aimed at combining antennas with ENZ films have shown
that this allows one to take advantage of the strong ENZ con-
finement, while also coupling efficiently to radiation fields.
Antennas can serve as impedance matching elements between
an ENZ mode and free space [18]. In this regard, most pre-
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vious studies have focused on metallic antennas placed on
extended ENZ thin films [20–25].

In this paper, we propose dielectric antennas, within which
a thin ENZ layer has been embedded. These are derived
from the photonic gap antenna (PGA) concept introduced in
Ref. [26], but rely on the strong hybridization between the
photonic modes supported by the dielectric component and
the bulk plasmon resonance supported by the ENZ layer.
Unlike previous demonstrations with metallic antennas and
planar ENZ layers, the ENZ films now form an integral part of
the antennas. The resulting hybrid modes show giant electric
field and spontaneous emission rate (SER) enhancements. In
addition, we demonstrate that the gap-induced asymmetry
in the modes of the PGA allows for a strongly directional
response in both reception and reciprocally, emission from
embedded emitters. Notably, the PGAs do not have stringent
nanolithography constraints—the gap size is set by the ENZ
layer thickness—and the absence of extrinsic metals is ad-
vantageous in many applications such as those where heating
must be minimized or those requiring CMOS compatibility
[27–30].

II. THEORY AND RESULTS

To illustrate the idea, Fig. 1(a) shows a PGA composed
of a 580-nm-thick silicon pillar (εSi = 12.5) within which a
thin layer of indium tin oxide (ITO), chosen as the ENZ ma-
terial, has been embedded. Like highly doped semiconductors
[20], ITO and other transparent conductive oxides have the
advantage of having a broadly tunable ENZ frequency range,
adjustable by changing the doping concentration [31]. Here,
a Drude model is used to describe the complex dielectric
constant of ITO, with Re[εITO] = 0 at the ENZ frequency
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FIG. 1. Photonic gap antenna (PGA) design. (a) Perspective view
of a PGA with design parameters (in nm) t = 580, g = 2, �1 = 300,
and w = 240. (b) Dispersion relation for the hybrid modes, i.e., H1

(solid black), H2 (solid red), and H3 (solid blue) of a one-dimensional
asymmetric ENZ-slot-waveguide with the same layered structure as
the PGA (shown in the inset). The dashed lines show the parent
modes, i.e., TM0 (dashed black) and TM1 (dashed red) of the Si slab
waveguide without the ENZ layer. The dotted-blue line corresponds
to the ENZ frequency of ITO (the longitudinal plasmon resonance).
The dispersion relation is plotted in terms of normalized real angular
frequency Re(ω)/ωENZ as a function of the normalized propagation
constant kx�/2π , where � = 200 nm.

ωENZ ≈ 243.6 THz [32,33]. In the Supplemental Material [34]
we show results from a PGA with GaAs as the ENZ material.

A. Multilayer dispersion relation

To understand the resonant modes of the PGA, it is
instructive to first examine the modes of the equivalent
one-dimensional Si/ITO/Si waveguide. We have previously
shown that in purely dielectric PGAs, the field enhancement
can be related to the difference in permittivities between the
gap material (εgap) and the slab (εslab) material due to continu-
ity of the normal displacement fields Egap = (εslab/εgap)Eslab

[26]. This is similar to the mechanism leading to field en-
hancement in slot waveguides [35]. The use of an ENZ layer
within the gap (εgap ≈ 0) thus immediately hints at interesting
consequences. We will find that in the case of ENZ PGAs, the
polaritonic modes that emerge from strong coupling between
the dielectric modes and the bulk plasmon are central to un-
derstanding the antenna response.

The dashed lines in Fig. 1(b) show the dispersion relation
of the two lowest-order transverse magnetic (TM) guided
modes supported by the Si waveguide (thickness t = 580 nm)
in the absence of the ENZ layer (see Sec. I of Supplemental
Material [34]) [36,37]. The TM0 mode has an even Ez field
distribution along its height, with a maximum field intensity at
the center. This suggests that the strongest coupling between
the TM0 mode and the ENZ layer will be at this position.
However, such a waveguide will produce symmetric modes
that lack asymmetry in their radiation pattern on the yz plane
required for directionality in the PGA. To break the structural
symmetry of the waveguide, we choose an off-centered posi-
tion for the ENZ layer. In this case, the next mode, TM1, for
which the Ez component has two maxima of opposite sign,
will also interact with the ENZ layer. In particular, as shown
in the inset of Fig. 1(b), placing the ENZ layer at one of the
TM1 maxima (at a height ∼t/4 from the top or bottom) breaks

structural symmetry while also allowing for coupling of both
modes with the ENZ layer.

The dispersion relation of such an asymmetric Si/ITO/Si
waveguide is also shown in Fig. 1(b) using solid lines. It
is known that when the ENZ film thickness (here 2 nm) is
reduced below the electric field penetration depth, the lon-
gitudinal plasmon resonance supported by the ENZ material
at ωENZ acquires transverse character leading to polaritonic
ENZ modes [7]. However, the case of an ENZ layer embedded
within a finite (along z) dielectric differs qualitatively from
the extensively-studied cases of free-standing ENZ thin films
and ENZ thin films on metals [6–9]. Here, we observe clear
hybridization between the guided modes of the waveguide and
the ENZ plasmon resonance as evidenced from the anticross-
ing behavior of modes H1, H2, and H3. For relatively low
values of the wave number (∼kx�/2π < 0.5) the H1, H2, and
H3 modes are TM0, TM1, and ENZ-like, respectively. Unlike
Ferrell-Berreman modes, however, these modes have no radia-
tive loss since they are guided—only material loss according
to their varying ENZ character. Note also that at high wave
numbers H1 crosses the light line of Si and asymptotes below
the ENZ frequency with a linear dispersion similar to that of
the nonradiative ENZ mode of ITO embedded in infinite Si:
ω(kx ) = ωENZ(1 − gkxεSi/4ε∞), where g (2 nm) is the film
thickness and ε∞ (3.77) is the high-frequency permittivity
limit of the Drude model of ITO.

To exploit the resonant properties of these hybrid modes
in a PGA, we first truncate the Si/ITO/Si waveguide (along
x) to a two-dimensional structure that satisfies the lowest
order Fabry-Perot resonance condition, i.e., kx × �/2π = 0.5,
near the anticrossing region (∼ωENZ). For � = 200 nm (along
x), this condition is satisfied at ωH1 = 218.2 THz, ωH2 =
237.0 THz, and ωH3 = 266.2 THz. The three-dimensional
ENZ-slot-waveguide antenna corresponds to a finite width
(240 nm) of the waveguide that supports single mode along
the y axis. Although all of the important physics are present
for truncated-waveguide PGAs, our final PGA design, shown
in Fig. 1(a), has an elliptical cross section instead. In addition
to allowing for simpler fabrication, this tapering of the facets
gradually reduces the effective index of the waveguide in a
way that further enhances Ez in the low-index region [26]. To
maintain the resonance frequencies of the PGA near those of
its waveguide counterpart, its length (along x) is set to 300 nm.

B. Quasinormal mode model

For an accurate description of the localized antenna modes,
we use quasinormal mode (QNM) theory [38–40]. QNMs are
eigensolutions {ω̃m, Ẽm, H̃m} of linear Maxwell equation for
a nonconservative, source-free, and open system, where the
initially loaded driving field decays exponentially in time
due to the presence of radiation and absorption losses in
the system. The electric and magnetic fields (Ẽm, H̃m) of
QNMs are normalized to a unit electromagnetic energy of
the system. This allows us to calculate quantities such as the
complex mode volume [Ṽm ∝ 1/Ẽ2

m(r0)] at arbitrary positions
r0, which can be directly related to the LDOS [39,40]. The
decaying QNMs are characterized by complex frequencies
ω̃m = ωm + iγm/2, where the real and imaginary parts cor-
respond to the resonance frequency and the linewidth of the
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FIG. 2. QNM mode profiles. Cuts in the zx plane showing elec-
tric fields for the QNMs, (a) h1, h2, and h3 of the PGA, and (b) m0

and m1 of the Si antenna, both on a glass substrate, at their corre-
sponding complex frequencies (in THz) ω̃h1 = 214.5 + 12.9i, ω̃h2 =
232.7 + 12.4i, ω̃h3 = 255.9 + 12.4i, ω̃m0 = 218.5 + 15.0i, ω̃m1 =
246.4 + 11.5i. The arrows represent the direction of the real part
of the electric field (logarithmic scale) while the color map gives
the magnitude of the field. QNM electric fields are expressed in
×1015 V m−1 J−0.5. The color bars are saturated to respective maxi-
mum values for a better contrast. The true maximum for QNMs h1,
h2, h3, m0, and m1 are (in ×1015 V m−1 J−0.5) ∼18.6, 17.2, 16.7, 1.0,
and 1.1, respectively. (c) Magnitude and (d) phase of the z component
of the normalized electric field along a line, parallel to the z axis,
passing through the point of maximum field intensity in the gap
(x, y) = (124, 0) nm, for h1 (solid black), h2 (solid red), and h3 (solid
blue).

mode, m, respectively. In the results to follow, we analyze
the QNMs of a PGA supported by a semi-infinite glass sub-
strate (εglass = 2.25) using full-wave calculations performed
in COMSOL Multiphysics (see Sec. I of Supplemental Mate-
rial [34] for details on the mathematical models required for
the implementation) [38].

In line with the dispersion relation, we identify three hybrid
QNMs of the PGA, denoted as h1, h2, and h3. The resulting
QNMs field distributions in the zx plane of symmetry are
shown in Fig. 2(a). We can qualitatively compare these hybrid
QNMs to the two parent QNMs, denoted as m0 and m1 in
Fig. 2(b), of the Si nanopillar without the ITO layer. We
observe a close resemblance between h1 and m0, and between
h3 and m1, with the exception of a significant enhancement
of the Ez components within the ENZ layer for the hybrid
QNMs of the PGA. This indicates that h1 originates from the
hybridization of the ENZ resonance with m0, and h3 from the
hybridization of the ENZ resonance with m1. In contrast, the
field distribution of h2 has features inherited from both m0

and m1, but with strong Ez components in the ENZ film and a
weak Ex component near the top of the PGA as compared to
the Ex near the substrate—indicating a hybridization of ENZ
resonance with both m0 and m1. If we compare the hybrid
modes h1 and h3 with the parent modes of a purely dielectric
PGA (Si cylinder with an air gap), as shown in Ref. [26],

we observe very similar mode distributions with significant
enhancement in the gap region. However, due to the negative
permittivity of ITO at ωh1, the polarity of the Ez component is
opposite to that of the parent mode m0 of a PGA with air gap.
To compare the field intensities of the hybrid modes within
ITO to that of Si, at the ITO-Si interfaces, we normalize the
field distribution to their maximum, as shown in Fig. 2(c). The
maximum Ez values, as well as the relative difference between
the normalized fields within the ITO gap to the adjacent Si, are
of similar magnitude for QNMs h2 and h3, but with opposite
polarity as shown in the phase plot of Fig. 2(d). This agrees
with the fact that the real parts of the permittivity of ITO at
the resonant frequencies of h2 and h3 are –0.32 and +0.37,
respectively.

C. Mode coupling coefficients

The coupling between the Si antenna and ITO gap layer
can be well understood using a coupled oscillator model (see
Sec. I of Supplemental Material [34]) [41]. The photonic
modes of the Si antenna couples to a continuum of ENZ
resonance [spatial frequency in the range of ∼0.5(2π/�1)]
accumulating in the complex frequency plane around ω̃ENZ.
For simplicity, we model them as a single mode of complex
resonance frequency ω̃ENZ = ωENZ + iγENZ/2, where γENZ =
γITO [32]. We describe the hybridization between the parent
modes with the following 3 × 3 square matrix A, which we
assume to be symmetric for simplicity [41,42]:

A =
⎡
⎣

ω̃m0 C 0
C ω̃ENZ C′
0 C′ ω̃m1

⎤
⎦. (1)

To account for a mix of coherent and dissipative coupling
between oscillators, we consider complex valued coupling co-
efficients [41,42]. We denote the coefficient between the ENZ
resonance and the Si antenna modes, m0 and m1, as C and C′,
respectively. The zeros in the matrix neglect coupling between
m0 and m1 as they are eigenmodes of the same resonator.
Since we know that h1, h2, and h3 are the solution of the
eigenproblem Av± = ω̃hv±, where v± are the eigenvectors,
and ω̃h are the eigenfrequencies of the hybrid modes, we can
numerically fit for the values of the coupling coefficients C
and C′.

This model allows us to understand the resonant behavior
of the PGA as a function of gap thickness. In Figs. 3(b) and
3(c), we plot the resonance frequencies and the linewidths, re-
spectively, for both hybrid and parent QNMs. In Fig. 3(d), we
plot the magnitude of fitted coupling coefficients. We observe
that the magnitude of C′ is bigger than the detuning between
ENZ and m1 indicating strong coupling between the modes.
This is in contrast to the nature of coupling between ENZ and
m0, where the detuning is bigger than the magnitude of C. We
note that as the gap thickness increases, the coupling of ENZ
to m0 increases. This tends to blueshift h2 and counteract the
red-shift originating from the hybridization between ENZ and
m1. As shown in Fig. 3(b), we therefore observe a relatively
slow change in the resonance frequency of h2 for increasing
gap thickness. Owing to the higher (> 30%) radiation loss rate
of m0 than that of m1, this increased contribution of m0 in h2

also increases its radiation loss rate in comparison to h3. In the
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FIG. 3. Coupled mode analysis of the hybrid QNMs. (a) Sketch
of the coupled oscillator model, where two orthogonal Si antenna
modes m0 (black oscillator) and m1 (red oscillator) are coupled to
ENZ resonance of the ITO layer (blue oscillator) with a coupling
coefficient C and C′, respectively. (b) Resonance frequency (ωm) and
(c) linewidth (γm) of both hybrid modes (solid lines) and parent
modes (dashed lines) for varying thickness of the ITO filled gap
layer in the Si antenna. (d) Magnitude of coupling coefficient C
(dotted blue) and C′ (dotted red), normalized to the ENZ linewidth
(γENZ = 22.14 THz), as a function of gap thickness.

present design, the coupling strength between the Si antenna
and the ITO gap can also be tuned by changing the position of
the gap along the height of the antenna to change the overlap
between the antenna field and the ENZ layer [26].

D. Near-field and SER enhancement results

In practice, the QNMs of any antenna are initially loaded
with electromagnetic energy through coupling to a source and
then, they decay through coupling to several radiation fields
and to material losses. Therefore, we investigate the properties
of the PGA when excited by an incident plane wave or a dipole
emitter. In the case of plane-wave excitation, we evaluate two
important properties of the antenna: the coupling between the
antenna and the radiation fields as a function of frequency—
the scattering cross-section, and its abilities in local electric
field enhancement. Whereas, in the case of a dipole emitter,
we measure its abilities in spontaneous emission rate (SER)
enhancement, and the coupling between the antenna and the
radiation fields as a function of direction angles—the directiv-
ity pattern.

1. Scattering cross-section and field enhancement

We begin with the plane-wave excitation. Near the sub-
strate, the QNM profiles of the PGA show a relatively strong
Ex component of even parity. This suggests that an excitation
from the bottom will maximize the mode overlap, which in
turn increases the power received by the antenna. We plot in
Fig. 4(a) the scattering cross section σsca of the PGA for two
different gap thicknesses (2 nm and 5 nm). The three peaks
in the spectra correspond to the resonance frequencies of the
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FIG. 4. Scattering cross section and electric field enhancement
of the PGA with 2-nm and 5-nm ITO layers, when illuminated with
a z propagating plane wave from the glass side with its E-field along
the x axis. The E-field amplitude is 1 V/m in the glass substrate and
this corresponds to an amplitude of |Einc|=1.2 V/m in the air, con-
sidering Fresnel reflections at the air-glass interface. (a) Scattering
cross section (σsca) vs frequency, and (b) field enhancement factor
|Emax|/|Einc| as a function of frequency. The inset figure shows the
distribution of |Emax|/|Einc| at ωh2 = 232.7 THz for the PGA with a
2-nm gap, on a plane parallel to the xy plane and passing through the
center of the gap layer.

QNMs, but are slightly shifted due to interference between
them. The total amount of scattered power is proportional to
the received power minus the power absorbed within the ITO
layer [26]. This contribution from absorption loss is observed
as a decrease (increase) in σsca as the values of Im(εITO)
increases (decreases) at the resonance frequencies of h1 (h3)
with increasing gap thickness. The position of the peak cor-
responding to h2 does not depend as much as the other two
peaks on the thickness of the gap. However, the increasing
contribution of m0 in h2, for thicker gaps, increases the power
received by the antenna.

Another important property of the PGA, in its re-
ceiving configuration, is its field enhancement capability
(|Emax|/|Einc|), where Emax is the maximum electric field in
the vicinity of the antenna and Einc is the electric field of an
incident plane wave. This is shown in Fig. 4(b) as a function
of frequency. Higher values of the field enhancement are ob-
tained when the PGA receives more power and stores it in a
smaller three-dimensional space for a longer time. We observe
a maximum field enhancement of ∼100 in the case of 2-nm
ITO gap with an almost homogeneous field distribution along
the gap height. Previously, in PGAs with 2-nm air gaps, we
observed a maximum field enhancement of ∼50 [26]. This
twofold increase in the results shows the impact of Re[ε] < 1
even with a finite value of Im[ε] as compared to air. These
maximum values occur at the point of maximum E field in the
QNM profiles. As the gap thickness increases, the electromag-
netic energy is redistributed within the ITO layer and leads to
a reduction of the field enhancement that we observe when
comparing the results obtained for gaps of 2-nm and 5-nm
thickness. Note that the vertical asymmetry in the QNMs
of the PGA favours significantly higher reception of power
when illuminated from the bottom than the top. Therefore,
the antenna should be flipped upside down where high-field
enhancements are required for an incident plane wave from
the top [26].
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FIG. 5. SER enhancement and radiation patterns of an emitter (z
oriented) when embedded within 2-nm and 5-nm thick ITO layers
of the PGA. (a) Radiative part of the SER enhancement, �r/�0, vs
frequency. (b) Total SER enhancement, �tot/�0 (logarithmic scale),
versus frequency for cut-off conditions 2d = 0.2 nm and 2d = 2 nm.
These cut-off conditions are used to approximate the nonlocal re-
sponse of ITO. (c) Normalized directivity pattern of the PGA with a
2-nm gap, on the zx plane (solid blue) and on the yz plane (dashed
black), at the resonance frequencies of the hybrid QNMs calculated
from the far-field radiation power of the dipole collected at a distance
of 10 µm from the center of the PGA.

2. SER enhancement and radiation pattern

Next, we consider a dipole emitter as the energy source
to the hybrid QNMs to study the radiation properties of
the antenna in the transmission configuration (see Sec. I of
Supplemental Material [34]). In the vicinity of PGA, the
dipole radiates through coupling to the available QNMs of
the structure. To maximize the coupling strength with the
hybrid QNMs, we place the emitter at the maximum E field
of the QNM profiles (the position of maximum LDOS) with
its dipole moment oriented along the z axis [26,39,40]. In
Fig. 5(a), we plot the radiative part of the SER enhancement
of the dipole (�r/�0) as a ratio between the total radiated
power collected in the far-field when the dipole is within the
PGA (∝ �r) and when in the free space (∝ �0). Similar to
the field-enhancement spectra, we observe three peaks in the
radiative SER enhancement spectra. An enhancement in the
range of ∼2000 for the case of 2-nm-gap thickness indicates
a huge increase in the LDOS and is consistent with the mode
volume values of 10−3λ3

0 obtained from our previous QNM
analysis. Similar to the field enhancement results, the SER
enhancements are also more than doubled as compared to a
PGA with an air gap [26]. As expected, the radiative SER of
the emitter reduces for the case of 5-nm-thick gap due to the
reduced coupling strength between the emitter and the hybrid
antenna modes. At the resonance frequencies of QNMs, the

emission rate is predominately dictated by the LDOS of the
corresponding QNM. However, at frequencies intermediate of
the resonance frequencies, the SER values depend on the com-
bined contribution of QNMs owing to their broad linewidths.

Along with the three radiative QNMs of the PGA, the
emitter also couples to a continuum of nonradiative plasmon
modes supported by the ITO layer. This increases the nonra-
diative part of SER (�nr) in the system significantly. Given
that the emitter is within the ENZ layer, the nonradiative loss
will diverge in the absence of a cut-off. In practice, the choice
of cut-off depends on the microscopic environment around the
emitter. In Fig. 5(b) the total SER (�tot = �r + �nr) enhance-
ment is shown when the emitter is embedded within the 2 nm
and 5 nm ITO gaps for two different cut-offs. These cut-off
conditions relates to the upper bound of wave vectors that can
be excited by the emitter, limited by the nonlocal response of
ITO based on momentum conservation [43]. The first cut-off
condition of 2d = 0.2 nm corresponds to the largest possible
wave vector (at ωENZ) supported by the conduction band of
ITO ks = (2mωENZ/h̄ + k2

f )1/2 + k f = 1/d , where k f is the
Fermi wave vector and m is the effective mass of the electron
(0.35me). A second, more realistic cut-off of 2d = 2 nm sets
the upper limit for the wave vector at ks = 1 nm−1. In our full-
wave simulations, we calculate the nonradiative part of SER
from the power absorbed in the ITO layer, while excluding
the material losses in a cuboid of size 2d surrounding the
emitter at its center. This eliminates any possible excitation of
larger wave vectors beyond the respective cut-off limits. The
peaks observed at ∼243 THz and ∼210 THz of Fig. 5(b) can
be ascribed to excitation of bulk plasmons and the h1 mode,
respectively.

Figure 5(c) shows the radiation patterns of the PGA at
the resonant frequencies of the QNMs. We observe radiation
predominantly along the –z direction for all three resonance
frequencies. This is primarily because of the asymmetric gap
position that leads to vertically asymmetric field distribution
of the QNMs, while the effect of substrate is negligible (see
Fig. 1 within the Supplemental Material [34]). The horizontal
asymmetry in the zx plane of radiation containing the electric
field vector (E plane) is due to the asymmetric placement of
the emitter along the x axis, which disappears in the yz plane
of radiation (H plane). We observe higher directionality (along
–z) at 232.7 THz as compared to the other two frequencies.
This stems from the strong vertical asymmetry in the h2 mode
combined with the superposition of the h1 and the h3 mode in
the far-field. This effect can be further improved by tuning the
gap position along the height of the antenna (see Fig. 1 within
the Supplemental Material [34]). Note that this frequency of
highest directionality also coincides with the frequency of
maximum radiative spontaneous emission, which is in con-
trast to the case of PGAs with low-index gaps [26].

Although our calculations used the experimentally mea-
sured dielectric constant of ITO [33], the achievable perfor-
mance will depend strongly on the properties of the ENZ
medium. The field enhancement and radiative/nonradiative
enhancement in the SER depend strongly on the dissipation
rate of the ENZ layer [44,45]. For example, reducing the
loss rate to 0.1γITO increases the field enhancement up to
∼200 (see Fig. 2 within the Supplemental Material [34]) and
the radiative SER enhancement up to ∼20 000 (see Fig. 3
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within the Supplemental Material [34]). Moreover, scaling to
longer wavelengths allows for tighter field confinement using
less stringent gap requirements. In Figs. 4 and 5 within the
Supplemental Material [34], we show that a PGA operating
in the mid-IR with a 20-nm-thick heavily doped-GaAs as its
ENZ layer [20] can lead to a field enhancement as high as
∼150.

III. CONCLUSION

In summary, we have introduced an optical antenna based
on the PGA concept, where an ENZ material is placed within
the gap of a dielectric pillar. This leads to the formation of
hybrid ENZ modes due to the coupling between the ENZ
resonance to the photonic modes of the antenna. With these
hybrid modes, the antenna inherits and even improves upon
the strong field confinement capabilities of the thin ENZ films

and the radiation properties of the dielectric antennas. The
design we describe shows a near-field enhancement of ∼100,
and SER enhancement by ∼2300 along with an unidirectional
emission pattern. In addition to the tunable characteristics of
ENZ materials, the simplicity of the antenna structure makes
it an attractive platform for many applications.
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