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Excitonic insulators and Gross-Neveu models
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We introduce a generalized Gross-Neveu (GN) model to describe the excitonic instabilities in two different
systems: a small overlap semimetal (SM) and a small gap semiconductor (SMC), both in two (2d) and three-
dimensions (3d). We identify the excitonic order parameter (EOP) and obtain the effective potential within the
large N limit approach where the GN model can be exactly solved. We obtain the excitonic insulator (EI) phase
diagrams as a function of temperature, chemical potential, overlap between bands, and gaps of the system. We
show that the EI may undergo first- or second-order thermal transitions depending on the regime whereupon this
phase is approached. We also investigate the expected thermodynamic signatures for the specific heat above the
fine-tuned excitonic quantum critical point (EQCP), in both 2d and 3d, in the SMC regime. We show that the
EQCP is a different kind of critical point since although the EOP vanishes at the EQCP, there is always a finite
gap in the SMC regime. We find that for high temperatures, the specific heat might exhibit a scaling behavior in
the form CV /T ∝ T (d−z)/z, where d is the dimension of the system and z is the dynamical critical exponent. The
very low-temperature behavior has a dominant exponential thermally activated term due to the presence of a gap
that does not vanish at the excitonic transition.
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I. INTRODUCTION

In statistical mechanics there are few problems that can
be exactly solved. These models are extremely important as
they can throw light in relevant aspects of the physics and on
the consequences of the different approximations used to deal
with similar, but intractable problems. Even when they appear
rather unrealistic they still play an essential role in physics.

In this paper we are particularly interested in a class of
models consisting of N interacting fermionic fields, intro-
duced in the 1970s by D. Gross and A. Neveu [1], where
the fermions are coupled by a four-fermion term satisfying
a global SU (N ) symmetry [1]. Moreover, the model also
exhibits a discrete chiral symmetry. The Gross-Neveu (GN)
model corresponds to a renormalizable version in (1 + 1)
dimensions of the Nambu-Jona-Lasinio model [2] in (3 + 1)
dimensions. In this sense, it is widely used by the quan-
tum field theory community in the description of quantum
chromodynamics. In the large N limit approach [3–6], it is
renormalizable in both two- (2d) and in its three-dimensional
(3d) version. Over the years, the finite-temperature proper-
ties of the GN model have also been investigated [7–11] as
an effective model for both quantum chromodynamics and
fermionic systems in condensed matter physics. In the latter
case, it has applications in areas such as, superconductivity
[9], polymers [12], and graphene [9,11,13].

In a different context, Mott [14] and Knox [15] theorized
that in a semimetal (SM) and in a semiconductor (SMC),
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respectively, under certain circumstances, these systems may
become unstable to the formation of electron-hole pairs (ex-
citons) giving rise to a new state of matter, the excitonic
insulator (EI). The former scenario, described by Mott, is
speculated to provide a formal analogy with the Bardeen-
Cooper-Schrieffer (BCS) theory of superconductivity [16],
although the physics involved is quite different. Cooper pairs
are composed of two electrons and give rise to a supercurrent,
while excitons are bounded electron-hole pairs with no net
charge. In this sense, the EI state, in general, does not exhibit
any special properties concerning the transport of mass or
charge [17,18]. On the other hand, the scenario outlined by
Knox [15], for the SMC regime, is expected to resemble to
the Bose-Einstein condensation (BEC) of a weakly interacting
Bose gas. In a SMC, the condition for the electrons in the con-
duction band and the holes in the valence band to form bound
pairs is that the binding energy of the exciton may exceed the
energy gap [15], such that the ground state becomes unstable
against the formation of excitons. Therefore, this instability
may appear near to the SM-SMC transition at sufficiently low
temperatures [19–23]. Thus, one can infer that, for solids with
small band overlap or with small energy gaps, there may exist
a new low temperature phase of matter, the excitonic insulator
[24–30].

So, there are two different situations that may lead to the
EI phase depending on whether the EI is approached from a
SM or a SMC phase. It is worth to emphasize that the nature
of the excitonic instability is of great importance, since the
EI is a candidate to observe a BCS-BEC crossover in a solid
[25,31], which, so far, was only realized in ultracold atomic
gases [32].
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Usually, in the theoretical description of the EI phase
[19–25], the most simple model of two parabolic bands of
valence and conduction electrons is considered. The Coulomb
interactions between electrons within a band are taken into
account through a renormalization of the effective masses
of the quasiparticles. In addition, the spin of the electrons
is not considered. For simplicity, it is also assumed that the
system is isotropic and, in the absence of interactions, has
a single valence band with a maximum value in �k = 0 and
a single conduction band with a minimum value of �k = �w.
Finally, the interacting many-body term between the valence
and conduction bands is given by the (partial) charge-density
operator.

The search for the EI state in physical systems has been
intensive, but it is still a topic of debate. Recently, some ex-
perimental papers [27,28,33–41] have reported measurements
on some EI candidate compounds, such as, InAs/GaSb bilay-
ers [27,33], transition metal dichalcogenides, semiconductor
double layers [41], heterobilayers of 2d materials [42], and
Ta2NiSe5 [28,34–40], which may indicate the observation of
the EI phase. These measurements revealed a decrease in the
valence band below the critical excitonic temperature (Tc),
which was interpreted as the formation of an additional gap,
and consequently as the realization of the EI phase [27,28,33–
36,38–40]. Also first-principle calculations in monolayer tran-
sition metal dichalcogenides [43] and numerical studies in
semiconductor quantum-well structures [44], within a mean-
field approximation, have been used to describe a possible
excitonic instability. The relative role of electronic correla-
tions or elastic effects associated with the lattice is still a
matter of dispute [45].

In order to clarify the nature of the excitonic state, we
introduce in this paper two different models to describe the
two distinct regimes where the EI phase is most probable to be
found, namely in a small overlap SM and in a small gap SMC.
The models consist of two Dirac bands with correlations de-
scribed by a quartic interaction as in GN models. We consider
the cases of both, 2d and 3d, which are solved exactly within
the large N limit approach. Besides the usual chiral order
parameter, we also introduce an excitonic order parameter that
characterizes the EI phase. When using the generalized GN
model to describe our system, we keep in mind the familiar
two-band picture of valence and conduction electrons, assum-
ing that Coulomb interactions between electrons in a given
band are taken into account by renormalizing these bands
[21–25,29,30]. For simplicity, the spin of the electrons is not
taken into account and we consider the case that the EI phase
emerges from a direct gap system, as for the EI candidate
Ta2NiSe5 [28,34–36,38–40,46].

We obtain the effective potential in the large N limit [3–6]
for both, 2d and 3d. We show that the EI phase may appear
only for a specific range of parameters, depending on the
magnitude of the bare gap and the relative strength of the
chiral and excitonic interactions. In our model, for the SMC
case, the EI phase only emerges if the excitonic interaction
(binding energy) is larger than the bare and chiral gaps of
the system, as expected. For the SM case, we introduce a
parameter that quantifies the overlap between bands. In the
latter, the bare and chiral gaps are always zero, which means

that the gap in the EI state appears from a purely excitonic
contribution.

Once we identify the range of parameters that may give
rise to the EI phase, we compute the critical exponent β for
the excitonic order parameter at zero temperature for 2d as
well as 3d case at the SMC regime. We present the EI phase
diagrams, in 2d and 3d, as a function of temperature, chemical
potential, overlap between bands and gaps of the system. Our
numerical results also show that the system may undergo first-
or second-order finite temperature phase transitions, depend-
ing on the regime, SMC or SM, whereupon the EI phase is
approached. We compare the phase diagrams of both models
in 2d and 3d and discuss their main differences depending on
the dimension of the system.

We also investigate the expected thermodynamic signa-
tures of the EI transition, obtaining the specific heat as a
function of temperature above the fine-tuned excitonic quan-
tum critical point at the SMC regime for 2d as well as 3d.
We show that the excitonic quantum critical point is a differ-
ent kind of critical point, since although the excitonic order
parameter vanishes at the excitonic quantum critical point,
there is always a gap (bare and/or chiral) in the SMC regime.
In other words, in a small gap SMC, when the EI phase
disappears, the bare and/or chiral gaps remain finite. We
obtain, for both 2d and 3d cases, that for high temperatures
the specific heat may exhibit a scaling behavior in the form
CV /T ∝ T (d−z)/z, where d is the dimension of the system and
z is the dynamical critical exponent. At low temperatures the
thermodynamic behavior is exponential thermally activated
term due to the presence of a finite gap.

The paper is organized as follows: In Sec. II we make a
brief review of the two-dimensional GN model pointing out
its main aspects from the thermodynamic point of view and
emphasizing the features that we are interested in describing
the EI state. We also identify the order parameters and the
bands structure of our model. In Sec. III we present the models
to describe the two different regimes expected for the EI phase
through the generalized GN model for both 2d and 3d. We
obtain and compare the phase diagrams, for 2d and 3d, for
the expected EI phase as a function of temperature, chemical
potential, overlap between bands, and gaps of the system,
within the Large N limit. In addition, we also investigate the
specific heat behavior above the excitonic quantum critical
point at the SMC regime for 2d as well as 3d. Finally, in
Sec. IV we present our conclusions and summarize the main
results.

II. BRIEF REVIEW OF GROSS-NEVEU MODELS

The original version of the GN model [1] describes a
system of N-flavored Dirac fermions in one spatial and one
time dimension, interacting by means of a scalar-scalar four-
fermion term. The action is given by [1,7–9,11,47–49]

S[ψ̄, ψ] =
∫

d2x

{
N∑

j=1

[
ψ̄ j (i�∂ − m)ψ j + G

2
(ψ̄ jψ j )

2
]}

,

(1)

where ψ j and ψ̄ j = ψ
†
j γ0 are N independent components

fermion fields ( j = 1, ..., N ), �∂ = γ μ∂μ, with μ = 0, 1, m is

165125-2



EXCITONIC INSULATORS AND GROSS-NEVEU MODELS PHYSICAL REVIEW B 105, 165125 (2022)

the mass and G denotes the coupling constant. The gamma
matrices satisfy {γ μ, γ ν} = 2gμ,ν with the diagonal metric
diag(g) = (−1, 1) and we choose the following representation
γ0 = σz, γ1 = iσy and γ0γ1 = γ5 = σx, where (σx, σy, σz) are
the usual 2 × 2 Pauli matrices.

The Lagrangian of Eq. (1) has a global SU (N ) symmetry.
In addition, in the massless case, i.e., m = 0, the action is
invariant under discrete chiral transformations given by

ψ → γ5ψ ψ̄ = ψ†γ0 → −ψ̄γ5. (2)

However, the mass term (bare gap) breaks this sym-
metry since ψ̄ψ → −ψ̄ψ under this transformation. Thus,
chiral symmetry should imply in a gapless spectrum [1,7–
9,11,47,48]. It is very well known that the GN model with
m = 0 and T = 0 spontaneously develops a gap in the spec-
trum for any finite value of the coupling constant G, and at
high enough temperature the system closes the gap. Therefore,
it develops a chiral phase transition at a finite critical temper-
ature. For finite m, the chiral symmetry is explicitly broken
and therefore, there is no phase transition. In other words, for
m �= 0 there is always a gap (bare gap) in the system.

In the same spirit of the original GN model, it is possible
to build a scalar interaction term from the pseudoscalar bilin-
ear ψ̄γ5ψ . This bilinear interaction transforms like the mass
term under discrete chiral transformations ψ̄γ5ψ → −ψ̄γ5ψ .
Thus, we can write down a generalized chiral GN model as
[1,2,50,51]

L = ψ̄ (i�∂ )ψ + Gc

2
(ψ̄ψ )2 − Ge

2
(ψ̄γ5ψ )2, (3)

where Gc,e > 0 are two independent coupling constants. To
simplify the notation, we are not explicitly displaying the
index j corresponding to the N fermion copies. This model
has exactly the same symmetries of the original GN model in
Eq. (1) (for the cases with m = 0 and m �= 0).

The phase diagram of the generalized GN model in terms
of the coupling constants (Gc, Ge), temperature (T ), and
chemical potential (μ) is very rich. For Gc > Ge, the model is
completely equivalent to the original GN model, Eq. (1), dis-
playing a simple phase diagram with a chiral phase transition.
The case Gc = Ge is special and it is known in the literature
as the chiral GN model [1,2,50,51]. In this case, the chiral
symmetry becomes a continuous symmetry given by the trans-
formation [11],

ψ → eiθγ5ψ. (4)

Interestingly, this case (for N = 2) is tightly related with the
Kondo model for a magnetic impurity [52].

In this paper we are interested in a much less-studied case
of Ge > Gc. We will show that this case is related with the
physics of the EI phase [19–25]. Before showing explicit
calculations, it is convenient to understand the physics de-
scribed by the model of Eq. (3) including the mass term (m �=
0). By diagonalizing its quadratic part in terms of the two
components spinor ψ = (ψ1, ψ2), we obtain the dispersion
relation for each band given by ω(k) = ±√

k2 + m2. Thus,
for k/m << 1, we have two parabolic bands separated by a

bare gap 2m,

ω(k) = ±
(

m + k2

2m

)
. (5)

In the limiting case m → 0, we recover the linear disper-
sion, i.e., ω(k) = ±k. In this sense, the dispersion relation
ω(k) = ±√

k2 + m2 in the low momentum limit, Eq. (5), de-
scribes a SMC system with parabolic valence and conduction
bands.

It is interesting to write both scalars appearing in the inter-
action part, in terms of the components ψ1, ψ2. In the diagonal
basis,

ψ̄ψ = ψ
†
1 ψ1 − ψ

†
2 ψ2, (6)

ψ̄γ5ψ = ψ
†
1 ψ2 − ψ

†
2 ψ1. (7)

It is immediate to see from Eq. (6) that ψ̄ψ is invariant un-
der phase transformation of each band independently. On the
other hand, from Eq. (7), ψ̄γ5ψ is invariant under phase trans-
formation of both bands simultaneously. This implies that
in the ground state, when the expectation value 〈ψ̄ψ〉 �= 0,
the charge density of both bands are unbalanced. However,
charge in each band is conserved. This is the physical con-
tent of the chiral symmetry breaking. On the other hand, in
the case of 〈ψ̄γ5ψ〉 �= 0, although the total charge density is
conserved, the charge of each band is not conserved, which
is analogous to the appearance of a spontaneous hybridization
term in condensed matter physics systems. This unbalance of
particle-hole condensation between valence and conduction
bands characterizes the ground state known as the EI phase.

III. ORDER PARAMETERS AND EFFECTIVE POTENTIAL

In order to compute the thermodynamics properties of
the generalized GN model, Eq. (3), with mass in (1 + 1)d,
we write the partition function and perform two Hubbard-
Stratonovich transformations [53]; one for the coupling Gc

with an auxiliary field σ and the other for the coupling Ge

where we introduce the auxiliary field η. We find

Z =
∫

Dψ̄DψDσDη e− ∫
dtdxL(ψ̄,ψ,σ,η) (8)

with

L = ψ̄ (i�∂ − m)ψ − N

2gc
σ 2 − N

2ge
η2 − σψ̄ψ − iηψ̄γ5ψ

(9)
where we have defined the scaled coupling constants gc,e =
NGc,e. It is immediate to verify that integrating out the fields
σ and η we recover the original interaction terms of the gen-
eralized chiral GN Lagrangian.

Minimizing the action in Eq. (8) with respect to σ and η,
we obtain

σ = −gc

N
〈ψ̄ψ〉, (10)

η = −i
ge

N
〈ψ̄γ5ψ〉. (11)

Comparing Eqs. (10) and (11) with Eqs. (6) and (7), we
conclude that σ is the order parameter of the chiral phase
transition, while η is the order parameter for the EI phase
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transition. The advantage in using the order parameter fields
is that the fermionic integral in Eq. (8) is Gaussian and can be
done exactly to yield the effective action,

Seff = −NTr ln {i�∂ − (m + σ ) − iγ5η} + Nσ 2

2gc
+ Nη2

2ge
.

(12)

Note that Seff scales linearly with N . Thus, in the limit
N → ∞ the saddle-point approximation of the partition func-
tion becomes exact. If we assume that the order parameters
σ, η are very slowly functions of position and time, we can
compute the trace as integrals in frequency and momentum. In
Euclidean space, performing the trace, we find the effective
potential in the large N approximation as follows:

V N
eff = σ 2

2gc
+ η2

2ge
−

∫
d2k

(2π )2
ln(k2 + ρ2) + ct (13)

where ρ2 = (m + σ )2 + η2, k2 = k2
0 + k2

1 and ct denotes the
counterterms, needed for renormalization. The Fermi velocity
vF is taken throughout the text vF = 1.0.

The integral in k can be done exactly with an ultraviolet
cut-off () and, after renormalization, we obtain

V N
eff = σ 2

2gc
+ η2

2ge
+

+ (m + σ )2 + η2

4π

(
ln

[
(m + σ )2 + η2

M2

]
− 3

)
, (14)

where M2 is an arbitrary constant taken as the minimum of the
potential [54].

Note from Eq. (14) that the mass term m simply shifts the
value of σ , which is consistent with the fact that the mass is
associated with the bare gap of the system, and consequently
with the breaking of the chiral symmetry. Also note that if
m = 0 and η = 0 in Eq. (14) we recover the effective potential
in the large N limit of the usual GN model [7,11].

The extension of this formalism to include finite temper-
atures and chemical potential effects is straightforward using
the Matsubara summation technique [7,11,55–57]. We find

V N
eff = σ 2

2gc
+ η2

2ge
+

+ (m + σ )2 + η2

4π

(
ln

[
(m + σ )2 + η2

M2

]
− 3

)

− T

π

∫ ∞

0
dx{ln(1 + e− E−μ

T ) + μ → −μ}, (15)

where E2 = x2 + (m + σ )2 + η2. This effective potential ex-
actly coincides with the free energy of the system of Eq. (3) in
the N → ∞ limit. The ground state of the model is obtained
minimizing Eq. (14) with respect of σ and η. With these
values at hand, we can return to Eq. (12) and compute the
fermionic spectrum by direct diagonalization. We get

ω = ±
√

k2 + (m + σ )2 + η2. (16)

Therefore, in the low momentum limit, we find two
well defined bands, separated by a total gap �total =
2
√

(m + σ )2 + η2, see Fig. 1.

FIG. 1. Schematic for conduction and valence bands from
Eq. (16), in the low momentum limit. The total gap (�total) has three
contributions, i.e., m, σ , and η. The two formers are related to the
chiral symmetry breaking in the usual GN model, while the latter
is an additional contribution due to the emergence of the EI phase
(η �= 0) below Tc.

Note that, even when the bare dispersion relation is gapless
(m = 0), the ground state becomes gapped, as long as σ �= 0
and/or η �= 0. Thus, we identify the phase η �= 0 as an EI.
The appearance of an additional gap with decreasing tem-
perature, concomitant with a flattening of the bands due to a
renormalization of the effective masses is an essential feature
of our description of the excitonic state. Furthermore, this
is consistent with the observation in ARPES measurements
[28,38,39], of an additional gap accompanied by the flattening
of the valence (and conduction) band(s) due to the emergence
of an EI phase below Tc in the EI candidate Ta2NiSe5.

A. Phase diagrams of the massive generalized GN model in the
semiconductor regime

In order to obtain the phase diagrams of the model at
zero and finite temperatures, we minimize Eqs. (14) and (15),
respectively, with respect to the order parameters σ and η. In
both cases we find a couple of equations that should be solved
self-consistently. Since we are interested in the EI phase, we
consider ge > gc. For instance, for the (1+1)d case, we have
considered ge = 3.5 > gc = π . We have also taken M = 1.0
in all cases, which means that all quantities are presented in
units of M.

In Fig. 2(a) we show the behavior of both order parameters
at zero temperature as a function of mass (bare gap). As ex-
pected, σ is always finite and increases as a function of m. On
the other hand, η decreases and goes to zero continuously at a
critical mass mc = 0.1135. The latter behavior is consistent
with the fact that if the gap of the system increases, for a
fixed value of ge, we expect that above a critical value, the
condensation of interband particle-hole excitations becomes
energetically unfavorable, leading to η = 0. In addition, we
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FIG. 2. (a) Order parameters σ (red circles) and η (blue squares)
as a function of mass at zero temperature. Note that σ is always finite
and increases as a function of m. On the other hand, η decreases and
goes to zero continuously as a function of m. (b) Using the relation
η ∝ (mc − m)β we obtain β ≈ 1/2 from the fitting curve (solid line)
of the log vs log plot near the transition point (blue squares, data).

have computed the critical exponent β, associated with the
vanishing of the excitonic order parameter, based on the re-
lation η ∝ (mc − m)β . We have found β ≈ 1/2, as shown in
Fig. 2(b). This mean-field critical exponent at the quantum
excitonic phase transition at mc for deff = 1 + 1 is a conse-
quence of the large N approximation.

In Figs. 3(a) and 3(b), we present the order parameters σ

and η as functions of temperature for two small values of m. In
this case, σ is always finite since m �= 0 breaks the chiral sym-
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FIG. 3. [(a),(b)] Order parameters as functions of temperature
T for small values of fixed finite masses (bare gaps) m = 0.01 and
m = 0.10, respectively. σ (red) is always finite since m �= 0 breaks
the chiral symmetry of the model. For large T it tends asymptotically
to the value of the mass (bare gap), as in the usual GN model. The
order parameter η (blue) decreases as a function of T and vanishes
continuously at the excitonic transition. (c) Total gap �total and
(d) inverse effective mass (1/meff ) as a function of T for a fixed finite
mass, m = 0.01. The latter is obtained as the second derivative of the
dispersion relation at k = 0. Notice that a significant band flattening
occurs in the excitonic phase.

FIG. 4. Critical temperature for η as a function of the chemical
potential μ for a fixed m = 0.01. Note that this behavior is very
similar to the chiral order parameter σ in the usual GN model,
where there is a tricritical point (red dot) separating one region
with a second-order critical line (continuous line) from a first-order
metastability region (dashed).

metry explicitly. In addition, note that in all the region where
η �= 0, σ is constant. This kind of behavior can be understood
from Fig. 1. Note that when η �= 0 we have the emergence of
an additional gap on the system, which is independent from
m and σ , given by 2�EI(η). Therefore, as a function of T the
additional gap 2�EI is first reduced and then, when η = 0,
the renormalized gap (σ ) begins to decrease as a function
of T , as expected. Finally, at large T , the system remains
gapped and it tends asymptotically to the value of the bare gap
(mass), analogously to the GN model. As shown in Fig. 3(b),
for larger values of m, the region with finite σ increases and
that for η decreases. For m > mc, η = 0. In Figs. 3(c) and
3(d) we show the total gap �total = 2

√
(m + σ )2 + η2 and the

inverse effective mass 1/meff as a function of T , respectively,
for m = 0.01. The effective mass, meff =

√
(m + σ )2 + η2, is

obtained from the second derivative of the dispersion relation
with respect to k at k = 0. Notice that an important band
flattening occurs at the excitonic transition, associated with
an increase of the effective mass. Also note that even above
the excitonic transition the effective mass is renormalized due
to fluctuations.

In Fig. 4 we show the critical temperature of the excitonic
phase transition as a function of the chemical potential μ for
a fixed m = 0.01. We observe a behavior quite similar to the
chiral phase transition in the usual GN model, where there is
a tricritical point separating one region with a second-order
thermal transition (continuous line) from a first-order one
(dashed line) [7–9,11]. This phase diagram exhibits metasta-
bility in the region between dashed lines for large μ. It is
worth to point out that a discontinuous transition for the EI
phase as a function of pressure has been reported for the EI
candidate Ta2NiSe5 [28], which may be related to the effects
of μ within our model.

Furthermore, we have also investigated the critical temper-
ature for η as a function of mass that is a measure of the bare
gap between the bands, see Fig. 5. One can see that there is
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FIG. 5. Critical temperature for η as a function of mass (bare gap
between the bands). There is a critical mass (mc) at zero temperature,
where the EI phase disappears and this value is independent of
the value of μ since the chemical potential enters in temperature
dependent contribution of the effective potential, see Eq. (15). Again,
continuous line denotes second-order phase transitions.

a critical mass (mc) at zero temperature, where the EI phase
disappears and this value is independent of μ. Increasing μ,
the critical temperature (Tc) shrinks, and by further increasing
μ, the critical line of second-order transitions becomes a first-
order one (not shown it this figure).

B. Phase diagrams of the generalized GN model in the
semimetal regime

So far, we have described the phase transition between a
SMC system and an EI state, i.e., SMC/EI. However, when
the gap between the valence and conducting bands becomes
negative, there is a band crossing, where the gap closes for
definite values of the momenta ±k0, producing a SM behavior
(in the absence of a bare hybridization between the valence
and conduction bands). By linearizing the dispersion relation
at the crossing points ±k0, we can write two independent GN
models in the form,

L = ψ̄ iγ μ(∂μ ∓ iKμ)ψ + Gc

2
(ψ̄ψ )2 − Ge

2
(ψ̄γ5ψ )2, (17)

where Kμ = (0, k0).
In Figs. 6(a) and 6(b) we depict the dispersion relation of

the free term in Eq. (17). Note that k0 not only measures
the band crossing points, but also the band overlap. Indeed
k0 is related to the density of carriers in the bands. In 2d
spatial dimensions n = (1/2π2)k2

0 . In general, n ∝ kd
0 with d

the spatial dimension. Then, when k0 is small, screening is
ineffective, the electron-hole attraction is significant and the
excitonic state is favored. For large k0, charge screening is
important and this is adverse for the formation of an excitonic
state. We assume that k0 is small but finite, such that we can
ignore interactions between both crossing points ±k0. This is
a reasonable low energy (long distance) approximation, since
these types of interactions involve a 2k0 momentum transfer.
Thus, in this approximation, both models at ±k0 are decou-
pled and can be treated as one massless GN model.

FIG. 6. Dispersion relations for two independent GN models
with and without gap taking k0 = −0.10. (a) SM-type dispersion
relation without gap, i.e., an overlap between bands. (b) When η �= 0
the system exhibits an exclusively excitonic gap 2�EI.

Introducing the same order parameters σ and η, we calcu-
late the effective potential with the same techniques described
for the SMC case. Ignoring terms of order O(k2

0 ) we find

V N
eff = σ 2

2gc
+ η2

2ge
+ σ 2 + η2

4π

(
ln

[
σ 2 + η2

M2

]
− 3

)

− k0

2

√
σ 2 + η2

− T

π

∫ ∞

0
dx{ln(1 + e− E−μ

T ) + μ → −μ}, (18)

where k0 < 0 and E2 = x2 + σ 2 + η2.
The phase diagrams are obtained by minimizing Eq. (18)

with respect to σ and η. For consistency, we take the same
numerical values for ge,c and M used in the discussion for the
SMC regime.

Notice that for m = 0, the system initially exhibits chi-
ral symmetry due to the overlap between bands, as shown
Fig. 6(a). The only gap that might appear is the excitonic gap
in the EI phase. This arises either from σ and/or η, according
to the dispersion relation in Eq. (16). In Fig. 7 we show that
in the SM regime at T = 0, σ is always zero and we have
η �= 0 for small k0 < 0 that is finite for all k0 investigated.

0.0

0.4

0.8

1.2

σ, η

k0

σ
η

T = 0.0

FIG. 7. Order parameters as a function of k0 (overlap) at zero
temperature. Note that σ (red circles) is always zero, while η (blue
squares) is always finite in this regime.
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0.0

0.2

0.4

0.6

0.8

-0.3 -0.2 -0.1 0.0

Tc

k0

FIG. 8. Critical temperature for η as a function of k0 (overlap
between bands). Note that η �= 0 and η = 0 change stability since
the minimum at the origin of the effective potential is always present
for k0 �= 0. The horizontal dot dashed line is the spinodal line where
the metastable excitonic states emerge.

This means that the gap that emerges in the SM regime has an
exclusively excitonic character, see Fig. 6(b).

As can be seen in Eq. (18), k0 couples with |η|, since
σ = 0 for the SM regime (see Fig. 7). As a consequence, for
k0 �= 0, the effective potential always displays a minimum at
the origin, which competes with the minimum at finite η. In
other words, all SM regime is a metastable one where there
is a competition between ge and k0. The former tends to give
rise the EI phase, while the latter acts in detrimental to the EI
phase, as expected for the overlap between bands.

In Fig. 8 we show the critical temperature for η as a
function of k0. In this regime, the critical line is a first-order
one (dashed line) for all values of k0 < 0 investigated, where
η �= 0 and η = 0 change stability since the minimum at the
origin of the effective potential will be always present for
k0 �= 0.

Combining the phase diagrams of Fig. 5, for μ = 0, and
Fig. 8, one can obtain a complete EI phase diagram in 2d
((1 + 1)d), see Fig. 9. In the negative x axis we have k0 �
0 that implies the SM regime with overlapping bands. The
positive x axis represents the bare gap m > 0, of the SMC
regime, for fixed gc,e. Although the models for the SM and
SMC regimes are different and describe distinct regimes of the
EI phase diagram, the system with k0 = m = 0 represents the
same model, namely the Dirac semimetal (DSM). Then, above
Tc, at k0 = 0 = m, the system is a DSM, with a continuous
transition at Tc to a gapped excitonic phase with a finite η.
Figure 9 is useful in that it provides a unified view of our re-
sults in both regimes in a qualitative agreement with different
approaches [24,58]. Figure 9 also shows the existence of an
excitonic quantum critical point, in the SMC regime of the EI
phase diagram, at a critical mass (mc = 0.1135), see Fig. 5.
From the experimental point of view, it is interesting to obtain
the thermodynamic signatures above this fine-tuned point for
finite temperatures. Thus, in Fig. 10 we investigate the specific
heat at constant volume, i.e., CV = −T ( ∂2Veff

∂T 2 )V , as a function
of T at m = mc. We have found a linear behavior at high

0.0

0.2

0.4

0.6

0.8

-0.3 -0.2 -0.1 0.0 0.1 0.2

Tc

k0 m

second-order

 

SMC

SM first-orderDSM

FIG. 9. EI phase diagram combining both 2d models for SMC
and SM regimes. In the x axis we have k0 (negative) for the SM
regime, associated with the overlap between bands, and m (positive)
for the SMC regime, which is related to the bare gap of the system.
The vertical square dots represent the Dirac semimetal at k0 = m =
0. The dashed curve denotes first-order transitions, while continuous
lines describe second-order ones. The horizontal dot dashed line is
the spinodal line where a metastable excitonic state emerges.

temperatures, consisted with the expected scaling behavior
at a quantum critical point, CV /T ∝ T (d−z)/z with d = z = 1,
where d is the dimension of the system and z is the dynamical
critical exponent [59]. However, at low temperatures, an ad-
ditional contribution to the specific heat is thermally activated
due to the presence of gaps (σ �= 0 and/or m �= 0). Therefore,
the low-temperature regime has a dominant exponential ther-
mally activated term in addition to the power-law contribution
due to quantum critical behavior. Then, one can conclude
that we are dealing with a different kind of quantum critical

0.0

0.4

0.8

1.2

CV

T

mc = 0.1135

f (T ) ∝ T

FIG. 10. Specific heat, at constant volume, as a function of T
above the excitonic quantum critical point, i.e., at the fine-tuned value
of mc = 0.1135. One can see that for large T , CV exhibits a linear
behavior, consisted with the expected behavior at a QCP, CV /T ∝
T (d−z)/z with d = z = 1. However, at low temperatures the specific
heat is thermally activated due to the presence of the gaps (σ �= 0
and m �= 0), deviating from the linear behavior.
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point, since although the excitonic order parameter vanishes
at mc for T = 0, there are always gaps that break the chiral
symmetry at the SMC regime. That is, while η exhibits a
critical behavior, σ contribute with noncritical fluctuations for
a fixed bare gap (m) at the SMC regime of the EI phase.

C. The Gross-Neveu model in (2+1)d and the excitonic
insulator phase

In this section we compute the phase diagram of the gen-
eralized GN model in (2 + 1)d. There are essentially two
differences in the definition of the model and in the com-
putation of the effective potential. On the one hand, we can
no longer define a chiral operator γ5 = γ0γ1 in euclidean
3d. In that sense, we need to consider the term of excitonic
interactions, given by Ge

2 (ψγ1ψ̄ )2, where γ1 = σx to take into
account the same physics given in Eqs. (6) and (7) for the
chiral and the excitonic order parameters in the diagonalized
basis, respectively. On the other hand, all the integrals over eu-
clidean momentum are now given by

∫
d3k

(2π )3 = 4π
(2π )3

∫
dk k2.

The solution of the massive GN model in (2 + 1)d in the
large N approximation is known [47,48]. Moreover, using the
same techniques described before for the (1 + 1)d version of
the model, we can compute initially the effective potential in
terms of the order parameters σ and η for the SMC regime.
We get

V N
eff = [(m + σ )2 + η2]

3/2

6π
+ 1

2

(
σ 2

gc
− (m + σ )2

g

)

+ 1

2

(
1

ge
− 1

g

)
η2

− T

π

∫ ∞

0
dx x{ln(1 + e− E−μ

T ) + μ → −μ}, (19)

where g = 3π2/(2) and E2 = x2 + (m + σ )2 + η2. In this
case, the effective potential presents a natural ultraviolet cut-
off (), which is encoded in g. From the term proportional to
η2 in Eq. (19), it is clear that, to have an excitonic condensate
at zero temperature, we need to fix ge > g. Without loss of
generality, we investigate the phase diagrams by fixing ge >

g > gc.
As usual, the phase diagrams are computed by minimizing

Eq. (19) with respect to σ and η. In all numerical calculations
in (2 + 1)d case, we have fixed ge = 1.1 > g = 1.0 > gc =
0.9. We have also taken M = 1.0 in all cases, to be consistent
with the (1+1)d case discussed previously.

In Fig. 11(a) we show the behavior of σ and η as a function
of m at zero temperature. This behavior is very similar to the
(1+1)d case for both order parameters.

In Figs. 12(a) and 12(b) we show the order parameters σ

and η as a function of T , for small fixed values of m. It is
interesting to note that for small values of m, Fig. 12(a), we
have a first-order (dashed line) thermal transition for η, which
is different from the (1 + 1)d case. For large values of m, in
the region of η �= 0, Fig. 12(b), we recover the second-order
character of the transition for η. However, we also have σ

constant while η �= 0, similarly to the (1+1)d case, which is,
again, consistent with the same discussion of the emergence
of an additional gap in the EI phase. Moreover, in Figs. 12(c)

0.0

0.2

0.4

0.6

−2.3

−2.1

−1.9

σ, η

m

σ
η

T = 0.0

L
og

(η
)

Log(mc − m)

β = 0.504 ≈ 0.5

FIG. 11. (a) Order parameters as a function of mass (bare gap) at
zero temperature for (2+1)d. One can see a very similar behavior for
σ and η when compared to the (1+1)d case [Fig. 2(a)]. (b) Analo-
gously to the (1+1)d case, we can obtain the numerical value of the
critical exponent β = 0.504 ≈ 0.5 for η, see Fig. 2(b).

and 12(d) we show the total gap �total and the band flattening
(1/meff ), respectively, as a function of temperature for a fixed
value of m = 0.01. We can observe an important band flat-
tening behavior at the critical temperature when the system
undergoes the excitonic transition.

The critical temperature for η as a function of m (bare gap)
in the SMC regime is shown in Fig. 13. One can see that
there is a region of small mass (bare gap) where the system
undergoes a first-order transition (dashed line). There is also
a critical mass (mc) at zero temperature where the EI phase
disappears. In other words, for a fixed ge we cannot increase

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.4

0.8

1.2

0

10

20

30

σ η

T

σ
η

m = 0.01

σ η

T

m = 0.10

Δtotal

T

m = 0.01

1/
m

ef
f

T

m = 0.01

FIG. 12. [(a),(b)] Order parameters as functions of temperature
for different values of the mass (bare gap). In (a), for a small
mass (m = 0.01), the order parameter η vanishes abruptly indicat-
ing a first-order transition, which is very different when compared
(1 + 1)d model, see Fig. 3(a). In (b), increasing the mass (bare gap),
m = 0.1 the transition becomes continuous. Notice that, the value of
σ remains constant while η �= 0, consistent with the emergence of an
additional gap in the EI phase. (c) Total gap (�total) and (d) 1/meff as
functions of T for a fixed small mass m = 0.01. The behavior of the
latter implies a band flattening below the excitonic transition.
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0.0

0.1

0.2

0.3

Tc

m

η �= 0.0

η = 0.0

μ = 0

mc = 0.1039

FIG. 13. Critical temperature for η as a function of mass at the
the SMC regime for (2+1)d case. Note that now there is a region
of small mass where the systems undergoes a first-order (dashed
line) thermal transition. For large values of m wherein η �= 0, the
finite-temperature phase transition becomes second-order (continu-
ous line). Also there is a critical mass (mc) at zero temperature,
where the EI phase disappears and this value is independent of μ,
see caption of Fig. 5.

the bare and the renormalized gaps of the system indefinitely.
Otherwise, η → 0. The first-order character of the EI critical
temperature for small masses is directly associated with di-
mensional effects, since at zero temperature we obtain very
similar results for the EI phase in 2d as well as 3d cases, see
Figs. 2 and 11.

Following the same lines of the previous sections, we de-
scribe the SM regime by linearizing the dispersion relation
at the crossing point. Thus, we consider, again, two massless
generalized GN models in which k0 is a measure of the band
overlaps. Applying the large N limit approach to the GN
model in (2+1)d for the SM regime of the EI phase, we obtain

V N
eff = (σ 2 + η2)3/2

6π
+

(
1

gc
− 1

g

)
σ 2

2
+

(
1

ge
− 1

g

)
η2

2

+ k0

2π2
(σ 2 + η2)

[
ln

(
σ 2 + η2

M2

)
− 3

]

− T

π

∫ ∞

0
dx x{ln(1 + e− E−μ

T ) + μ → −μ}, (20)

where k0 < 0, g = 3π2/(2) and E2 = x2 + σ 2 + η2.
It is worth to emphasize that we only renormalize the diver-

gence coming from k0, since g can be seen as a natural cutoff
of the system, related, for instance, to the lattice parameter.
By minimizing Eq. (20) at zero temperature, it is simple to
confirm that σ = 0 for all the SM regime, while η is finite for
small k0 � 0 and goes to zero abruptly as we increase |k0|.
This is a clear signature that the system undergoes a quantum
first-order (dashed line) transition, see Fig. 14.

In Fig. 15, including effects of finite temperature, analo-
gously to the (1+1)d case, we obtain that there is a small
region of k0 � 0 where the EI may appear, i.e., η �= 0. Our
numerical results show that all this region is a region where the
system exhibits a thermal first-order (dashed line) transition,

0.0

0.2

0.4

0.6

σ, η

k0

σ
η

FIG. 14. Order parameters as a function of k0 (overlap), from the
minimization of Eq. (20), at zero temperature. Note that σ = 0 (red
circles), while η (blue squares) undergoes a quantum first-order (blue
square, line) transition as we increase |k0|.

very similar to the region where η �= 0 is more stable in
Fig. 8.

Finally, combining Figs. 13 and 15, in the same spirit of
Fig. 9, we obtain the complete EI phase diagram for our
models in (2+1)d case. This is shown in Fig. 16. Thus,
comparing Fig. 9 and Fig. 16 we notice the presence of
a multicritical point in the (2 + 1)d case, differently from
the (1 + 1)d where the excitonic transitions were continu-
ous in all the SMC regime. Furthermore, in (2 + 1)d the
excitonic transition of the DSM at k0 = m = 0 with decreas-
ing temperature is first-order differently from in (1 + 1)d.
Therefore, we can conclude that increasing the dimensionality
of the system favors the appearance of first-order excitonic
transitions.

Note also, from Fig. 16, that, again, we have a step-like
shape for the EI phase diagram, although we no longer have

0.0

0.1

0.2

0.3

Tc

k0

η �= 0.0

η = 0.0

FIG. 15. Critical temperature for η as a function of k0 for (2 +
1)d case. The dashed line represents a first order transition to an
excitonic state with η �= 0 (blue). Note that the region of k0 � 0
for which there is the emergence of the EI state is smaller when
compared to the region in (1 + 1)d, see Fig. 8.
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-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

Tc

k0 m

second-order

SMC
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first-order

EI

DSM Multicritical
point

FIG. 16. EI phase diagram combining the two models in (2 +
1)d. Again, In the x axis we have k0 (negative) for the SM regime,
which is associated with the overlap between bands, and m (positive)
for the SMC regime, that is related to the presence of a bare gap
in the system. The excitonic transition in the DSM [vertical-square
dots at (k0 = m = 0)] with decreasing temperature is discontinuous
in (2 + 1)d differently from the (1 + 1)d. Notice also the presence
of a multicritical point in the SMC part of the phase diagram
that was absent in (1 + 1)d. In the figure, continuous lines denote
second-order phase transition, while dashed lines denote first-order
ones.

the minimum of the effective potential always at the origin in
the EI phase for largest values of |k0|. In other words, for the
(2+1)d case, the EI state might appear only for small overlap
and small gaps of the system, in agreement with the expected
behavior of the EI phase [14,15]. The main difference within
our model, which neglects curvature effects in 2d as well
as 3d, is the character of first-order thermal phase transition
depending on whether the EI is approached from a SM or a
SMC phase, see Figs. 9 and 16. Also observe that we find,
again, an excitonic quantum critical point for (2+1)d at the
SMC regime.

Therefore, in Fig. 17, we show the specific heat, at constant
volume, as a function of T 2 for the fined-tuned value of mass
m = mc. For large T , now we obtain a quadratic behavior for
the specific heat at constant volume, which is consistent with
the scaling prediction, C/T ∝ T (d−z)/z in d = 2 with z = 1.
On the other hand, for the low T regime, we also obtain
a dominant exponential thermally activated term besides the
power law contributions due to quantum critical effects, which
deviates from the scaling prediction at large T , as shown in
Fig. 17 [see fitting curve f (T )]. Again, this is a direct con-
sequence of the unusual character of the excitonic quantum
critical point.

We emphasize that this deviation of CV from the quadratic
scaling behavior at low T , is more subtle when compared to
the (1+1)d case, see Fig. 10. Note that we need to further cool
down the temperature of the system to observe this deviation
due to the additional exponential thermally activated term on
the specific heat. We attribute this behavior to dimensional
effects on quantum systems, since in low dimensional systems
fluctuations become pronounced.

0.0

0.4

0.8

1.2

CV

T 2

mc = 0.1039

f (T ) ∝ T

FIG. 17. Specific heat, at constant volume, as a function of T 2

above the excitonic quantum critical point, i.e., at the fine-tuned
value of mc = 0.1039. One can see that for large T , CV exhibits a
linear behavior, consisted with the expected behavior at a quantum
critical point, CV /T ∝ T (d−z)/z with d = 2 and z = 1. However, at
low temperatures the specific heat is thermally activated due to the
presence of the gaps (σ �= 0 and m �= 0), deviating from the linear
behavior.

IV. CONCLUSIONS

The excitonic state is an elusive state of matter. It involves
condensation of chargeless particles with small impact on the
transport properties of the material. As it presents a strong
theoretical possibility, it has been intensively sought in na-
ture. Recently, a strong candidate for an EI has been found,
namely the system Ta2NiSe5 [28,34–40]. This system at high
temperatures is a small-gap semiconductor and is located in
the SMC part of the phase diagram [39]. This is also the case
of the monolayer transition-metal dichalcogenides [43] and of
the atomic double layers [41] systems. The latter have been
investigated in quasi-equilibrium conditions [41].

In excitonic insulators changes in the electronic struc-
ture are in general associated with lattice deformations. This
brings into question the role of electron-phonon interactions,
and which is the most important mechanism, electronic or
structural that drives the excitonic transition. Since in the
mean-field approximation, electronic or phononic driven tran-
sitions cannot be distinguished [60], the nature of the basic
mechanism is hard to determine and still matter of dispute.
It is remarkable that the coupling between phonons and the
electronic degrees of freedom appears, in general, in a way
that the former couple directly to the excitonic order param-
eter [60,61]. Then, an excitonic instability, with a finite-order
parameter gives rise to a structural deformation for any value
of the electron-phonon coupling [61]. On the other hand, a
finite structural-order parameter can act as a conjugate field
to the excitonic order parameter destroying the transition, as
an external uniform magnetic field in a ferromagnet. In this
case the excitonic instability would be reduced to a purely
crossover phenomenon.

In this paper we use an extended version of an exactly
soluble model of quantum field theory to describe an EI in one
and two-spatial dimensions. The origin of this state lies in the
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electronic correlations between quasiparticles in different
bands of the model. We have identified an interband order
parameter that characterizes the excitonic state. It is different
from that associated with the breakdown of chiral symmetry
that usually occurs in GN models. The nature of the order
parameter in the excitonic state implies that charge is not
conserved in individual bands but only globally in the two-
band system. It is related to the appearance of a spontaneous
hybridization in the system. Notice that hybridization in-
volves the overlap of different orbitals and consequently it can
change due to variation in atomic positions as, for example, by
applying pressure in the system, or due to structural changes
that modify this mixing.

We considered two different situations where the excitonic
state may arise; in a SM with small band overlap and in a
SMC with a small gap between the valence and conduction
bands. In the former case we obtain that the instability to the
excitonic state is a discontinuous transition, although a very
weak one. We have introduced a parameter that characterizes
the overlap between the bands in the SM regime. It is related
to the density of carriers in the system and when it is small, it
implies a poor screening of the charges, such that the electron-
hole attraction is effective. For large values of this parameter
the charges are sufficiently screened and the excitonic state is
destroyed.

In the SMC region we obtain that there is a minimum value
of the interband interaction to produce the excitonic state,
as expected. In this case the transition may be second-order
and at zero temperature it gives rise to a special kind of
quantum critical point. Since the main role of the interactions
is to renormalize the gap between bands, the system remains
gapped even at the excitonic quantum critical point. The crit-
ical power law corrections to the thermodynamic properties
at quantum criticality appear on top of an exponentially acti-
vated contribution due to the presence of the bare and/or the
renormalized gaps.

Comparing Figs. 9 and 16 we can see that the main qualita-
tive difference between the results in 2d and 3d is the existence

of the multicritical point in the latter. In the SM regime both
behaviors are qualitatively the same, but in 2d the spinodal
line remains for all values of k0, while in 3d it is restricted to
small values of k0 (not shown). Moreover, one can conclude
that increasing the dimensionality of the system favors first-
order excitonic transition. From specific heat plots (Figs. 10
and 17), we can also see that the dimensionality plays an im-
portant role to observe the deviation of the scaling prediction
C/T ∝ T (d−z)/z above the excitonic quantum critical point at
low temperatures.

Note that applied pressure or doping modify the bare gap
of the system [28] and can be used to explore the phase
diagrams we have obtained for excitonic insulators. This tun-
ing of the order parameter by external control parameters is
described by our method if the system remains in thermo-
dynamic equilibrium. Quasi-equilibrium situations require a
different approach.

Our approach provides a description of the excitonic
transition in qualitative agreement with the experimental ob-
servations in the system Ta2NiSe5 [28,34–36,38–40]. In this
system the excitonic instability that occurs with decreasing
temperature is accompanied by the appearance of a renor-
malized gap and a flattening of the top of the valence band.
Both features are predicted in our model for the SMC-EI
transition.
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