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Sign-free determinant quantum Monte Carlo study of excitonic density orders
in a two-orbital Hubbard-Kanamori model
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While excitonic instabilities in multiorbital systems recently have come under scrutiny in a variety of
transition-metal compounds, understanding the emergence of these instabilities from strong electronic interac-
tions has remained a challenge. Here, we present a sign-problem-free determinant quantum Monte Carlo study
of excitonic density orders in a half-filled two-orbital Hubbard-Kanamori model with broken orbital degeneracy,
which accounts for the role of Hund’s coupling in transition-metal compounds. For strong inverted (negative)
Hund’s exchange, we find numerical evidence for the emergence of excitonic density order, with competition
between anti-ferro-orbital order and Q = (π, π ) excitonic density order as a function of orbital splitting and
Hund’s coupling. While inverted Hund’s coupling stabilizes a spin-singlet excitonic density phase for weak
orbital splitting, positive Hund’s coupling favors a spin-triplet excitonic density phase.
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I. INTRODUCTION

Harnessing unconventional phases of matter in strongly
correlated electron systems holds great promise for the func-
tionalization of quantum properties of materials. At the same
time, the inability to capture the collective behavior of elec-
trons in such systems from simple descriptions of the mean
behavior of individual quasiparticles poses a fundamental
theoretical challenge, necessitating the development of new
and unbiased computational many-body techniques to gain
further insight. Despite its innocent appearance, the one-
band Hubbard model remains challenging for both analytical
and numerical studies in two dimensions [1,2]. Even richer
physics can emerge in transition-metal compounds with par-
tially filled d shells, ranging from spin-orbital fluctuations
[3–5] and orbital order [6–9] to Hund’s coupling-mediated su-
perconductivity [10–12], further exacerbating the theoretical
challenge. Gaining insight into emergent unconventional elec-
tronic phases using exact numerical simulations of minimal
multiorbital models is hence essential, to provide important
clues to understand correlated electron behavior in complex
materials.

Excitonic density orders constitute an intriguing possi-
ble phase that can emerge in strongly interacting models
with multiple valence orbitals. An exciton is a bosonic
bound state of an electron and a hole, which can undergo
Bose-Einstein condensation below a critical temperature
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[13,14] to form an excitonic superfluid. Extensive early
studies have analyzed excitonic condensation and biexciton
formation in bilayer quantum wells and heterostructures with
spatially separated electrons and holes [15–20]. Meanwhile,
studies of superconductivity in strongly correlated materials
recently have motivated explorations of electron-hole coun-
terparts in multilayer lattice models [21–29]. For sufficiently
strong interlayer interactions, a previous work also provided
evidence for biexciton condensation in a two-orbital Hubbard
model with density interactions and lifted orbital degeneracy
[30].

The exploration of excitonic orders naturally extends
to multiorbital compounds with Hubbard-Kanamori interac-
tions. Here, variational calculations for interorbital density
interactions have found an induced excitonic instability
[24,32]. An excitonic instability close to a spin-state transition
was identified using dynamical mean-field theory (DMFT)
calculations [33]; the role of Hund’s coupling in selecting
excitonic pairing symmetries was studied further using the
variational cluster approximation [34]; and the phase diagram
and spectral functions of symmetry-allowed excitonic pairings
and magnetic orders near the excitonic instability were inves-
tigated in Refs. [35] and [36].

Meanwhile, in the absence of exact numerical results, the
propensity for orbital excitonic order for strong electronic
interactions remains an open question. Exact diagonaliza-
tion calculations are limited to very small system sizes [28],
whereas efforts using determinant quantum Monte Carlo
(DQMC) have remained constrained to high temperatures due
to the fermion sign problem and the complicated interaction
structure of multiorbital models. DQMC is a numerically
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unbiased method for simulating interacting quantum many-
body systems at finite temperature with polynomial effort
in system size, whereby the interacting quantum mechanical
problem is replaced via a stochastic sum of single-particle
problems, suitable for importance sampling [37–39]. How-
ever, a notorious sign problem typically emerges for fermion
or frustrated systems, whereby negative sampling weights can
lead to large statistical errors. However, the sampling weight
sign is a basis-dependent property and in principle can be
avoided by using symmetries and clever choices for the auxil-
iary field in DQMC.

In this work, we present sign-problem-free determinant
quantum Monte Carlo simulations for the emergence of ex-
citonic density orders in two-orbital models with Hund’s
interactions and lifted orbital degeneracy. Our results provide
unbiased numerical evidence for both singlet and triplet ex-
citonic density orders induced via strong Hund’s exchange.
To this end, we utilize a new auxiliary-field decomposi-
tion scheme for density interactions and Hund’s coupling
of the Hubbard-Kanamori model, and prove the absence of
the fermion sign problem. The numerically deduced phase
diagram is consistent with the intuition yielded by devising
simple strong-coupling theories that capture the emergence
of excitons at low energies. Combined, our work provides
convincing evidence for emergent excitonic density order in
two-orbital transition-metal compounds.

II. MODEL AND METHODS

A. Two-orbital Hubbard-Kanamori model

Consider a minimal model describing multiorbital ma-
terials where interorbital exchange interactions cannot be
ignored,

Ĥ = Ĥ0 +
∑

i

ĤI , (1)

with

Ĥ0 = −t
∑

〈i, j〉,α,σ

ĉ†
iασ ĉ jασ − �

∑
iσ

(n̂iAσ − n̂iBσ ), (2)

ĤI = U (n̂A↑n̂A↓ + n̂B↑n̂B↓) + U ′ ∑
σσ ′

n̂Aσ n̂Bσ ′

− J
∑
σσ ′

ĉ†
Aσ ĉAσ ′ ĉ†

Bσ ′ ĉBσ

+ J (ĉ†
A↑ĉ†

A↓ĉB↓ĉB↑ + ĉ†
B↑ĉ†

B↓ĉA↓ĉA↑)

− μ
∑

σ

(n̂Aσ + n̂Bσ ). (3)

Here, ĉ†
iασ (ĉiασ ) are creation (annihilation) operators for an

electron at site i in orbital α ∈ {A, B} with spin σ ∈ {↑,↓} and
the number operator n̂iασ ≡ ĉ†

iασ ĉiασ . Ĥ0 encodes the bilinear
kinetic and crystal-field terms, whereas ĤI describes the on-
site interactions, where the site index for fermion operators
in ĤI has been omitted for simplicity. The parameter t de-
notes the hopping amplitude between nearest neighbors. Note
that we only consider intraorbital hopping, and the hopping
amplitude is the same for orbital A and orbital B. � lifts
the orbital degeneracy per site, permitting asymmetric orbital

filling. On a single site, U and U ′ parametrize intraorbital
Hubbard and interorbital density interactions, respectively,
while J parametrizes the spin- and pair-exchange Hund’s
interactions between orbitals. In addition, μ denotes the chem-
ical potential, which controls the overall doping level.

When J = 0t , total charge in orbital A and orbital B is
conserved separately, and ĤI in Eq. (14) is invariant under
a U (1) × U (1) symmetry. Excitonic condensation (EC) now
entails a spontaneous breaking of the U (1) orbital charge sym-
metry. However, in the absence of J , each layer furthermore
remains individually invariant under spin rotations. Hence, the
resulting excitonic condensate would need to break both U (1)
charge and SU (2) × SU (2) spin rotation symmetry, preclud-
ing a finite-temperature phase transition in two dimensions,
and favoring instead a Kosterlitz-Thouless transition to an
exotic biexcitonic condensate [30] at finite �.

In the presence of Hund’s exchange (J 	= 0t), the charge
conservation symmetry is reduced to U (1) × Z2: only the total
charge is conserved, with the pair-hopping term of Hund’s
exchange leaving intact a residual charge parity symmetry per
individual layer. Furthermore, the spin exchange term retains
only a global SU (2) spin rotation symmetry. Excitonic order
now breaks the discrete Z2 symmetry, and will be denoted
henceforth as an excitonic density wave (EDW) instability.

Interestingly, in the strong-coupling limit, the two-orbital
Hubbard-Kanamori model introduced above can be mapped
to a transverse-field Ising model for pseudospins of exci-
tonic nature [30,31]. Suppose that U ∼ U ′ and J/t < 0 with
|J| � t . Here, the ground state for a single two-orbital site in
the strong-coupling limit is twofold degenerate and forms a
pseudospin 1/2 with

|⇑i〉 = 1√
2

(ĉ†
iA↑ĉ†

iB↓ − ĉ†
iA↓ĉ†

iB↑)|0〉, (4)

|⇓i〉 = 1√
2

(ĉ†
iA↑ĉ†

iA↓ + ĉ†
iB↑ĉ†

iB↓)|0〉, (5)

which describes precisely a hardcore boson (spin-singlet
exciton).

The role of weak hopping t can now be captured in a
strong-coupling expansion in t/J , yielding a transverse-field
Ising model for the excitonic pseudospins

Ĥ ′ =Jx

∑
〈i, j〉

T̂ x
i T̂ x

j + hz

∑
i

T̂ z
i , (6)

where

T̂ +
i = |⇑i〉〈⇓i |, (7)

T̂ −
i = |⇓i〉〈⇑i |, (8)

with T̂ x
i and T̂ z

i as exciton pseudospin operators: T̂ x
i =

1
2 (T̂ +

i + T̂ −
i ) and T̂ z

i = 1
2 [T̂ +

i , T̂ −
i ]. One finds that

Jx = 16t2

2U − 3J
, (9)

hz = U − U ′ + 4�2

J
. (10)

The resulting effective Ising Hamiltonian in Eq. (6) captures
the Z2 charge-parity symmetry for orbitals. Nearest-neighbor
pseudospin exchange follows from virtual tunneling processes
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between neighboring sites. Conversely, both the crystal-field
splitting � and the difference between on-site and interorbital
density interactions (U − U ′) induce a transverse field that
serves to polarize the pseudospins. The Ising transition in the
pseudospin model thus signals an onset of the EDW order with
broken Z2 symmetry.

B. DQMC algorithm

We characterize the Hubbard-Kanamori Hamiltonian in
Eq. (3) using DQMC. Here we present a brief introduction
to the DQMC algorithm. Detailed introductions can be found
in Refs. [37–39].

In general, we would like to use DQMC to numerically cal-
culate the expectation value of an observable Â at an inverse
temperature β:

〈Â〉 = tr(Âe−βĤ )

tr(e−βĤ )
. (11)

To evaluate the trace in the presence of four-fermion in-
teraction terms, we perform a Hubbard-Stratonovich (HS)
transformation and decompose e−βĤ as a sum of HS-field
configuration dependent density matrices ρ̃s: e−βĤ ∝ ∑

{s} ρ̃s,
where {s} is the set of all possible HS-field configurations in
spacetime. Equation (11) is then reexpressed in a HS-field-
dependent form as

〈Â〉 =
∑

{s} tr(Âρ̃s)∑
{s} tr(ρ̃s)

=
∑

{s}〈Â〉sws∑
{s} ws

, (12)

with ws := tr(ρ̃s) and 〈Â〉s := tr(Âρ̃s)/tr(ρ̃s). Thus, ws can be
naturally interpreted as the probability weight of the configu-
ration s. We have [37–39]

ws = det [I + Bs], (13)

where I is the identity matrix and Bs is a matrix which depends
on the HS configuration s.

C. Sign-free decomposition

For the Hubbard-Kanamori model, the straightforward
decomposition of the interaction terms leads to a severe
sign problem immediately away from the sign-free special
case in which all orbitals preserve particle-hole symmetry,
overall and individually. Previously, several decomposition
strategies were proposed to alleviate the sign problem in re-
stricted parameter spaces [11,40–43]; more recently, Ref. [44]
shows a general framework to control the sign problem
with constrained path and phaseless approximations in the
ground-state variant of DQMC. Here, we provide a sign-free
decomposition strategy by exploiting a novel antiunitary sym-
metry of the model at overall half filling and in a specific
interaction parameter regime. Our approach is thus numeri-
cally exact.

We rewrite ĤI in Eq. (3) in a particle-hole symmetric,
quadratic form

ĤI = ĤD
I + ĤH

I ,

ĤD
I =

[
U + U ′

4
(n̂A↑ + n̂A↓ + n̂B↑ + n̂B↓ − 2)2

+U − U ′

4
(n̂A↑ + n̂A↓ − n̂B↑ − n̂B↓)2

]
,

ĤH
I = J

2
(ĉ†

A↑ĉB↑ + ĉ†
A↓ĉB↓ + ĉ†

B↑ĉA↑ + ĉ†
B↓ĉA↓)2. (14)

Note that the chemical potential term is absorbed into ĤD
I ,

and the model is particle-hole symmetric in the absence of a
chemical potential shift for arbitrary values of U,U ′, J , and
�, guaranteeing overall half filling. The density-density term
ĤD

I and the Hund’s interaction term ĤH
I commute with one

another: [
ĤD

I , ĤH
I

] = 0. (15)

We discretize the imaginary-time interval [0, β] into M
slices, β = M�τ , and use the Trotter-Suzuki scheme to write

e−βĤ ≈
M−1∏
l=0

e−�τ Ĥ0 e−�τ ĤD
I e−�τ ĤH

I . (16)

The Hund’s term ĤH
I can be decomposed via discrete spin-

1 Ising HS fields:

e−�τ ĤH
I =

∑
s=−1,0,1

γ h
s (a)esλh (a)ĥ, (17)

where ĥ = ĉ†
A↑ĉB↑ + ĉ†

A↓ĉB↓ + ĉ†
B↑ĉA↑ + ĉ†

B↓ĉA↓, and

γ h
0 (a) = 1 − 2γ h

1 (a), (18)

γ h
±1(a) = 1

3 + 2e−a/2 + e−a
, (19)

λh(a) = 1
2 arccosh

[
1
2

(−1 − 2ea/2 + 3e−2a

− e−a + 2e−5a/2 + e−3a
)]

, (20)

and a = �τJ .
The density interaction term can be decomposed as in

Ref. [30]. Notice that N̂ = n̂A↑ + n̂A↓ + n̂B↑ + n̂B↓ − 2 and
M̂ = n̂A↑ + n̂A↓ − n̂B↑ − n̂B↓ both take values in {0,±1,±2},
and the following relation holds for x = 0,±1,±2:

e−ax2 =
∑

s=−1,0,1

γs(a)eλ(a)sx, (21)

where

γ0(a) = 1 + cosh(a)

1 + 2 cosh(a) + sinh(a)
, (22)

γ±1(a) = 1

3 + e−2a + 2e−a
, (23)

λ(a) = arccosh
[

1
2 (e−3a + e−2a + e−a − 1)

]
, (24)

and a = �τ (U + U ′)/4 for N̂ , a = �τ (U − U ′)/4 for M̂.
Using Eqs. (17) through (24), the four-fermion terms in

Eq. (16) can be expressed in terms of bilinear operators cou-
pled to three spin-1 Ising HS fields per site s = (sh, s, s̄),
such that

tr(e−βĤ ) =
∑

s

ws, (25)
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where

ws = tr

[(∏
i,m

γ h
imγimγ̄ime−2simλ

)

×
∏

m

e−�τ Ĥ0 e
∑

i sh
imλhĥi+simλN̂i+s̄imλ̄M̂i

]
. (26)

sh
im, λh, γ h

im are coupled to Hund’s terms ĥi; sim, λ, γim are
coupled to density-like terms N̂i; s̄im, λ̄, γ̄im are coupled to
magnetization-like terms M̂i. It can be shown by evaluating
the trace over the Hilbert space that

ws = ps det[I + Bs], (27)

where

ps =
∏
i,m

γ h
imγimγ̄ime−2simλ, (28)

Bs ≡
∏

m

e−�τH0 e
∑

i sh
imλhhi e

∑
i simλNi e

∑
i s̄imλ̄Mi , (29)

and I is the identity matrix. Bold letters represent matrices,
which are related to the corresponding operators by c†Oc =
Ô, where c† = (. . . , ĉ†

i,A,↑, ĉ†
i,A,↓, ĉ†

i,B,↑, ĉ†
i,B,↓, . . .) is a vector

of fermionic operators.
The prefactors ps are always positive according to Eq. (18),

Eq. (19), Eq. (22), and Eq. (23). One possible strategy to
prove that the matrix part of the probability weights ws are
positive semidefinite is to show that I + Bs has an antiuni-
tary symmetry T, i.e., T2 = −I and T−1(I + Bs)T = I + Bs
[45]. It can be shown that the sign-free parameter regime for
the particle-hole symmetric two-orbital Hubbard-Kanamori
model in Eq. (14) is

|U | � U ′, (30)

and J can be positive, negative, or zero. The nearest-neighbor
hopping is restricted to be intraorbital, and the hopping am-
plitude is the same for the two orbitals. Appendix A presents
a more detailed proof. Therefore, unbiased, numerically exact
simulations can be performed for this model.

III. RESULTS

We perform sign-free DQMC simulations for systems on a
square lattice with linear size L = 12 at inverse temperature
β = 12/t , and focus on the onset of excitonic density order in
regimes where the interorbital interaction U ′ is slightly larger
than the on-site interaction U , promoting an effective attrac-
tion between electrons and holes on opposite orbitals. To this
end, we set U ′ = 6t and U = 5t , and investigate the competi-
tion of Hund’s exchange J and crystal-field splitting �. While
J/t > 0 in most transition-metal compounds, inverted Hund’s
coupling J/t < 0 has been proposed as a minimal model to
explain superconductivity in the fullerides [46]. In addition,
the sign-free parameter regime we propose includes the orbital
rotational symmetric point U ′ = U − 2J for inverted Hund’s
coupling. We will therefore chart a phase diagram primarily
for the inverted Hund’s coupling case, and complement the
study of excitonic density orders by presenting additional
results for the positive Hund’s coupling case.

FIG. 1. Electron number of orbital A averaged over sites and
spins, with error bars for each data point taken from Monte Carlo
estimates. Due to the sign-free nature of the DQMC algorithm that
we use in this work, the error bars are of the size of the marker for
most of the data points in this plot and all the following plots.

In the Hubbard-Kanamori model, the inclusion of a finite
Hund’s coupling J introduces an additional source of “strong
coupling” compared to the standard single-orbital or single-
band Hubbard model. Specifically, the interplay of Hund’s
coupling J and crystal field � results in a variety of possible
behaviours. While a negative J tends to balance the electron
number in the two orbitals and force spin antialignment, �

lifts the orbital degeneracy and favors electron occupation
of the lower energy orbital (orbital A with our definition).
We focus on studying the competition of J and � in the
range −0.6 � J/t � 0 and 0 � �/t � 1.5. Figure 1 shows
the average electron number per site in orbital A, 〈n̂A〉 =
1

L2

∑
i,σ 〈n̂iAσ 〉, as a function of J and �. Since the Hamiltonian

defined in Eq. (14) is particle-hole symmetric, the average
electron number in orbital B is simply 〈n̂B〉 = 2 − 〈n̂A〉. In the
atomic limit at overall half filling, the two electrons residing
on a single site either separately occupy the two orbitals with
spins antialigned, or both occupy the same orbital with lower
energy (orbital A). Both cases present a “low-spin” state in
the atomic limit, and thus magnetic orders are generally not
expected in our model. Notably, 〈n̂A〉 for J = 0t shows an
edge at around � = 0.4t . This is a result of the energy gap
in the charge sector caused by the checkerboard charge order
formed for small �. This order will be discussed in detail in
the next section.

A. Orbital and spin correlations

We first study possible magnetic and orbital order, de-
scribed via orbital So(�q) and spin Ss(�q) correlation functions

So(�q) = 1

L2

∑
�R,�r

e−i �q· �R〈
Ôz

�R+�rÔz
�r
〉
, (31)

Ss(�q) = 1

L2

∑
�R,�r

e−i �q· �R〈
Ŝz

�R+�r Ŝz
�r
〉
. (32)
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Here, Ôz
�r and Ŝz

�r represent the local orbital and spin polariza-
tion in the z direction, respectively:

Ôz
�r =

∑
σ

(n̂�rAσ − n̂�rBσ ), (33)

Ŝz
�r =

∑
α

(n̂�rα↑ − n̂�rα↓). (34)

While the Hamiltonian is symmetric under SU (2) spin rota-
tions, the combination of the pair-hopping term of Hund’s
coupling and crystal-field splitting retain only a Z2 orbital
symmetry that reflects the orbital charge parity.

To gain some intuition about orbital and magnetic ordering
tendencies in the Hubbard-Kanamori model, first consider two
limiting cases when J = 0t and both orbitals are at half filling
(� = 0t). In the limit where U � t,U ′, at zero temperature
the two layers decouple with (π, π ) antiferromagnetic (AFM)
order. Conversely, large interorbital repulsion with U ′ � t,U
enforces an out-of-phase checkerboard charge order between
the orbitals, which is termed anti-ferro-orbital (AFO) order.
Away from these limits, especially at intermediate interac-
tion strengths U ≈ U ′, numerical studies are essential to gain
further insight. Reference [30] shows that for finite � and
U ′ > U , AFO order is gradually suppressed and eventually
disappears at � ∼ 0.4t , giving way to a biexcitonic conden-
sate. In contrast, AFM order is absent at all values of �

studied.
For finite J , Hund’s coupling competes with interorbital

interactions and the crystal field. For U ′ > U , magnetic order
remains suppressed over all values of J , with Ss(�q) uniform in
momentum space and no discernible tendency toward AFM
order. In contrast, the peak of the orbital correlation function
So(�q) at �q = (π, π ) persists even for finite J . Figure 2(a)
shows the � and J dependency of So(π, π ), and Fig. 2(b)
shows a set of representative results at J = −0.2t plotted
along the high-symmetry cuts in momentum space. In the
small-|J| and small-� region, we find a sharp peak at (π, π ),
which signals AFO order. The checkerboard AFO order pre-
serves half filling for both orbitals individually, and is gapped
in the charge sector.

As � increases at fixed J [Fig. 2(a)], the crystal field
gradually overcomes the charge gap and suppresses the peak
in So(π, π ). This behavior also is evident from 〈n̂A〉, shown in
Fig. 1 as a function of �, and the system remains incompress-
ible until the So(π, π ) peak is suppressed by �.

B. Excitonic density correlations

We now turn to signatures of exciton formation in the
two-orbital models. To this end, consider the interorbital spin-
singlet and spin-triplet exciton creation operators [34]

Â0†
�r = 1√

2

∑
σ

ĉ†
�rAσ

ĉ�rBσ , (35)

Ât†
�r = 1√

2

∑
σσ ′

ĉ†
�rAσ

σσσ ′ ĉ�rBσ ′ , (36)

where σ are Pauli matrices for spin. For simplicity, for
spin-triplet excitons, we only consider the x component
of Ât†

�r , which creates a spin-antiparallel exciton as Âtx†
�r =

FIG. 2. (a) So(π, π ) as a function of Hund’s coupling J and
crystal field �. (b) So(π, π ) for J = −0.2t plotted along the high
symmetry cuts in the first Brillouin zone.

1√
2
(ĉ†

�rA↑ĉ�rB↓ + ĉ†
�rA↓ĉ�rB↑). This permits a straightforward defi-

nition of the corresponding correlation functions

P0
e (�q) = 1

L2

∑
�R,�r

e−i �q· �R〈(
Â0†

�R+�r + Â0
�R+�r

)(
Â0†

�r + Â0
�r
)〉
, (37)

Pt
e (�q) = 1

L2

∑
�R,�r

e−i �q· �R〈(
Âtx†

�R+�r + Âtx
�R+�r

)(
Âtx†

�r + Âtx
�r
)〉
, (38)

which will be used to characterize excitonic ordering tenden-
cies. Notably, spin-singlet exciton condensation also preserves
the global SU (2) symmetry, permitting a finite-temperature
phase transition. Conversely, spin-triplet exciton condensation
remains stable in two dimensions only at zero temperature.

To see whether singlet or triplet exciton formation is
favored, notice that the spin-exchange part of the Hund’s cou-
pling in Eq. (3) can be expressed using Eq. (35) and Eq. (36)
[34] as

ŜiA · ŜiB = −3

4
Â0†Â0 + 1

4
Ât†Ât . (39)

Immediately, one observes that a spin-antiparallel triplet EDW
becomes more energetically favorable for J/t > 0, whereas
J/t < 0 favors spin-singlet EDWs. This phenomenon is con-
firmed in Fig. 3, which compares P0

e (π, π ) and Pt
e (π, π )

at � = 0.5t as a function of J . Notably, the peak of the
singlet exciton correlation function for negative J is signifi-
cantly more pronounced than the peak of the triplet exciton

165124-5



HUANG, MORITZ, CLAASSEN, AND DEVEREAUX PHYSICAL REVIEW B 105, 165124 (2022)

FIG. 3. Spin-singlet excitonic correlation P0
e (π, π ) and spin-

triplet excitonic correlation Pt
e (π, π ) measured for � = 0.5t and

J ranging from −0.6t to 0.6t . The measurements are performed for a
system with linear size L = 12 at inverse temperature β = 12/t , the
same as with the J-� results.

correlation function for positive J . This is a direct con-
sequence of discrete (continuous) symmetry breaking for
spin-singlet (spin-triplet) EDWs in two dimensions, permit-
ting (precluding) a finite-temperature phase transition.

1. Competition with AFO

For J/t � 0, a spin-singlet EDW competes with AFO.
Figure 4(a) presents the � and J dependency of P0

e (π, π ),
and Fig. 4(b) depicts a representative momentum space cut of
P0

e (�q) for J = −0.2t , showing that the peak of P0
e (�q) always

appears at �q = (π, π ). We start from an analysis of the J =
0t case. In the small-� limit, the orbital (π, π ) modulation
dominates the system as shown in Fig. 2. On each site, one
of the orbitals is doubly occupied, leaving the other orbital
completely empty. This configuration efficiently blocks the
orbital compensation and suppresses the interorbital electron-
hole pairing. We obtain a P0

e (�q) almost uniform in momentum
space for this parameter region. As � increases, the excess of
electrons (holes) in orbital A (B) increases as well, allowing
higher pairing probability. P0

e (π, π ) reaches the highest value
at around � = 0.5t . Further increase of � completely fills
orbital A (B) with electrons (holes) and a band-insulating (BI)
state is formed, eliminating both the orbital and excitonic
(π, π ) modulation. The physical picture for J/t < 0 is an
extension for the J = 0t case: the evolution from AFO to
EC/EDW and finally to BI as � increases. However, the
crossover value of � from AFO to EDW decreases as |J|
increases. Beyond |J| = 0.5t , the (π, π ) peak for So is absent
even at � = 0, as shown in Fig. 2.

2. Effect on local magnetic moment

The development of excitonic density modulation also has
an effect on the local magnetic moment. Figure 5 depicts the
magnetic moment averaged over all sites 〈m̂2

z 〉 = 1
L2

∑
i〈Ŝz2

i 〉.
We find that inverted Hund’s coupling lowers 〈m̂2

z 〉 for all
values of the crystal field �, as spin antialignment between
orbitals is expected to be more energetically favorable in this
case. For a specific J , the evolution of 〈m̂2

z 〉 as a function of

FIG. 4. (a) P0
e (π, π ) as a function of Hund’s coupling J and

crystal field �. (b) P0
e (π, π ) for J = −0.2t plotted along the high

symmetry cuts in the first Brillouin zone.

� closely follows the results of P0
e (π, π ). This can be under-

stood easily by considering the particle distribution among the
two orbitals when the spin-singlet excitons are formed. In the
strong-P0

e (π, π ) region, for a single site, the electron in orbital
A pairs up with the hole in orbital B, suppressing double
occupation of the same orbital, which enhances the local mag-
netic moment for the two orbitals separately. This scenario
can be further confirmed by studying the local magnetic mo-
ment for orbital A, defined as 〈m̂2

Az〉 = 1
L2

∑
i〈(n̂iA↑ − n̂iA↓)2〉.

FIG. 5. Local magnetic moment 〈m̂2
z 〉 measured for various

Hund’s coupling J and crystal field �.
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FIG. 6. Spin-triplet excitonic correlation function Pt
e (π, π ) mea-

sured for various positive Hund’s coupling J and crystal field �.

Figure 9(a) shows the results for 〈m̂2
Az〉, which is consistent

with the expectation. Appendix B presents more details re-
garding the magnetic moments. Nevertheless, the absolute
value of 〈m̂2

z 〉 remains small for U ′ > U and no AFM order
is present in the parameter region we study.

3. Positive-J regime

For the positive Hund’s coupling J/t > 0 case, we focus
on presenting the results for spin-triplet EDW, which is en-
ergetically more favorable than its spin-singlet counterpart.
Figure 6 shows the spin-triplet excitonic correlation function
Pt

e (π, π ) for positive Hund’s coupling J and various crystal-
field values �. Interestingly, the spin-triplet results resemble
the behavior of the spin-singlet excitonic correlation function
in the negative-J regime.

IV. CONCLUSIONS

In summary, we identify Hund’s exchange-induced EDW
order in a two-orbital Hubbard-Kanamori model, using nu-
merically unbiased, fermion sign-problem-free DQMC simu-
lations. Figure 7 summarizes the various ordering tendencies,
highlighting the dominant correlations as a function of Hund’s
exchange for −0.6 � J/t � 0 and orbital splitting 0 � �/t �
1.6. The pseudocolor is constructed by interpolating So(π, π )
and P0

e (π, π ) results in Fig. 2(a) and Fig. 4(a) after nor-
malization, and shows the competition between AFO and
EDW correlations. In the inverted Hund’s coupling regime,
J favors balanced electron numbers in the two orbitals and
spin antialignment, enhancing spin-singlet EDW correlations.
Conversely, � polarizes the orbitals and drives the system
toward a BI state in the high-� limit. Here, strong inverted
Hund’s interactions permit a particularly simple description
of the onset of EDW order, whereby the low-energy behavior
maps onto an effective exciton pseudospin Ising model in a
transverse field, which succinctly describes the Z2-breaking
EDW transition. For positive Hund’s coupling, a spin-
triplet EDW becomes energetically favorable, displaying an
analogous competition with AFO order.

The DQMC algorithm we present in this work permits a
sign-problem-free numerical simulation for a broad parameter

FIG. 7. Schematic plot of orders showing dominant correlations
in the parameter regime −0.6t � J � 0t , 0t � � � 1.6t , based
on simulation data from Fig. 2(a) and Fig. 4(a). The pseudocolor
displayed is interpolated from normalized simulation results of
S′

o(π, π ) − P0′
e (π, π ), where normalization of a value x is defined

as x′ = [x − min�,J (x)]/[max�,J (x) − min�,J (x)]. The biexcitonic
condensation (Bi-EC) phase locates at J = 0t . The parameter range
of Bi-EC is taken from Ref. [30], where the condensation phase is
confirmed with a systematic finite-size analysis.

range with |U | � U ′, and J of arbitrary sign. In particular,
the sign-problem-free parameter range covers the rotationally
invariant regime U ′ = U − 2J for inverted Hund’s coupling.
This enables extensions of our work to systematically ex-
plore and understand the emergence of symmetry-breaking
states, including unconventional superconductivity, in alkali-
doped fullerides where the Hund’s coupling is negative and
the interorbital interaction can be larger than the intraorbital
interaction due to Jahn-Teller coupling [46]. In addition, a
two-orbital Hubbard-Kanamori model, like the one presented
here, may be relevant for V2O3, where the V 3+ t2g (eπ

g ) orbitals
near the Fermi energy are occupied by two electrons, and cor-
relations induce an enhancement of the crystal-field splitting
[47,48]. Local structural properties and the effective electron
doping level of V2O3 can be altered and fine-tuned by Cr or Ti
substitution [49], which allows a potential realization of the
EDW orders proposed in our work.
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APPENDIX A: PROOF OF THE SIGN-FREE
PARAMETER REGIME

The decomposition scheme is sign-free if there exists an
antiunitary symmetry T, which satisfies T2 = −I, and is pre-
served by the following terms: �M̂, λhĥ, λN̂ , and λ̄M̂. Under
the transformation T, the coefficients (�,λh, λ, λ̄) become
their complex conjugates. Thus they are even under such a
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FIG. 8. Discrete spin-1 decoupling parameters for the interaction
terms. Both λ and λh are purely imaginary when a � 0 and purely
real when a � 0.

transformation if they are purely real and odd if they are
purely imaginary. Since � denotes the electron-hole doping
level, it is always purely real and even under the transforma-
tion T. The real part and the imaginary part of the remaining
coefficients (λh, λ, λ̄) depend on the parameters of the
Hamiltonian and are shown in Fig. 8. The variable a in Fig. 8
takes the value �τJ , �τ (U + U ′)/4, and �τ (U − U ′)/4 for
the three coefficients, respectively.

1. J/t < 0 case

We perform a single-layer particle-hole transformation
ĉiBσ → (−1)δi ĉ†

iBσ on layer B, where δi is even/odd on neigh-
boring sites. The kinetic energy term of the Hamiltonian is
invariant under this transformation. ĥ transforms as

ĥ → (−1)δi (ĉ†
A↑ĉ†

B↑ + ĉB↑ĉA↑ + ĉ†
A↓ĉ†

B↓ + ĉB↓ĉA↓), (A1)

while N̂ and M̂ transform into each other:

N̂ → M̂, (A2)

M̂ → N̂ . (A3)

Consider an antiunitary symmetry

T̂ =
∑

iσ

[|i, A, σ 〉〈i, B, σ | − |i, B, σ 〉〈i, A, σ |]K̂ . (A4)

It is straightforward to verify that under this transformation,
(−1)δi (ĉ†

A↑ĉ†
B↑ + ĉB↑ĉA↑ + ĉ†

A↓ĉ†
B↓ + ĉB↓ĉA↓), M̂, and N̂ are

even, odd, and even, respectively. Therefore I + Bs is sym-
metric under T provided that λh is purely real, λ is purely
imaginary, and λ̄ is purely real. This corresponds to the pa-
rameter regime

|U | � U ′, (A5)

J/t < 0. (A6)

2. J/t > 0 case

We perform a particle-hole transformation for spin-down
operators ĉiα↓ → (−1)δi ĉ†

iα↓, where δi is even/odd on neigh-

FIG. 9. (a) Local magnetic moment 〈m̂2
Az〉. (b) Interorbital mag-

netic moment cross-correlation 〈m̂Azm̂Bz〉 measured for various
Hund’s coupling J and crystal field �.

boring sites. The kinetic energy term of the Hamiltonian is
invariant under this transformation. ĥ, N̂ , and M̂ transform as

ĥ → ĉ†
A↑ĉB↑ + ĉ†

B↑ĉA↑ − ĉ†
A↓ĉB↓ − ĉ†

B↓ĉA↓, (A7)

N̂ → n̂A↑ − n̂A↓ + n̂B↑ − n̂B↓, (A8)

M̂ → n̂A↑ − n̂A↓ − n̂B↑ + n̂B↓. (A9)

Consider an antiunitary symmetry

T̂ =
∑

i

[|i, A,↑〉〈i, B,↓ | + |i, B,↓〉〈i, A,↑ |

+ |i, A,↓〉〈i, B,↑ | + |i, B,↑〉〈i, A,↓ |]K̂ . (A10)

It is straightforward to verify that under this transformation,
the above terms are odd, odd, and even, respectively. There-
fore I + Bs is symmetric under T provided that λh is purely
imaginary, λ is purely imaginary, and λ̄ is purely real. This
corresponds to the parameter regime

|U | � U ′, (A11)

J/t > 0. (A12)
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APPENDIX B: LOCAL MAGNETIC MOMENT FOR
INVERTED HUND’S COUPLING

Figure 9(a) shows the local magnetic moment
measured for orbital A. The interorbital magnetic moment
cross-correlation, defined as 〈m̂Azm̂Bz〉 = 1

L2

∑
i〈(n̂iA↑ −

n̂iA↓)(n̂iB↑ − n̂iB↓)〉, is plotted in Fig. 9(b). For a fixed J ,
both 〈m̂2

Az〉 and the absolute value of 〈m̂Azm̂Bz〉 follow the

results of P0
e (π, π ), as a result of the particle distribution

among the two orbitals enforced by interorbital particle-hole
pairing. Meanwhile, inverted Hund’s coupling favors spin
antialignment between orbital A and orbital B, leading to
a reduction in 〈m̂Azm̂Bz〉 as |J| increases for a fixed �.
It also is straightforward to verify that 〈m̂2

z 〉 = 2〈m̂2
Az〉 +

2〈m̂Azm̂Bz〉.
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