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We numerically investigate the ground state of the extended t-J Hamiltonian with periodic local modulations
in one dimension by using the density-matrix renormalization group method. Examining charge and spin
excitation gaps, as well as the pair binding energy, with extrapolated results to the thermodynamic limit, we
obtain a rich ground-state phase diagram consisting of the metallic state, the superconducting state, the phase
separation, and insulating states at commensurate fillings. Compared to the homogeneous one-dimensional
(1D) t-J model, the superconductivity is greatly enhanced and stabilized by the flat-band structure. This
superconducting state in periodically modulated chains shares similar properties with ladder systems: significant
negative pair binding energy occurs, and the singlet-pairing correlation function dominates with the algebraic
decay while the single-particle Green’s function and spin correlation function decay exponentially. On the
other hand, the superlattice structure leads to nontrivial topological nature in insulating states, characterized
by different integer Chern numbers at different fillings. Due to the interplay among the topology, the interaction,
and the 1D confinement, gapless edge modes show strong spin-charge separation and in different regions can
relate to different collective modes, which are the charge of a single fermion, the magnon, and the singlet pair.
We also find two interaction-driven topological transitions: (i) at particle filling ρ = 1

2 , the low-energy edge
excitations change from the magnon to singlet pair, accompanied with pair formation in bulk; and (ii) at ρ = 3

4 ,
while the gapless edge mode is always the charge of a single fermion, there is a gap-closing point and a π -phase
shift in the quasiparticle spectrum.
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I. INTRODUCTION

The t-J Hamiltonian [1] is one of the most important the-
oretical models in strongly correlated systems, especially for
its role as a canonical model for studying high-temperature
superconductors [2,3]. While the initial interest of the model
resides in its two-dimensional (2D) realization, the one-
dimensional (1D) t-J model attracts many investigations as it
shares some signatures with the 2D case, such as the spin-gap
and the superconducting phase [4,5]. However, the supercon-
ducting state in the 1D chain supports a very weak spin gap
and pair binding, which vanishes for physically relevant val-
ues of J in real materials [5,6]. Compared to the pure 1D case,
in a higher dimension, even-leg t-J ladders show stronger
evidence of superconductivity with significant binding en-
ergy [6–11] and have been extensively studied [12–15]. In a
recent work [16], the substantial negative binding energy has
been demonstrated in 1D coupled t-J segments for physically
relevant values of exchange J and hole doping. This work pro-
vides unique possibilities in superconducting material design
and raises the question of whether the enhanced superconduc-
tivity is pervasive for general periodically modulated systems.
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The 1D superlattice has attracted continuous investiga-
tions in the last decade, partially because of its nontrivial
topological nature [17–23]. In a noninteracting setting, the
essential physics behind it is well understood, that these
1D superlattice models can be mapped to the 2D Harper-
Hofstadter model [24,25] which is used to describe the
quantum Hall effect [26]. In the presence of interactions, there
occur more unique phenomena such as fractional topological
insulators [19,20] and topological Mott insulators [21–23].
Moreover, in the spinful fermionic Hubbard chain, the spin-
charge separation due to the confined geometry can also affect
topological properties, leading to the phase transition with the
low-energy edge excitations change from spin- 1

2 fermionic
single-particle modes to spin-1 bosonic collective modes at
specific fillings [27].

The t-J Hamiltonian in 1D superlattices displays various
ingredients supporting novel physics, which has not been
systematically explored. The interplay among topology, inter-
action, spin-charge separation, and pairing brings interesting
phenomena in perspectives from both bulk and edge prop-
erties, such as the enhanced superconductivity and various
topological edge modes. In parallel, the development of ul-
tracold gases in optical lattices within the last two decades
provides a new way to explore the physical aspects de-
scribed by theoretical model Hamiltonians [28–32], including
quasiperiodic models [33] and extended t-J models [34,35].
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Experimental settings with remarkable control and tunabil-
ity have brought enhanced flexibility to theoretical models,
which can be studied with sufficient motivation in a broader
range of parameters and different extended forms [34–37]. In
particular, the periodically modulated t-J Hamiltonian, which
has not yet been explicitly proposed in optical lattices, has
the potential to be realized in future experiments [38]. Moti-
vated by various possibilities, in this work, we systematically
investigate the t-J model in 1D superlattices with periodic
modulations in a wide range of parameters. We aim to draw
the ground-state phase diagram of the modulated t-J chain and
unveil its nontrivial topological nature from numerically exact
results.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the periodically modulated t-J model,
the numerical method, and the way to characterize both bulk
and topological properties. In Sec. III, we summarize our main
results by the ground-state phase diagram and introduce the
bulk state properties, especially the enhanced superconductiv-
ity. In Sec. IV, we focus on the topological nature of insulating
states and demonstrate various gapless edge modes corre-
sponding to different quasiparticles. Finally, the summary and
discussion are presented in Sec. V.

II. MODEL AND METHODOLOGY

We investigate the extended t-J model with site-dependent
couplings and interactions,

H =
∑

iσ

ti(ĉ
†
i,σ ĉi+1,σ + H.c.) +

∑
i

Ji

(
�Si · �Si+1 − 1

4
n̂in̂i+1

)
,

(1)

where ĉ†
i,σ (ĉi,σ ) creates (annihilates) a fermion with spin

σ =↑,↓ at site i. Here �Si = 1
2

∑
αβ ĉ†

i,α �σα,β ĉi,β is the spin- 1
2

operator with Pauli matrices �σ , and n̂i = ∑
σ ĉ†

i,σ ĉi,σ is the
fermion density operator. The local modulation is introduced
by the site-dependent offset δti on the hopping for the local
site i as

δti = λ cos (2π i/p + φ). (2)

Here λ is the amplitude of the modulation, p is the size of the
unit cell, and φ is a phase factor. Such modulations are very
common in the research of topological insulators in 1D optical
superlattices [17,23,27,39,40]. Taking into account that the t-J
model is derived from the Hubbard model in the large-U limit,
we restrict values of parameters that keep J = 4t2/U fixed
across the lattice and therefore set local parameters as

ti = −t + δti, Ji = Jt2
i /t2. (3)

To avoid possible ground-state localization [41,42], we con-
sider the commensurate lattice with integer p. Specifically,
we focus on p = 4 in this work, and other finite even values
exhibit similar phenomena. For convenience, we set t = 1 as
the energy unit and fix the modulation amplitude λ = 0.2. The
model is then systematically investigated at different particle
fillings ρ and exchange interaction J .

The system described by Eq. (1) has U(1) symmetry
with conserved total particle number Nσ = ∑

i〈n̂i,σ 〉 for spin
species σ . We use the density-matrix renormalization group

(DMRG) method [43,44] and numerically compute the mth
eigenstate 
m(L, N↑, N↓) of energy Em(L, N↑, N↓) with fixed
good quantum numbers. For convenience, we adopt shortened
forms 
m(N↑, N↓) and Em(N↑, N↓) when the information of
the system size L is clear. We dynamically adapt DMRG
many-body states to make sure that the maximum truncation
error is of the order of 10−8 [45]. The number of DMRG kept
states is up to 1000 in most calculations but can be very large
in some rare cases, for example, up to 8000 in computing the
first-excited state with degeneracy. Open boundary conditions
(OBCs) and periodic boundary conditions (PBCs) are used in
different calculations for different purposes. Conclusions are
made according to the extrapolated results to the thermody-
namic limit.

A. Energy criteria for bulk state

We adopt several energy criteria to characterize the phase
and the ground-state phase diagram. The conducting and in-
sulating bulk state can be determined by evaluating the charge
excitation gap

�EC = [E0(N↑ + 1, N↓ + 1) + E0(N↑ − 1, N↓ − 1)

− 2E0(N↑, N↓)]/2, (4)

and the zero (nonzero) charge gap indicates the continuous
(discrete) charge excitation. The spin gap is defined as the
excitation energy from a singlet to a triplet state

�ES = E0(N↑ + 1, N↓ − 1) − E0(N↑, N↓), (5)

which distinguishes the gapped and gapless spin excitation.
Another important energetic criterion is the binding energy

�EB = E0(N↑ + 1, N↓ + 1) + E0(N↑, N↓)

− 2E0(N↑ + 1, N↓), (6)

which compares the energy of two interacting particles (or
holes, depending on the filling) with that of two noninteracting
ones, and �EB < 0 indicates a tendency toward pair forma-
tion. Note that all these energy criteria are meaningful only in
the thermodynamic limit.

B. Correlation functions and structure factors

To further characterize different phases, we compute corre-
lation functions and correspondent structure factors. Despite
being a periodically modulated system, we compute correla-
tions between individual sites instead of unit cells since the
two give essentially the same physics [16] (see Appendix A
for detailed information). With the correlation function in a
generic form Xi j between sites i and j, one can extract the
correlation decay

X (r) = 1

N
∑

|i− j|=r

Xi j, (7)

and the structure factor

X (k) = 1

L

L∑
i, j=1

eik(i− j)Xi j . (8)

Here N is the total number of pairs {i, j} satisfying |i − j| =
r, and k is the momentum. The superconducting order can be
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captured by the singlet-pairing correlation function defined as

PS
i j = 〈�†

i � j〉, (9)

where

�i = 1√
2

(ĉi,↑ĉi+1,↓ − ĉi,↓ĉi+1,↑) (10)

is the annihilation operator for the singlet pair on the two
nearest sites. We are also interested in the density-density
correlation function

Ni j = 〈n̂in̂ j〉 − 〈n̂i〉〈n̂ j〉, (11)

the spin-spin correlation function

Si j = 〈
Ŝz

i Ŝz
j

〉
, (12)

and the single-particle Green’s function

Gσ
i j = 〈ĉi,σ ĉ†

j,σ 〉. (13)

C. Topological invariant

In the gapped state, we characterize nontrivial topology by
the Chern number

C = 1

2π

∫ 2π

0
dφ

∫ 2π

0
dθ F (φ, θ ) (14)

defined in the 2D parameter space (φ, θ ), where F (φ, θ ) =
Im(〈 ∂


∂φ
| ∂


∂θ
〉 − 〈 ∂


∂θ
| ∂


∂φ
〉) is the Berry curvature. Here φ is

the phase of the modulation in Eq. (2), and θ is the phase
factor for twisted boundary conditions [46,47]. Specifically,
we impose twisted boundary conditions via the replacement
ĉ j,σ → eiδθ j ĉ j,σ , where δθ = θ/L is the phase gradient. We
compute the Chern number for insulating states using the
method in Refs. [48,49] on a 12 × 12 discrete grid, using both
exact wave functions from the exact diagonalization method
for smaller system sizes (L = 16) and matrix-product-state
wave functions from DMRG for larger ones (L = 64). These
two methods give the same result.

III. GROUND-STATE PHASE DIAGRAM AND ENHANCED
SUPERCONDUCTIVITY

We summarize our main result by the ground-state phase
diagram in Fig. 1, which contains the metallic phase, the
superconducting phase, a regime of phase separation, and dif-
ferent topological insulating states. To emphasize the gapped
phases, in the main panel, we plot the phase diagram in the
grand-canonical ensemble in the presence of a uniform chem-
ical potential μ. The ground-state energy of the Hamiltonian
in the grand-canonical ensemble

Hμ = H + μ
∑

i

n̂i (15)

can be easily obtained by E0(N↑, N↓, μ) = E0(N↑, N↓) + μN ,
with N = ∑

σ Nσ is the total number of particles. Insulating
phases (�EC > 0) lie in commensurate fillings, i.e., ρ = 1

4 ,
1
2 , and 3

4 , where the particle filling is defined as ρ = N/L.
Boundaries between the metallic and superconducting states
can be obtained from the binding energy �EB. The negative
inverse compressibility determines the boundary entering the

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
J

−6

−4

−2

0

2

4

μ

ρ = 0

ρ = 1

ρ = 1/4 ρ = 1/2

ρ = 3/4

0 2 4
J

0

1/4

1/2

3/4

1

ρ

M

SC

TI+charge

TI+magnon

TI+pair

PS

FIG. 1. The ground-state phase diagram consists of the metallic
phase (M), superconducting phase (SC), phase separation (PS), and
different topological insulating regions (TI). The gapless quasiparti-
cle excitation is labeled for the topological insulating regions. The
gray region of ρ = 0 (ρ = 1) denotes the particle empty (full) state.
The phase diagram is drawn in the μ-J (ρ-J) plane in the main
(inset) panel. Here we use φ = 0 for all calculations and results are
extrapolated to the thermodynamic limit.

phase separation (see Appendix B). In this work, we restrict
ourselves to the case with N↑ = N↓ and ρ ∈ (0, 1). The sys-
tem at ρ = 1, where the Hamiltonian in Eq. (1) degenerates to
a periodically modulated Heisenberg chain, which also shows
nontrivial topological properties, has been investigated in pre-
vious studies [39,50]. In this section, we focus on the bulk
state characterization with φ = 0 in all calculations, and the
topological nature of insulating states is discussed in Sec. IV.

Specifically, we display in Fig. 2 energy criteria for bulk
phases by taking the filling ρ = 1

4 as an example. The finite-
size value of the charge gap �EC and its extrapolation by a
second-order polynomial fitting is shown in Fig. 2(a). In the
thermodynamic limit, there exists a finite charge gap at small
J’s, and the gap closes for larger values of J . This indicates a
transition from the charge insulating to the conducting state.
Similarly, the finite-size extrapolation of the binding energy
�EB and the spin gap �ES is shown in Figs. 2(b) and 2(c),
respectively. By plotting these energy criteria together in
Fig. 2(d), one can clearly obtain bulk phases and transitions
at this filling. At small J’s, the system behaves as a charge
insulating state with gapless spin excitations. At intermediate
exchange interactions, the system is in the conducting state
of unpaired fermions (�EB = 0), dubbed the metallic phase.
At larger J’s, while the charge excitation remains gapless,
significant negative binding energy occurs. In this conducting
state of paired fermions, the binding energy �EB and the
spin gap �ES have the same magnitude, showing evidence
for the singlet-paired superconductivity. Compared to the
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ρ = 1/4

ΔEC

|ΔEB|
ΔES

FIG. 2. Energy criteria for metallic, superconducting, and insulating phases: (a) the charge gap, (b) binding energy, and (c) the spin gap as
functions of 1/L for different J’s, with filled symbols for results in finite systems and empty symbols for the extrapolated result in the limit
1/L → 0. (d) Extrapolated results in the thermodynamic limit as a function of J . Here we use data of L = 32, 64, 96, and 128 with OBCs,
at the filling ρ = 1

4 . (a)–(c) Share the same legend. Hereafter, error bars for extrapolated results denote the uncertainty from the least-square
polynomial fitting.

homogeneous t-J chain, the spin gap is greatly enhanced in
the modulated setting. For example, while �ES ≈ 0.32 at
J = 2.5 in Fig. 2(d), the spin gap is around 0.01 for the same
J and ρ in the standard t-J model [5].

At incommensurate fillings (p × ρ is not an integer), the
system is always in the conducting phase (before phase sepa-
ration takes place at large J’s) with gapless charge excitation.
Taking ρ = 1

8 in Fig. 3(a) as an example, there is a transition
from the metallic state to the superconducting state with sin-
glet pairs. We further display the spin gap versus density ρ in
Fig. 3(b) in the superconducting state and find that the spin
gap for the same J almost does not decay as particle density
ρ increases for ρ < 1

2 . This phenomenon is in sharp contrast
to the homogeneous case, where �ES dies off very rapidly,
as denoted by the solid gray line in Fig. 3(b). The strongly
enhanced superconductivity in this work lies in the very flat
band structure in the ground-state phase diagram (Fig. 1),
which agrees with the argument that the fermionic pairing in
flat bands would lead to more robust pairs and higher critical
temperatures [51,52]. However, at fillings ρ > 1

2 , the spin
gap becomes less and less significant and finally disappears
around ρ ≈ 11

16 . Present results for the generically modulated
t-J chain do not support superconductivity at physically rel-
evant parameters in materials (low doping and very small

0 1 2 3
J

0.0

0.5

1.0

1.5

Δ
E

ρ = 1/8

(a)

ΔEC

|ΔEB|
ΔES

0.2 0.4 0.6
ρ

0.0

0.2

0.4

0.6

0.8

Δ
E

S

(b)

J = 2.25

J = 2.5

J = 2.75

FIG. 3. (a) Energy criteria as a function of J at ρ = 1
8 . (b) Spin

gap �ES as a function of ρ for typical J’s. Extrapolated results in the
thermodynamic limit are obtained from data of L = 32, 64, 96, and
128 with OBCs. Gray solid line in (b) denotes the spin gap at J = 2.5
for the standard t-J chain with data extracted from Ref. [5].

J), which is different from what was found in coupled t-J
segments [16].

At commensurate fillings, one can observe apparent charge
gaps, but corresponding insulating states show different fea-
tures. At ρ = 1

4 , the insulating state at small J’s has gapless
spin excitation and no pair formation, as discussed above and
shown in Fig. 2. At ρ = 1

2 , the spin gap is always nonzero,
and �EB is finite only at J > 2, as shown in Fig. 4(a). The
analysis is more complicated for ρ = 3

4 in Fig. 4(b), where
two disconnected insulating states appear with a gap-closing
point around J ≈ 0.85. At this special filling with J > 0.85,
the energy criteria using OBCs and PBCs are different at
φ = 0. In contrast, different boundary conditions give the
same result in the thermodynamic limit in all other fillings.
Therefore, we adopt PBCs for the ground-state phase diagram
at ρ = 3

4 and explain the underlying physics in Sec. IV C.
Different bulk properties in these different insulating states
affect their topological nature and edge excitations, which will
be discussed in detail in the next section.

A. Density-density correlations and the Luttinger parameter

In this section, we follow the standard procedure that clar-
ifies Luttinger liquids to review bulk phases by analyzing

0 1 2 3
J

0.00

0.25

0.50

0.75

1.00

1.25

Δ
E

ρ = 1/2

(a)

0 1 2 3
J

0.0

0.1

0.2

0.3

0.4

0.5

ρ = 3/4

(b) ΔEC

|ΔEB|
ΔES

FIG. 4. Energy criteria for different typical fillings in the thermo-
dynamic limit at (a) ρ = 1

2 and (b) ρ = 3
4 . Extrapolated results in the

thermodynamic limit are obtained from data of L = 32, 64, 96, and
128 with OBCs for ρ = 1

2 , and L = 32, 48, 64, 80, 96 with PBCs for
ρ = 3

4 . Both panels share the same legend.
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J = 1.75

J = 2.0

J = 2.25

FIG. 5. Structure factor N (k) at ρ = 1
4 . The black dashed line

denotes N (k)/(k/π ) = 1. Here L = 160 and OBCs are adopted.

the density-density correlation function and the corresponding
Luttinger parameter [5,53]. The latter is confirmed to be valid
for superlattices even using correlations between individual
sites [16,54]. The Luttinger parameter can be determined by
the structure factor N (k) at small momentum k, as

Kρ = N (k)/(k/π ), k → 0 (16)

where N (k) is the structure factor of the density-density cor-
relation function. As shown in Fig. 5, we display N (k) at the
filling ρ = 1/4, where one can see metallic, superconducting,
and insulating phases for various values of J (see inset in
Fig. 1). At a small interaction J = 0.5, where the system is
in the insulating phase and the charge excitation is gapped
(see Fig. 2), N (k) shows quadratic behavior at small k. In both
gapless phases for charge excitations, N (k) has a clear linear
behavior at small momentum, and Kρ is smaller (larger) than
1 in the metallic (superconducting) phase. At the critical point
J = 2, the Luttinger parameter Kρ is close to 1. Results from
the structure factor N (k) and the Luttinger parameter agree
with the ground-state phase diagram extracted from the energy
criteria. Note that Fig. 5 shows results for a finite system with
L = 160. Although we believe that structure factor analysis
and energy criteria must give the same conclusion in the
thermodynamic limit, one should pay careful attention to the
finite-size effect.

B. Pairing correlations and the structure factor

In the ladder geometry, the t-J Hamiltonian can support su-
perconductivity with a significant spin gap, negative binding
energy, and dominant singlet-pairing correlation [8,12]. In this
section, we focus on the correlations and the relevant elemen-
tary excitations in the superconducting phase. As shown in
Fig. 6, we display correlations at ρ = 1

8 as an example. While
both pairing and density-density correlation functions exhibit
power-law decay, PS (r) decays much slower than N (r). On
the other hand, the spin-spin correlation and the single-particle

100 101

r

10−6

10−5

10−4

10−3

10−2

X
(r

)

L = 160

J = 2.25

(a)

PS(r)

N(r)

∝ r−1/Kρ

20 40 60 80
r

10−10

10−8

10−6

10−4

10−2

X
(r

)

(b)

S(r)

G(r)

FIG. 6. Correlation functions in the superconducting states at
J = 2.25 and ρ = 1

8 : (a) density-density and pairing correlation
functions in the log-log scale, and (b) spin-spin correlation function
and single-particle Green’s function in the linear-log scale. The black
dashed line in (a) depicts a power-law fit of the pairing correlation
function, with Kρ = 1.4 for this finite size. Here L = 160 and OBCs
are adopted.

Green’s function, which correspond to spin and fermion exci-
tations, both decay exponentially. This result agrees with the
occurrence of the spin gap and negative binding energy in the
superconducting state.

In the spin-gapped superconducting state, the pairing struc-
ture factor PS (k) at zero momentum was shown to diverge
in the thermodynamic limit [5]. Here, we present PS (k) in
Fig. 7(a) as a function of k in both the metallic and super-
conducting phases for comparison. In the superconducting
phase, the pairing structure factor has a sharp peak at k = 0,
and PS (k = 0) increases as the system size L increases. In
contrast, despite a broad maximum at zero momentum, PS (k)
is much smaller in the metallic phase and almost indepen-
dent of the system size. Specifically, by displaying the size
dependence of PS (k = 0) explicitly in Figs. 7(b) and 7(c), it
is clear that PS (k = 0) has a power-law growth as L increases.
However, while the number of pairs at zero momentum given
by PS (k = 0) diverges, the density of pairs PS (k = 0)/L is
infinitesimally small in the thermodynamic limit. In this sense,
we do not have true long-range superconducting order in the
periodically modulated t-J chain.

IV. INSULATING STATES AND TOPOLOGICAL NATURE

The system described by Eq. (1) has several insulating
regions at commensurate fillings, as discussed in Sec. III.
In this section, we reinvestigate these gapped phases from
the point of view of their topological nature. Before going
into details, we emphasize that the interaction plays a critical
role in the modulated t-J chain. For example, we observe
insulating states at ρ = q/p for any integer q smaller than
p, while spinful fermions in the noninteracting setting show
insulating behaviors only at even q’s, in the absence of the ex-
ternal Zeeman field. In all insulating regions, our calculations
give the nonzero topological Chern number. Furthermore, the
Chern number is different at different fillings, that is, C = 1 at
ρ = 1

4 , C = 2 at ρ = 1
2 , and C = −1 at ρ = 3

4 . Therefore, in
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FIG. 7. (a) Structure factor PS (k) of singlet-pairing correlations
as a function of momentum k in the superconducting (J = 2.25) and
metallic (J = 1.75) states at ρ = 1

8 for different L. The system-size
dependence of PS (k = 0) is shown in (b) and (c), where the blue
dashed line depicts the power-law fit. Panels (b) and (c) share the
same legend.

the following, we discuss these topological insulating states at
each different filling in individual subsections.

A. ρ = 1
4

As shown in Fig. 1, the ground-state displays charge-
insulating behavior at the density ρ = 1

4 with small exchange
J’s. In this region, particles do not form singlet pairs (�EB =
0), and the spin excitation is gapless (�ES = 0). The quasi-
particle excitation, which is gapped in bulk but gapless at the
edges, if it exists, can correspond to a single-particle spin- 1

2
fermionic mode. Along this line, we define the single-particle
fermionic excitation energy as the ground-state energy differ-
ence by adding a single fermion

δE f = E0(N↑, N↓ + 1) − E0(N↑, N↓), (17)

and the corresponding onsite charge (spin) excitation δ f 〈n̂i〉
(δ f 〈Ŝz

i 〉) can be defined as differences between these two
ground states. Here we consider adding a spin-down fermion,
and the case for adding a spin-up one is similar, owing to the
SU(2) symmetry of the system.

To characterize the bulk-edge correspondence for 1D topo-
logical insulators, we display the quasiparticle spectrum as a
function of the phase factor φ in Fig. 8(a), in which we show
four typical quasiparticle levels and nearby lower (upper) lev-
els with smaller (larger) N↓ are in the continuous band. While
there is a significant gap at φ = 0, the top level in the lower
band lifts as φ evolves and meets the upper band at φ = π . In
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φ/π
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−1.5

−1.4

−1.3

δE
f
(N

↑,
N
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L = 160
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i〉
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FIG. 8. (a) The quasiparticle (single-fermion) spectrum as a
function of the phase factor φ near the filling ρ = 1

4 . (b) The cor-
responding onsite charge and spin difference for the two adjacent
many-body ground states, at parameters labeled by the black cross
in (a). Here results are from calculations of the system with J = 0.5,
L = 160, and OBCs. All panels share the same legend.

Figs. 8(b) and 8(c), we plot the low-energy charge and spin
excitations, respectively, by taking the in-gap state at 0.7π as
an example. The well-localized charge accumulation at one
end of the chain can be observed, but the spin excitation shows
no edge-related anomaly. This strong spin-charge separation
in the bulk-edge correspondence is essentially different from
the noninteracting case, where there exists no quasiparticle
that carries one charge but no spin. In this strongly interacting
insulating region, the spin- 1

2 single fermion contributes the
energy for the band touching. However, only the excitation
of the charge degree of freedom is related to the edge mode,
and its spin degree of freedom merges into the bulk.

B. ρ = 1
2

In the noninteracting case, a spinless-fermion chain with
periodically modulated modulations described in Eq. (2) has
insulating states at commensurate fillings ρ = q/p with an
integer q < p [17,18], which results in naive charge and spin
gaps (nonzero �EC and �ES) at ρ = 2q/p for the noninter-
acting spinful fermions. In the interacting setting, the charge
and spin gaps survive at ρ = 1

2 in modulated t-J chains, as
shown in Fig. 4(a). However, the exchange interaction J fur-
ther divides this gapped phase into two regions according to
whether singlet pairs are formed in the ground state. In the
following, we demonstrate that the bulk property also affects
the topological nature of the ground state and the gapless edge
modes are different in the two regions. Consequently, there
is an interaction-driven transition in the topological aspect as
well.

The binding energy is zero at small exchange interactions
(J < 2), with no indication of pair formation. If repeating the
procedures in Sec. IV A, by considering the single fermion
as the gapless edge mode, one cannot find level crossing
in the quasiparticle spectrum as in Fig. 8(a). In the region
with both gapped charge and spin excitations, it is useful
to examine the neutral excitation to the first excited state
to determine which one is the minimum. In Fig. 9(a), we
compare the spin-flip energy and the neutral excitation en-
ergy δE (1)

ne = E1 − E0, and find the surprisingly exact match
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FIG. 9. (a) The spin gap �ES and the neutral excitation energy
δE (1)

ne as a function of φ at the filling ρ = 1
2 . The corresponding low-

energy (b) charge and (c) spin excitations in real space, at parameters
labeled by the black cross in (a). Here results are from calculations
of the system with J = 1.0, L = 64, and OBCs. All panels share the
same legend.

between them for all values of the phase factor φ ∈ [0, 2π ].
At φ = 0, both excitations are gapped, and the two gaps close
around φ = π . In Fig. 9, we further display the low-energy
charge (spin) excitations in real space, which can be defined
as the difference of the corresponding observable between two
many-body states. The low-energy charge excitation shows no
anomaly for both the spin-flip and the neutral excitations, as
shown in Fig. 9(b). In contrast, in Fig. 9(c), one can observe
clear spin accumulations at one end of the chain when flipping
a spin. Spin accumulation occurs at both ends of the chain for
the neutral excitation to keep the total spin in the z direction as
0. Moreover, at one end of the chain, where the spin accumu-
lation is observed for the spin flipping, the spin distribution
shows great agreement with the neutral excitations. These
results confirm the gapless edge modes related to the magnon
excitation, which carries integer spin without charge degree of
freedom.

When the interaction J is above a critical Jc ≈ 2, a negative
binding energy occurs, and fermions tend to form singlet
pairs. Intuitively, it is interesting to consider the possibility of
another kind of bosonic edge mode attributed to singlet pairs.
We define the pairing excitation energy

δEp = E0(N↑ + 1, N↓ + 1) − E0(N↑, N↓), (18)

and present the corresponding quasiparticle spectrum for a
typical J = 2.5 in Fig. 10(a). The quasiparticle spectrum has a
considerable gap at φ = 0, and the top level of the lower band
rises as φ increases and meets the upper band around φ ≈
π . Following similar procedures, we display the low-energy
charge and spin excitations of the in-gap state at φ = 0.6π in
Figs. 10(b) and 10(c), respectively. As expected, charge accu-
mulations occur at one end of the chain, and there is no spin
anomaly in real space. We further compare the low-energy
charge excitation for the singlet-pair and neutral excitations
in the main panel of Fig. 11. It is impossible to see the exact
match between the two curves at the finite system size since
they correspond to excitations with different particle numbers.
However, charge accumulations at the end of the chain display
remarkable agreement between the two kinds of low-energy

0.0 0.5 1.0 1.5 2.0
φ/π

−4.4

−4.2

−4.0

−3.8

−3.6

−3.4

−3.2

−3.0

δE
p
(N

↑,
N

↓)

L = 160

J = 2.5

(a)

N↑ = 38, N↓ = 38

N↑ = 39, N↓ = 39

N↑ = 40, N↓ = 40

0.0

0.5

1.0

δ p
〈n̂

i〉

(b)

0 40 80 120 160
Site i

−0.5

0.0

0.5

δ p
〈Ŝ
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FIG. 10. (a) The quasiparticle (singlet-pair) spectrum as a
function of the phase factor φ near the filling ρ = 1

2 . (b) The cor-
responding onsite charge and spin difference for the two adjacent
many-body ground states, at parameters labeled by the black cross
in (a). Here results are from calculations of the system with J = 2.5,
L = 160, and OBCs. All panels share the same legend.

excitations, and the total charge deviation within the peak
(roughly six sites) is about 2. Considering that there is no
anomaly in the spin channel, one can conclude that singlet
pairs contribute to the gapless edge mode in this region.

C. ρ = 3
4

There are two insulating regions at ρ = 3
4 separated by a

gap-closing point around Jc ≈ 0.85, as shown in the ground-
state phase diagram in Fig. 1 and Fig. 4(b). The spin gap and
the binding energy are zero in both regions, which rules out
the magnon and singlet pairs as gapless edge modes. When J
is smaller than the gap-closing point, the bulk-edge correspon-
dence is similar to the case at ρ = 1

4 as described in Sec. IV A.
Therefore, we skip the repeated description and move to the
case for larger exchange interactions in the following.

Since the two insulating regions share similar properties in
bulk, we again assume the single fermion as the elementary

0 40 80 120 160
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0.0
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0.4

0.6

0.8

1.0
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δp〈ni〉, N↑ = 39, N↓ = 39

δne〈ni〉, N↑ = 39, N↓ = 39

FIG. 11. The low-energy charge (main panel) and spin (inset)
excitations in real space, at parameters labeled by the black cross
in Fig. 10(a). Here results are from calculations of the system with
J = 2.5, L = 160, and OBCs.
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FIG. 12. (a) The quasiparticle (single-fermion) spectrum as a
function of the phase factor φ near the filling ρ = 3

4 , the inset
displays the finite-size extrapolation (L = 64, 96, 128, 160, 240) of
δEf (N↑, N↓) at φ = 0. (b) The corresponding onsite charge and
spin difference for the two adjacent many-body ground states, at
parameters labeled by the black cross in (a). Here results are from
calculations of the system with J = 1.5 and OBCs. All panels share
the same legend.

edge mode for J > 0.85. Although the quasiparticle spectrum
in Fig. 12(a) gives a very different first impression, the overall
bulk-edge correspondence is substantially the same as what is
shown in Fig. 8 by shifting the phase factor by π . However,
there is a small remnant gap at φ = 0, which is supposed to be
the band-touching point. We attribute this bad connection to a
finite-size effect, by displaying the finite-size extrapolation in
the inset of Fig. 12(a), in which the remnant gap eventually
closes as the system approaches the thermodynamic limit.
Therefore, we believe the quasiparticle corresponding to the
gapless edge mode is the same in both insulating regions at
ρ = 3

4 and is the same as the case of ρ = 1
4 .

There is a remaining issue at this filling: Why is there a
π -phase shift in the quasiparticle spectrum across the gap-
closing point between bulk insulating states, while these two
regions have the same Chern number and same edge modes?
To answer this question, we turn to the local energy bonds
of the ground state, which have been demonstrated to be
able to detect topological phase transitions in various models
possessing symmetry-protected topological phases or long-
range topological orders [55]. For the periodically modulated
system with period p = 4, we examine the effective hopping
〈ĉ†

i,↑ĉi+1,↑〉 on four different bonds in one unit cell in the
middle of the chain. As displayed in Fig. 13(a), the effec-
tive hopping bonds as a function of J already show signals
of a transition at J ≈ 0.85, which agrees with the position
the charge gap closes [see Fig. 4(b)]. We further explicitly
compare 〈ĉ†

i,↑ĉi+1,↑〉 with the magnitude of the input hopping
|ti| and the effective hopping bonds of the noninteracting
fermions. For the spinless fermions with the same modula-
tion in the noninteracting setting, the effective hopping must
follow the wave pattern of the input hopping parameters, as
verified by the data in Figs. 13(b) and 13(c). In the presence
of interactions, the profile of 〈ĉ†

i,↑ĉi+1,↑〉 also agrees with the
input ti in most cases, as shown in Fig. 13(d) for J = 0.5
and ρ = 3

4 as an example. However, for J’s above the critical
point, the wave pattern is shifted by a phase of π , as shown
in Fig. 13(e). This π -phase shift of the effective hopping
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↑ĉ

i+
1,
↑〉

L = 96, x0 = L/2(a)

i = x0 + 1

i = x0 + 2

i = x0 + 3

i = x0 + 4

0.75

1.00

1.25

|t i
| (b)

0.1

0.2

0.3
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FIG. 13. (a) The effective hopping 〈ĉ†
i,↑ĉi+1,↑〉 on four adjacent

bonds as a function of exchange interaction J at ρ = 3
4 . The input

hopping (b), the effective hopping at J = 0.5 (d) and J = 1.5 (e) on
same adjacent bonds. (c) The effective hopping of the noninteracting
spinless fermion chain with the same modulation. In all panels we
have φ = 0, L = 96, and PBCs.

accompanied by the bulk-state gap closing directly leads to
a π -phase shift in the quasiparticle spectrum.

V. SUMMARY AND DISCUSSION

We systematically investigate the ground-state properties
of the extended t-J model with modulated hopping and
interaction. The system has a rich ground-state phase dia-
gram consisting of metallic and superconducting states, phase
separation, and different insulating states with nontrivial topo-
logical nature. The superconducting state is characterized by
the significant singlet spin gap and negative binding energy,
the dominant pairing correlation decay, and the divergent
pairing structure factor at zero momentum. The spin gap and
the magnitude of binding energy are dramatically enlarged
in the superconducting phase, which can be attributed to the
flat-band structure of the superlattice. This enhancement of
the superconductivity, which was first proposed in coupled
t-J segments [16], has been confirmed in a more general
superlattice geometry. However, here in this work, the su-
perconducting region in the ρ-J plane is not significantly
expanded compared to the homogeneous t-J chain [5] and is
still far from J ≈ 1

3 believed to be relevant to actual materials.
The interplay among the periodic modulation, the inter-

action, and the 1D confinement leads to various topological
edge modes that manifest an extreme spin-charge separation
nature. At ρ = 1

4 and 3
4 , while the spin- 1

2 fermion contributes
the energy of the gapless edge mode, only the charge degree
of freedom manifests the localized excitation at the end; the
spin excitation in this case completely merges in bulk. At
ρ = 1

2 , we demonstrate two bosonic edges modes (related
to the magnon and the singlet pair) and the corresponding
interaction-driven transition between them. There is also a
topological transition at ρ = 3

4 accompanied by the π -phase
shift of the effective hopping wave pattern in bulk.

Our investigation has shown physics in the 1D t-J model
in the presence of off-diagonal modulations, with the fixed
unit-cell size and modulation magnitude. Moreover, there are
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still plenty of interesting issues to be explored in the modu-
lated spinful fermionic chains. For example, is it possible to
find the gapless magnon modes at the edges in the enhanced
superconducting state with the significant spin gap? We do
not find this new kind of topological superconductivity in this
work with the current setting and parameters, but we cannot
rule out this possibility. On the other hand, we expect the
rich physics in the modulated fermionic system can stimulate
experimental studies in the platform of cold atoms [38] or
quantum computing devices [56].
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APPENDIX A: CORRELATIONS BETWEEN SITES
AND UNIT CELLS

In the main paper, we compute the correlation function
Xi j between sites {i, j}. Although it is demonstrated that the
correlation function defined between unit cells gives the same
Luttinger parameter [16,54], in this section, we explicitly
compare these two forms of correlations. The correlation
function between unit cells can be easily extracted from which
between sites as

X̃α,β =
∑

i∈α, j∈β

Xi j, (A1)

where α and β are indices of unit cells. Similar to Eqs. (7)
and (8), we define the correlation decay

X̃ (R) = 1

Ñ
∑

|α−β|=r̃

X̃αβ, (A2)

and the structure factor

X̃ (k) = 1

L̃

L̃∑
α,β=1

eik̃(α−β )X̃αβ. (A3)

Here L̃ = L/p is the number of unit cells, and r̃ (k̃) is the
distance in the real (momentum) space based on the unit cell.
By the straightforward mapping r̃ p → r and k̃/p → k, we
can directly compare the correlation and the corresponding
structure factor based on sites and unit cells. In Fig. 14,
we present typical numerical results for the density-density
and pairing correlation function, as well as corresponding
structure factors. After rescaling, curves extracted from corre-
lations between sites and unit cells show very close behaviors.
Differences in local details can be attributed to the fact that the
correlation based on unit cells neglects terms within the same
unit cell.
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Ñ(pr̃)/p2

0.00

0.05

0.10

0.15

0.20

(b)

N(k)
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FIG. 14. Direct comparison between correlations based on sites
and unit cells. (a), (c) The real-space decay of the density-density
correlation function and the pairing correlation function. (b), (d) Cor-
responding structure factors. Here we use data for J = 2.25 and
L = 128 at ρ = 1

8 with OBCs.

APPENDIX B: PHASE SEPARATION

For the t-J model, large exchange interaction J leads to the
unstable phase separation [5], which can be detected by the
inverse compressibility

κ−1(ρ) = ρ2 ∂2e0(ρ)

∂ρ2

≈ ρ2 e0(ρ + �ρ) + e0(ρ − �ρ) − 2e0(ρ)

�ρ2
, (B1)

where e0(ρ) = E0/L is the ground-state energy per site. In
this work, we do not perform extra calculations for the phase-
separation state since it is not our main focus. Instead, we
adopt a special �ρ = 2/L and therefore extract κ−1 from the
charge gap �EC as

κ−1(N/L) ≈ N2

2L
�EC (L, N ). (B2)
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FIG. 15. (a) The inverse compressibility κ−1 as a function of J at
ρ = 1

4 for different system size L. (b) The charge distribution in the
conducting state (J = 2.5) and the phase separation (J = 3.0) with
L = 64. Here OBCs are adopted.
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The estimated κ−1 from Eq. (B2) is displayed in Fig. 15(a), for
ρ = 1

4 as an example. For small J’s, The inverse compress-
ibility increases as the system size increases, which ensures
the system is away from phase separation with positive κ−1.
Roughly at J � 2.75, the inverse compressibility shows less
system size dependency and approaches 0. This estimated
critical point can be verified by the density profile shown in

Fig. 15(b). For an exchange interaction slightly larger than
the critical point, the system separates into particle-rich and
hole-rich regions in real space, and the density distribution
loses mirror symmetry because of massive degeneracy. By
taking the estimation in Eq. (B2) at different densities, we
obtain the phase boundary in the ground-state phase diagram
in Fig. 1 in the main paper.
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