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Functional tensor network solving many-body Schrödinger equation
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Solving the many-body Schrödinger equation in continuous spaces with the presence of strong correlations is
an extremely important and challenging issue in quantum physics. In this work, we propose the functional tensor
network (FTN) approach to solve the many-body Schrödinger equation. Provided the orthonormal functional
bases, we represent the coefficients of the many-body wave function as a tensor network. The observables,
such as energy, can be calculated simply by tensor contractions. Simulating the ground state becomes solving a
minimization problem defined by the tensor network. An efficient gradient-decent algorithm based on automat-
ically differentiable tensors is proposed. We here take the matrix product state (MPS), whose complexity scales
only linearly with the system size, as an example. We apply our approach to solve the ground state of coupled
harmonic oscillators and achieve high accuracy by comparing our results with the exact solutions. Reliable results
are also given in the presence of three-body interactions, where the system cannot be decoupled from isolated
oscillators. Our approach is simple and, with well-controlled error, essentially different from highly nonlinear
neural-network solvers. Our work extends the applications of the tensor network from quantum lattice models
to systems in continuous space. The FTN can be used as a general solver of the differential equations with
many variables. The MPS exemplified here can be generalized to, e.g., fermionic tensor networks to solve the
electronic Schrödinger equation.

DOI: 10.1103/PhysRevB.105.165116

I. INTRODUCTION

Solving differential equations belongs to the most funda-
mental but challenging tasks in mathematics, physics, etc. In
general, the situations where we have exact solutions are ex-
tremely rare; thus, various analytical and numerical methods
have been developed using simplifications or approximations
to different extents.

Let us concentrate on quantum physics, where the
Schrödinger equation plays a fundamental role. Different ap-
proximative treatments of this equation have evolved into
different subfields. For instance, density functional theo-
ries and so-called ab initio calculations (see, e.g., [1,2])
successfully predict the properties of countless quantum mat-
ters ranging from molecules to solids under the assumption
of weak correlations. Recently, the hybridization with ma-
chine learning has triggered a new upsurge in studying the
Schrödinger equation, including simulations of ground states
by better considering correlations [3–7] and inversely pre-
dicting the potentials knowing the wave functions or relevant
physical information [8–11].

Towards strongly correlated cases, an important direction
is simplifying to quantum lattice models, such as Heisen-
berg or Hubbard models on discretized lattices. Among the
successful algorithms, remarkable progress has been made
based on tensor networks (TNs) [12–16]. As two important
examples, we have the density matrix renormalization group
(DMRG) for simulating the ground states of one- and quasi-
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one-dimensional systems [17–21] and projected-entangled
pair states for the higher-dimensional ones [22,23].

The success of TNs lies in their high efficiency of rep-
resenting quantum many-body states as well as powerful
algorithms to deal with the TN calculations. On the cost of
obeying the area law of entanglement entropy [22,24,25], TNs
reduce the exponential complexity of representing a many-
body state to a polynomial. Accurate results are obtained by
TNs, thanks to the fact that for most models we are interested
in, such as those with local interactions in one dimension [26],
the area law holds. A TN was also proposed to solve the
Schrödinger equation with discretized grid approximations
[27–31]. However, beyond quantum lattices or grids, TNs
for those with continuous variables are mainly concentrated
on quantum fields [32–37]. The systematic use of TNs for
solving differential equations with many continuous variables
has barely been explored.

In this work, a TN is proposed to solve the many-body
Schrödinger equation in continuous space. Given the or-
thonormal functional bases, the coefficients of the quantum
wave function are represented in the form of a TN. Defining
the loss function L as the energy, the automatic differentia-
tion technique [38] is utilized to achieve the TN representing
the ground state. We dub this approach the functional TN.
Taking the matrix product state (MPS), which is a special
one-dimensional TN [12], as an example, our approach is
illustrated in Fig. 1. The loss function is calculated as the
inner product of two MPSs. One MPS is the summation
of many MPSs representing the wave function acted on by
the corresponding operators, and the other is the MPS rep-
resenting the wave function itself. The tensors forming the
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FIG. 1. An illustration of the functional MPS approach. By rep-
resenting the trial wave function in MPS, the loss function L becomes
the inner product of two MPSs. One MPS is the summation of several
MPSs, each of which results from the trial wave function acted upon
by an operator. The inset illustrates the gradient descent [Eq. (29)] to
update the tensors in the trial MPS.

MPS are automatically differentiable and are updated by the
gradient-descent algorithm. The gradients are obtained in the
back-propagation process [38], similar to optimizations of
neural networks.

We test our approach on coupled harmonic oscillators with
two- and three-body interactions [see Eq. (27)]. The model
cannot be decoupled to isolated oscillators in the presence of
three-body terms. With only the two-body interactions, high
accuracy is demonstrated by comparing the achieved ground-
state energy to the exact one. The error is well controlled
by the entanglement of the MPS. The ground-state energy
and entanglement entropy with the three-body terms are also
demonstrated. Compared with solvers of differential equa-
tions based on neural networks [39–43] that are, in general,
highly nonlinear, our functional TN solver does not require
sampling or training data and thus does not belong to the
“data-driven” solvers. The optimizations of TN are imple-
mented simply by tensor contractions. Our work sheds light
on using a TN as an efficient solver of general many-variable
differential equations in and beyond quantum physics.

II. PRELIMINARIES AND NOTATIONS

A. Basis and expansion

With a set of orthonormal functional bases {φs(x)} satis-
fying

∫ ∞
−∞ φ∗

s′ (x)φs(x)dx = δs′s, a given function ψ (x) can be
expanded as

ψ (x) =
D−1∑
s=0

Csφs(x), (1)

where Cs denotes the expansion coefficients and D is the
expansion order. Here, we assume ψ (x) is smooth.

Considering ψ (x) as the wave function of a quantum
system, it should satisfy the normalization condition as∫ ∞
−∞ ψ∗(x)ψ (x)dx = 1. Thanks to the orthonormal condition

of the basis, the normalization condition can be represented

by the L2 norm of the coefficients as

|C| =
√∑

s

|Cs|2 = 1. (2)

Note we use a bold letter, such as C, to denote a vector, matrix,
or tensor and use the same letter with subscripts to denote its
elements, such as the sth element Cs.

B. Operations

Consider an operator, denoted Ô, that satisfies the linear
condition in the functional space as

Ôψ (x) = Ô
∑

s

Csφs(x) =
∑

s

CsÔ[φs(x)]. (3)

Assume for each basis function φs(x) that Ô satisfies

Ô[φs(x)] =
D−1∑
s′=0

Os′sφs′ (x). (4)

Apparently, the expansion coefficients of the function ψ̃ (x) =
Ô[ψ (x)] = ∑

s C̃sφs(x) satisfy

C̃s′ =
∑

s

Os′sCs. (5)

In general, Os′s can be numerically evaluated as

Os′s =
∫ ∞

−∞
φ∗

s′ (x)Ô[φs(x)]dx. (6)

In some special cases, the matrix Os′s given the basis
{φs(x)} can be solved analytically. As an example, let us take
φs(x) as the sth eigenstate of the quantum harmonic oscillator
with the Hamiltonian

ĤHO = −1

2

d2

dx2
+ x2

2
. (7)

We take the Plank constant h̄ = 1 for simplicity. We have

φs(x) =
(

1

2ss!
√

π

) 1
2

e− x2

2 hs(x), (8)

with hs(x) being the Hermitian polynomial. We dub Eq. (8)
the single-oscillator basis (SOB). Obviously, {φs(x)} satisfy
the orthonormal conditions.

We now consider the operation D̂ = d
dx . With Ds′s =∫ ∞

−∞ φ∗
s′ (x)D̂[φs(x)]dx [Eq. (6)], we have

Ds′s =
{√ s

2 , s′ = s − 1,

−
√

s+1
2 , s′ = s + 1.

(9)

The dimensions of the matrix D should be infinite (i.e., D →
∞) to exactly represent the differential operator. In practice,
one may use a proper approximation by taking a finite D. For
the k-order differentiation, we have∫ ∞

−∞
φ∗

s′ (x)D̂k[φs(x)]dx = [Dk]s′s, (10)
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with Dk being the kth power of the matrix D. Another example
is the operation X̂ = x. Similarly, we have

Xs′s =
{√ s

2 , s′ = s − 1,√
s+1

2 , s′ = s + 1.
(11)

C. Solving a differential equation by optimization

Consider a differential equation formed by P terms. We can
formally write it as

P∑
p=1

Ô[p][ψ (x)] = 0. (12)

Let us take the static Schrödinger equation as an example; we
have

Ô[1] = − 1
2

d2

dx2 ,

Ô[2] = V (x),
Ô[3] = −E .

(13)

The first two terms (kinetic and potential terms, respectively)
correspond to the Hamiltonian Ĥ = Ô[1] + Ô[2], and the third
corresponds to the (negative) energy.

To solve the static Schrödinger equation, we regard the
coefficients Cs in ψ (x) = ∑

s Csφs(x) as the variational pa-
rameters. Now we consider the calculation of the ground state,
i.e., the eigenfunction with the lowest eigenvalue (energy)
of the given Hamiltonian. With the normalization constraint
of the wave function given in Eq. (2), the energy (quantum
average of Ĥ ) satisfies

E = 〈Ĥ〉 =
∫ ∞

−∞
ψ∗(x)Ĥψ (x)dx =

∑
s′s

C∗
s Hss′Cs′ , (14)

where Hss′ can be calculated using Eq. (6). We define the loss
function

L = E

|C|2 . (15)

We introduce the division over |C|2 so that we do not need
to consider the normalization of ψ (x) in the optimization
process. Then C is iteratively updated using gradient descent
as

C ← C − η
∂L

∂C
, (16)

with η being the learning rate or gradient step.
Beyond the static Schrödinger equation, we can use gradi-

ent descent to solve the differential equation given in Eq. (12).
In a given set of functional bases, the differential equation can
be written as ∑

ps′s

O[p]
s′s Csφs′ (x) = 0. (17)

Since {φs(x)} is a set of orthonormal bases, we have∑
ps

O[p]
s′s Cs = 0 ∀s′. (18)

We introduce the vector Z with its s′th element
Zs′ = ∑

ps O[p]
s′s Cs. With |Z|2 = 0, ψ∗(x) is the solution

FIG. 2. (a) A graph of an MPS [Eq. (21)] with its physical and
virtual bonds. The virtual bonds at the two ends are one-dimensional
and thus are ignored in the graph. In (b) and (c), we illustrate the
actions of one- and two-body operators on the MPS. In (d) we
illustrate the average of a one-body operator 〈Ô〉.

of the differential equation. Therefore, we define the loss
function as

L = |Z|2. (19)

The coefficients can be updated using Eq. (16).

III. FUNCTIONAL MATRIX PRODUCT STATE

A. Matrix product state representation for the coefficients
of a multivariable function

Given N sets of orthonormal bases {φsn (xn)}, a function
with N independent variables x = (x1, . . . , xN ) can be ex-
panded as

ψ (x) =
D−1∑

s1···sN =0

Cs1···sN φs1 (x1) · · · φsN (xN ). (20)

Obviously, the complexity of the coefficient tensor C scales
exponentially with the number of variables N as O(DN ).

One key of our proposal is using the TN to represent the
coefficients. As illustrated in Fig. 2(a), we take MPSs as an
example and have

Cs1···sN =
χ−1∑

α0···αN =0

A(1)
α0s1α1

A(2)
α1s2α2

· · · A(N )
αN−1sN αN

, (21)

with {αn} being the virtual bonds. We take the MPS to have
open boundary conditions in the whole paper, with dim(α0) =
dim(αN ) = 1. The upper bound of dim(αn) (n = 1, . . . , N −
1) is called the virtual bond dimension of the MPS, denoted
by χ . The indexes {sn} are called the physical bonds, and the
dimension is called the physical bond dimension. In our cases,
we have dim(sn) = D, i.e., the expansion order. The number
of parameters in the MPS (i.e., the total number of elements
in the tensors {A(n)} for n = 1, . . . , N) scales only linearly
with N as O(NDχ2), while that of C scales exponentially as
O(DN ).

Akin to the one-variable cases, the norm of ψ (x) equals the
norm of the coefficient tensor (or MPS), i.e.,∫ ∞

−∞
ψ∗(x)ψ (x)dx =

∑
s1,...,sN

C∗
s1,...,sN

Cs1,...,sN = |C|2, (22)
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with dx = ∏N
n=1 dxn. Note that when the tensors in the MPS

{A(n)} are given, |C|2 can be obtained without calculating C.
Therefore, the exponential complexity is avoided. Notably, the
proposed method and discussion in this work can be readily
extended generally to other TNs.

B. Operations and quantum average

Consider an operation Ô(m) on xm. According to the linear-
ity and the independence of the variables, we have

ψ̃ (x) = Ô(m)[ψ (x)]

=
D−1∑

s1···sN =0

Cs1,...,sN [
∏
n �=m

φsn (xn)]Ô(m)[φsm (xm)]. (23)

We denote the tensors in the MPS representing ψ̃ (x) as {Ã(n)}.
Given the tensors {A(n)} in the MPS representation of ψ (x),
we have A(n) = Ã(n) for n �= m. For n = m, we have

Ã(m)
αsα′ =

∑
s′

O(m)
ss′ A(m)

αs′α′ , (24)

where O(m)
ss′ satisfies Eq. (6). See Fig. 2(b) for an illustration.

Similarly, the MPS obtained by acting on multiple oper-
ators can be derived. Take two operators, Ô(m1 ) and Ô(m2 ),
as an example. The tensors {Ã(n)} in the MPS representing
ψ̃ (x) = Ô(m2 )Ô(m1 )ψ (x) satisfy Ã(n) = A(n) for n �= m1 and
n �= m2, and Ã(n)

αsα′ = ∑
s′ O(n)

ss′ A(n)
αs′α′ for n = m1 or n = m2.

Consider an operator acting on multiple variables, such
as Ô(m1,m2 ) acting on xm1 and xm2 . We assume that Ô(m1,m2 )

cannot be decomposed to the product of two single-variable
operators, i.e., Ô(m1 )Ô(m2 ). Then as an extension of Eq. (6),
we introduce a fourth-order tensor O(m1,m2 ), whose elements
satisfy

O(m1,m2 )
n′

1n′
2n1n2

=
∫ ∞

−∞
φ∗

n′
1
(xm1 )φ∗

n′
2
(xm2 )

× Ô(m1,m2 )[φn1 (xm1 )φn2 (xm2 )]dxm1 dxm2 . (25)

The calculation of the MPS representing ψ̃ (x) =
Ô(m1,m2 )[ψ (x)] is illustrated in Fig. 2(c). The actions of
multivariable operators can be similarly defined.

Consider the quantum average of the operator Ô(m) as

〈Ô〉 =
∫ ∞

−∞
ψ∗(x)Ô(m)[ψ (x)]dx. (26)

As illustrated in Fig. 2(d), 〈Ô〉 is calculated in the same way
as calculating the average of a single-site operator with a
standard MPS, similar to Eq. (14). The same arguments can
be made for the quantum average of multivariable operators.

C. Solving coupled harmonic oscillators

We consider the following N coupled harmonic oscillators
in one dimension as an example, where the Hamiltonian reads

ĤHO = 1

2

N∑
n=1

(
− ∂2

∂x2
n

+ ω2
nx2

n

)
+ γ

N−1∑
m=1

xmxm+1

+γ̃

N−2∑
m=1

xmxm+1xm+2, (27)

where ωn gives the natural frequency of the nth oscillator
and γ and γ̃ are the two- and three-body coupling constants,
respectively.

We choose the bases {φsn (xn)} as the SOB [Eq. (8)], con-
sidering that the matrices of the required operators, namely,
D̂ and X̂ , can be analytically obtained [Eqs. (9) and (11)]. We
suppose the ground state ψ (x) we aim to obtain is written in
the MPS formed by the tensors {A(n)}. For the kinetic terms,
we define ψ̃K(m)(x) = − 1

2
∂2

∂x2
m
ψ (x). According to Sec. III B,

the tensors of the MPS representing ψ̃K(m) can be obtained,
where the mth tensor should be changed to

Ã(m)
αsα′ = −1

2

∑
s′s′′

Dss′Ds′s′′A(m)
αs′′α′ , (28)

with D being the coefficient matrix of the differential operator
D̂ in the SOB [Eq. (9)]. Note the coefficients of operators
depend on only the choice of the basis [Eq. (6)], instead of the
number of variables or the form representing the coefficients
of the wave functions.

For the potential terms, we define ψ̃P(m)(x) = 1
2ω2

nx2
mψ (x).

Similarly, the MPS representation of ψ̃P(m)(x) can be ob-
tained from {A(n)} and X by using Eq. (11). For the coupling
terms, we define ψ̃C(m,m+1)(x) = γ xmxm+1ψ (x). The mth and
(m + 1)th tensors should be calculated following Eq. (24).
The MPSs corresponding to the three-body interactions can
be similarly defined.

In all, we have (4N − 3) MPSs, in which N MPSs are
from the kinetic terms, N are from the frequency terms,
and (2N − 3) are from the coupling terms. The summation
of these MPSs results in the MPS that represents ψ̃H(x) :=
Ĥψ (x). Two MPSs with the same physical bond dimension
can be added, which results in an MPS with the same physical
bond dimension. Therefore, we can obtain ψ̃H(x) as an MPS.
Denoting the virtual bond dimensions of two added MPSs
as χ1 and χ2, respectively, the virtual bond dimension of the
resulting MPS satisfies χ � χ1 + χ2. The virtual bond dimen-
sion (denoted as χH) of ψ̃H(x) satisfies χH � (4N − 3)χ , with
χ being the virtual bond dimension of ψ (x). Since the MPSs
in the additions have many shared tensors, we, in fact, have
χH � (4N − 3)χ . See Appendix B for more details.

To obtain the ground state, we choose the energy in
Eq. (15) as the loss function L. With a trial MPS (where
the tensors can be initialized randomly), L can be calculated
with polynomial complexity, avoiding the exponentially large
full coefficient tensor. For instance, the energy [Eq. (14)] is
obtained by the inner product of the MPSs ψ (x) and ψ̃H(x).
The illustration of the inner product is similar to Fig. 2(d).
The complexity of calculating the inner product of two MPSs
generally scales as O[NDχχH (χ + χH )]. See Appendix C for
more details.

After calculating the loss L, the tensors in the MPS repre-
senting the wave function ψ (x) can be updated by the gradient
descent as

A(n) ← A(n) − η
∂L

∂A(n)
, (29)

where the gradients ∂L
∂A(n) can be obtained by the automatic

differentiation technique of the TN [38]. In practice, we obtain
the gradients for all tensors and update them simultaneously in
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FIG. 3. (a) The error of the ground-state energy ε [Eq. (30)] ver-
sus the expansion order D for the coupled harmonic oscillators with
γ = −0.5 and γ̃ = 0 [Eq. 27]. We vary the number of oscillators
from N = 4 to 16 and fix the virtual bond dimension of the MPS
to χ = 16. The results obtained by optimizing the full coefficient
tensors are shown by the solid symbols with dashed lines. In (b) we
give the entanglement entropy S [Eq. (32)] versus D for N = 16. The
inset shows the entanglement spectrum (Schmidt numbers) measured
in the middle of the MPS for D = 16.

a back-propagation process. We choose the Adam optimizer
[44] to control the learning rate η. After sufficiently many
iterations of updates, L converges to the ground-state energy,
and ψ (x) converges to the ground state. Compared with the
solvers of differential equations based on neural networks that
are highly nonlinear [39–43], one advantage of our functional
MPS (and general TN) solver is that sampling is not required.
The optimization is implemented simply by tensor contrac-
tions.

IV. NUMERICAL RESULTS

Taking γ = 0.5 and N = 4, 6, . . . , 20 as examples, the
Hamiltonian in Eq. (27) can be exactly solved by decoupling
to isolated oscillators. Note that we fix ωn = 1 in our simu-
lations. Figure 3 demonstrates the error of the ground-state
energy

ε = |E − Eexact|, (30)

where Eexact is the exact solution satisfying [45]

Eexact = 1

2

N∑
n=1

√
1 + 2γ cos

( nπ

N + 1

)
. (31)

The open symbols with solid lines show the results of the
function MPS method with bond dimensions χ = 16. For
comparison, the solid symbols with dashed lines show the re-
sults of directly treating the coefficients as a DN -dimensional
tensor (as explained in Sec. II C). For about N < 8, the dif-
ferences between the results for the MPS and for the tensor
are small. This indicates that the errors are mainly from the
finiteness of the expansion order D (the physical bond dimen-
sion of the MPS). The error decreases with increasing D and
approximately converges for about D > 12. For the relatively
large D, the errors from using the MPS are lower than those
for the tensor due to the finiteness of χ in the MPS (i.e.,
truncation error). The differences are still slight [∼(O−5) or
less].

Another critical advantage of our approach over the neural-
network solvers is the interpretability. Below, we consider
the entanglement of MPS. Thanks to the orthonormal prop-
erty of the functional bases, the entanglement of the MPS
representing the coefficients of the wave function shares the
same quantum probabilistic interpretation of the MPS repre-
senting the quantum states of lattice models. In specific, it
characterizes the “quantum version” of correlations between
two subsystems. By “subsystem” in our examples, we mean a
subset of oscillators.

In addition to characterizing the quantum correlations
among oscillators, entanglement also characterizes the trun-
cation error of MPSs induced by the finiteness of χ . The
entanglement entropy is defined as

S = −2
χ−1∑
k=0

λ2
k ln λk, (32)

with λk being the kth number in the entanglement spectrum
or the kth Schmidt number. The upper bound of S for an
MPS with virtual bond dimension χ satisfies S ∼ ln χ . Con-
sidering an extreme case with S = 0, there will be only one
nonzero Schmidt number. The state will be a product state
ψ (x) = ∏

n[
∑

sn
C(n)

sn
φsn (xn)], and the coefficient tensor will

be a rank-1 tensor satisfying C = ∏
⊗ C(n). For S > 0, the

truncation error in general has the same or a smaller order
of magnitude as the smallest Schmidt number. Obviously, we
always have S > 0 for the electronic wave functions in order
to respect the anticommutation relations. We leave electronic
systems to a future study.

Figure 3(b) shows the entanglement entropy S against D,
where we measure S in the middle of the MPS. In other
words, S gives the entanglement entropy between the first N/2
oscillators and the rest (we take N to be even, without losing
generality). As D increases, S converges to about 0.36, indi-
cating that the ground state is not highly entangled. The inset
shows the entanglement spectrum for D = 16. The smallest
number in the spectrum is about O(10−5), which is consistent
with the error ε.

To further control the truncation error, Fig. 4 shows that
the error of energy ε converges to O(10−5) for χ � 16 (with
D = 8). When N increases, ε will generally increase slightly,
with χ remaining the same. The inset shows the entanglement
entropy S increases with χ , meaning more entanglement will
be captured (more product states are contained in the overlap)
with larger χ . S converges to about S � 0.36 for χ � 16.
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FIG. 4. The error of the ground-state energy ε [Eq. (30)] and
entanglement entropy S [inset; see Eq. (32)] versus the virtual bond
dimension χ . We take D = 8, γ = −0.5, and γ̃ = 0.

With different coupling strengths, there is not always a
“physical” solution. Assuming γ is a real number, the Hamil-
tonian is Hermitian, and the energy (an eigenvalue) should be
real. From the analytical solution given by Eq. (31), a real
solution exists for |γ | < γc, with

γc = 1

2
sec

π

N + 1
. (33)

However, the MPS still gives a converged energy even when a
real ground-state energy does not exist. As shown in Fig. 5, the
obtained energy matches accurately the exact value when the
real energy exists. To numerically identify the region with no
physical solution, we calculate the loss L defined in Eq. (19),
which characterizes the violation of the Schrödinger equation.
In the inset of Fig. 5, we show that L identifies the regions
with or without a physical solution, where we have L � 0 for
|γ | > γc.

FIG. 5. The ground-state energy obtained with our method E
and with the exact solution Eexact with N = 16. For |γ | > γc =
1
2 sec π

17 � 0.509, there is no real solution for the ground-state en-
ergy. The inset shows that this region can be identified by the loss
L defined in Eq. (19), where we have L � 0 for |γ | < γc. We take
N = 16 and D = 16.

FIG. 6. (a) The ground-state energy E obtained with our function
MPS method versus the strength of the three-body interactions γ̃ . We
take N = 16, D = 8, χ = 16, and γ = −0.2. The dashed line shows
the exact energy Eexact for γ̃ = 0. The inset shows E for γ̃ < γ̃c �
0.168, where a real solution for the ground-state energy exists. In (b),
we show that the loss L [Eq. 19] suddenly becomes � 1 for γ̃ > γ̃c.

Figure 6(a) shows the ground-state energy E obtained with
our function MPS method for different three-body interaction
strengths γ̃ with N = 16, D = 8, χ = 16, and γ = −0.2. We
identify that for about γ̃ < γ̃c � 0.168, E changes smoothly
with γ̃ , as demonstrated in the inset. At γ̃ � γ̃c, E drastically
jumps to a negative number. From Fig. 6(b), we can see that
L suddenly becomes � 1 for γ̃ > γ̃c. This implies the real
solution does not exist in this region.

V. SUMMARY AND PERSPECTIVE

In this work, we extended the utilization of TNs to solving
the many-body Schrödinger equation in continuous space.
Given the local functional bases, the coefficients of the wave
function were given in the form of a TN, where the exponen-
tial complexity is reduced to a polynomial. The observables
such as energy can be calculated simply by tensor contrac-
tions. Automatically differentiable tensors were used to form
the TN. Their gradients can be obtained in a back-propagation
process and can be used to minimize the energy using gra-
dient decent. The error of the ground-state simulation was
well controlled by the entanglement. We took the TN to be
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a MPS as an example and applied it to the coupled harmonic
oscillators with two- and three-body interactions. The exis-
tence of a physical solution can be identified by the loss that
characterizes the violation of the Schrödinger equation.

Our proposal can be readily extended to general differential
equations with many variables. The functional bases can be
replaced by others, such as the Taylor series, depending on the
convenience of solving the target equation. The MPS can also
be generalized to other TNs such as projected entangled pair
states. For electrons, the fermionic TNs [46–49] can be used
to represent the coefficients in order to respect the anticom-
mutation relations. Our approach and the quantum chemistry
DMRG algorithms [27,28,30,50] both belong to applications
of the MPS to models in continuous space, which can bring
complementary implications to each other. The functional
TN aims more directly at solving general differential equa-
tions and here was applied to the Schrödinger equation in its
very original form. For the interacting electrons, the functional
TN can learn from the quantum chemistry DMRG about, e.g.,
the definitions of the basis in the second quantization picture
and the optimization strategy. Besides entanglement, our work
could build a bridge between the Schrödinger equation and
concepts with close relevance to TNs, such as symmetries
[51–54] and quantum computation (see, e.g., [55–59]).
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APPENDIX A: NECESSARY NOTATIONS

Given an N th-order tensor T, we use Ts1sN ···sN to represent
a specific element. Take the following matrix (second-order
tensor) M as an example:

M =
[

0 1
1 0

]
. (A1)

We have matrix elements M00 = M11 = 0 and M01 = M10 =
1. Note to number multiple indexes or tensors, we start the
numbering from 1. For a given index, say, χ -dimensional, we
take its value from 0 to χ − 1. The indexes of tensors are
always subscripts. The superscripts, such as (n) in A(n), are
not actually indexes and are only to distinguish the symbols
for different tensors.

We use a colon in the subscripts to represent the slice
of tensor, following the syntax convention of PYTHON. For
instance, M0,: = [0, 1] is a vector that gives the zeroth raw of
M. For the N th-order tensor T, we use Ts1,...,sN−2,:,: to represent
the matrix by fixing the first (N − 2) indexes to (s1, . . . , sN−2).
The size of this matrix is dim(sN−1) × dim(sN ). The range of
the slice can be specified. Taking a vector V as an example,
V′ = Va:b [with a and b being two non-negative integers and
a < b < dim(V)] gives a (b − a)-dimensional vector, satisfy-
ing V ′

n = Vn+a with n = 0, . . . , b − a − 1. Note V0:b can be
simplified to V:b, and Va:dim(V) can be simplified to Va:.

APPENDIX B: ADDITION OF MATRIX PRODUCT STATES

Given two MPSs formed by the tensors {A(n)} and {B(n)}
(n = 1, . . . , N), the addition of these two MPSs can be written
in the MPS form. We denote the tensors of the resulting MPS
as {Q(n)}. In general, the elements of Q(n) are zero except for
the following parts:

Q(n)
:χ1,:,:χ ′

1
= A(n),

Q(n)
χ1:,:,χ ′

1: = B(n). (B1)

For simplicity, we assume that the sizes of A(n) and B(n)

for 1 � n � N − 1 are (χ1 × D × χ ′
1) and (χ2 × D × χ ′

2),
respectively, considering the open boundary conditions. The
sizes of A(1) and B(1) are (1 × D × χ ′

1) and (1 × D × χ ′
2),

respectively. The sizes of A(N ) and B(N ) are (χ1 × D × 1) and
(χ2 × D × 1), respectively. Then the size of Q(n) is [(χ1 +
χ2) × D × (χ ′

1 + χ ′
2)].

If the dimensions of the left virtual bonds of A(n) and B(n)

are both one, the above equation can be simplified to

Q(n)
:,:,:χ1

= A(n),

Q(n)
:,:,χ1: = B(n). (B2)

The size of Q(n) will be [1 × D × (χ ′
1 + χ ′

2)] instead of [2 ×
D × (χ ′

1 + χ ′
2)]. The same simplification can be made in the

case that the dimensions of the right virtual bonds of A(n) and
B(n) are both one.

Let us now consider less general cases by assuming A(n) �=
B(n) only for n = m; otherwise, A(n) = B(n). In other words,
the tensors in the two MPSs are the same except for the mth
tensor. Then {Q(n)} satisfy

Q(n) = A(n) = B(n) for n < m − 1 or n > m + 1,

Q(n)
:,:,:χ ′

1
= A(n)

Q(n)
:,:,χ ′

1: = B(n) for n = m − 1,

Q(n)
:χ1,:,: = A(n)

Q(n)
χ1:,:,: = B(n) for n = m + 1,

Q(n)
:χ1,:,:χ ′

1
= A(n)

Q(n)
χ1:,:,χ ′

1: = B(n) otherwise. (B3)

The size of Q(n) for n < m − 1 or n > m + 1 is (χ1 × D ×
χ ′

1), the same as A(n) or B(n), which equal each other in this
case. The size of Q(n) for n = m − 1 is [χ1 × D × (χ ′

1 + χ ′
2)].

The size for n = m + 1 is [(χ1 + χ2) × D × χ ′
1]. Otherwise,

the size of Q(n) is [(χ1 + χ2) × D × (χ ′
1 + χ ′

2)].

APPENDIX C: INNER PRODUCT OF MATRIX PRODUCT
STATES

Given two MPSs formed by tensors {A(n)} and {B(n)} (n =
1, · · · , N), their inner product is defined as

z =
∑

s1···sN

∑
α0 ···αN
α′

0 ···α′
N

A(1)
α0s1α1

A(2)
α1s2α2

· · · A(N )
αN−1sN αN

× B(1)
α′

0s1α
′
1
B(2)

α′
1s2α

′
2
· · · B(N )

α′
N−1sN α′

N
. (C1)
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Equation (C1) can be calculated in an iterative way. We
start with a matrix V whose size is dim(α1) × dim(α′

1) and
take V0,0 = 1 [note dim(α1) = dim(α′

1) = 1]. We update V by

Vαnα′
n
←

∑
snαn−1α

′
n−1

Vαn−1α
′
n−1

A(n)
αn−1snαn

B(n)
α′

n−1snα′
n
. (C2)

We iteratively calculate V by taking n from 1 to N , and finally,
V becomes a (1 × 1) matrix (i.e., a scalar) since dim(αN ) =
dim(α′

N ) = 1. We have

z = V0,0. (C3)

An efficient way to calculate Eq. (C2) is to first com-
pute Ãα′

n−1snαn = ∑
αn−1

Vαn−1α
′
n−1

A(n)
αn−1snαn

and then Vαnα′
n
=∑

snα
′
n−1

Ãα′
n−1snαn B(n)

α′
n−1snα′

n
. The complexities of these two scale,

respectively, as

O[dim(α′
n−1) dim(αn−1) dim(sn) dim(αn)], (C4)

O[dim(α′
n−1) dim(α′

n) dim(αn) dim(sn)]. (C5)

Thus, the complexity of calculating Eq. (C2) scales as

O{dim(sn) dim(α′
n−1) dim(αn)[dim(αn−1) + dim(α′

n)]}.
(C6)

The above method can be used to calculate the norm of a given
MPS, which equals

√
z.
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