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We investigate the effect of a two-level jump process or random telegraph noise on a square wave driven
tight-binding lattice. In the absence of the noise, the system is known to exhibit dynamical localization for
specific ratios of the amplitude and the frequency of the drive. We obtain an exact expression for the probability
propagator to study the stability of dynamical localization against telegraph noise. Our analysis shows that in
the presence of noise, a proper tuning of the noise parameters destroys dynamical localization of the clean
limit in one case, while it induces dynamical localization in an otherwise delocalized phase of the clean model.
Numerical results help verify the analytical findings. A study of the dynamics of entanglement entropy from an
initially half-filled state offers complementary perspective.
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I. INTRODUCTION

A charged particle subjected to a static electric field to-
gether with a periodic lattice potential performs bounded
and oscillatory motion, which is termed as Bloch oscillations
[1–4]. Here the usual Bloch band structure of a crystal lattice
is destroyed and instead, we have an equispaced energy spec-
trum termed the Wannier-Stark ladder [5,6]. Moreover, all
the single-particle wave functions are localized and therefore
the name “Wannier-Stark (WS) localization” is associated
with this phenomenon. Bloch oscillations have been real-
ized in a wide variety of physical systems such as trapped
cold atoms [7,8], semiconductor superlattices [9,10], photonic
systems [11,12], and spin systems using a superconducting
quantum processor [13]. Furthermore, in the presence of
nearest-neighbor interactions, the system exhibits many-body
(Stark) localization [14–16]. The existence of Stark MBL has
been probed experimentally and theoretically in recent works
[15,17,18]. In the presence of a time-dependent electric field,
the periodic drive at specific ratios of drive amplitude and
frequency (A/ω) effectively suppresses the hopping strength
and leads to dynamical localization [6,19–23]. Moreover, the
combined action of ac and dc electric fields gives rise to
fascinating phenomena like coherent destruction of WS lo-
calization [24–26] and super Bloch oscillations [27–29] in
the noninteracting limit, and coherent destruction of Stark
MBL in the interacting limit [30]. Furthermore, a coupling to
bosonic heat bath (with Ohmic dissipation) leads to decoher-
ence of the Bloch oscillations and gives rise to a dissipative
transport [31].

In a realistic situation, the system is almost always cou-
pled to a thermalizing bath; moreover the unwanted temporal
fluctuations in the drive can lead to aperiodicity, which even-
tually leads to dephasing and may destroy some of the above
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carefully tuned properties. Such noise either originates from
the lattice vibrations where the phonons are randomly excited
or arises due to the fluctuations in the battery [32–34]. When
the electric field is static, this noise is associated with many
interesting features such as incoherent destruction of WS lo-
calization and renormalization of the Bloch frequency [35,36]
in the noninteracting limit, and the dephasing of Stark-MBL
in the interacting case [37]. In this work, we analyze a model
in which a periodic electric field is subjected to a two-level
jump process or telegraph noise. In particular, we investigate
the effect of temporal noise on dynamical localization.

The main findings of our work are as follows. For a system
subjected to a (telegraph) noisy time-periodic (square wave)
electric field, we obtain an exact expression for the probability
propagator P̃n(t ). In the clean limit, the well-known case of
Bloch oscillations and dynamical localization are verified for
a static and periodic field, respectively. Moreover, we gener-
alize the results for a combined ac and dc field and provide an
exact expression for the probability propagator leading to the
cases of coherent destruction of WS localization and super-
Bloch oscillations. The rapid relaxation limit of the stochastic
field is a particular focus of our work. Denoting the bias in
the probabilities of the two levels of the field to be δp, we
show that in the zero bias case (δp = 0), for small values of
noise, dynamical localization survives. However, in the long
time limit and for large values of noise, we observe that noise
decoheres the system by destroying dynamical localization.
With a suitably chosen nonzero bias (δp �= 0), we find that
the noisy field can destroy dynamical localization yielding a
delocalized phase. On the other hand, there is a way to tune
the noise such that it induces dynamical localization in an
otherwise delocalized phase of the clean system. A study of
the entanglement entropy in the many-body setting provides
useful signatures for all these effects. We corroborate our
analytical calculation with an exact numerical approach by
a study of the probability propagator and the dynamics of
entanglement entropy.
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We have organized our work as follows. In Sec. II, we
introduce the model Hamiltonian along with the unitary trans-
formation to obtain an effective Hamiltonian. In Sec. III, we
derive the expression for the probability propagator P̃n(t ) and
provide a brief discussion. The clean limit of the problem
is discussed in Sec. IV, while Sec. V is devoted to the case
of stochastic noise. Finally, we have summarized our main
findings in Sec. VI.

II. MODEL HAMILTONIAN

We consider the dynamics of a single-particle moving in
a one-dimensional tight binding chain under the influence
of a time-dependent field comprising a square wave electric
field and time-dependent random telegraph noise. The model
Hamiltonian can be written as

H = −�

4

( ∞∑
n=−∞

|n + 1〉〈n| + |n〉〈n + 1|
)

+F (t )
∞∑

n=−∞
n|n〉〈n|, (1)

where |n〉 is a Wannier state localized at site n and � is the
hopping strength. F (t ) is the time-dependent field: F (t ) =
F (t ) + ξ (t ), where F (t ) is the square wave electric field
and ξ (t ) is a time-dependent stochastic telegraph noise. The
square wave drive can be expressed as

F (t ) =
{+A, 0 � t � T/2
−A, T/2 < t � T

, (2)

where T is the time period of the drive. We work in units
where h̄ = e = 1 and the lattice constant, too, is unity.

To study the dynamical evolution, we start by defining the
unitary operators [5]:

K̂ =
n=∞∑

n=−∞
|n〉〈n + 1|,

K̂† =
n=∞∑

n=−∞
|n + 1〉〈n|, (3)

N̂ =
∞∑

n=−∞
n|n〉〈n|.

These operators are diagonal in the quasimomentum basis k:

〈k′|K̂|k〉 = eikδ(k − k′),

〈k′|K̂†|k〉 = e−ikδ(k − k′), (4)

and follow the commutation relations:

[K̂, N̂] = K̂, [K̂†, N̂] = −K̂†, [K̂, K̂†] = 0. (5)

In terms of these unitary operators, the Hamiltonian (1) can be
written as Ĥ = V+ + H0(t ), where

V+ = −�

4
(K̂ + K̂†), H0(t ) = F (t )N̂ . (6)

The equation of motion for the density matrix in the Heisen-
berg picture is

dρ

dt
= −i[H (t ), ρ]. (7)

After the unitary transformation, we can write the density
matrix ρ(t ) as

ρ̃(t ) = ei
∫ t

0 H0(t ′ )dt ′
ρ(t )e−i

∫ t
0 H0(t ′ )dt ′

. (8)

Following the procedure of Bhakuni et al. [35], we obtain the
density operator in the momentum basis as

〈k | ρ̃(t ) | k′〉 = e−i
∫ t

0 Ṽ+k (t ′ )dt ′ 〈k | 0〉〈0 | k′〉ei
∫ t

0 Ṽ+k (t ′ )dt ′
, (9)

where Ṽ+k (t ′) = −�
4 [ei(k+η(t ′ )) + e−i(k+η(t ′ ))]. This suggests

that the dynamical evolution of the system is governed by an
effective Hamiltonian Ṽ+k where the time dependence comes
only as a phase factor. Furthermore the effective Hamiltonian
respects translation invariance and hence allows us to calcu-
late the dynamical evolution of the observables analytically as
described ahead.

III. OBSERVABLES

In order to study the dynamics of single particle, we de-
rive an expression for probability propagator. The probability
propagator Pn(t ) is a measure of the probability of finding the
particle at site n at a time t . Here, we consider an initial state
where the particle is localized at the central site (n = 0). The
probability propagator can be defined as [35]

Pn(t ) =
∫ π

−π

∫ π

−π

dk dk′〈n | k〉〈k | ρ̃(t ) | k′〉〈k′ | n〉. (10)

Using Eq. (9), we can write

Pn(t ) =
(

1

2π

)2 ∫ π

−π

dk
∫ π

−π

dk′e−i(k−k′ )n

×e−i
∫ t

0 dt ′[Ṽ+k (t ′ )−Ṽ+k′ (t ′ )]. (11)

In our case, the time-dependent field is a combination of
square wave pulse and time-dependent telegraph noise [38].
The noise consists of random jumps between two levels ±μ.
By denoting σ and τ to be the rate of switching from level +μ

to −μ and −μ to +μ, respectively, the probability of being at
any time in state +μ can be defined as p+ = τ

λ
, whereas the

probability of being in state −μ is p− = σ
λ

where we define
λ = σ + τ .

For such noise, the overall field can be expressed as a sum
of 2 × 2 matrices [39]:

iη(t ) = i
∫ t

0
F (t ′)dt ′I + itμσz + tW. (12)

Here, W is the relaxation matrix defined as [33,34]

W =
[−p− p+

p− −p+

]
= λ

[− σ
τ+σ

τ
τ+σ

σ
τ+σ

− τ
τ+σ

]
, (13)

and I is the identity matrix. From Eq. (13), the relaxation
matrix W can be expressed as a linear combination of the iden-
tity matrix I and Pauli matrices σ ′

i s having components h0 =
−h1 = −γ , h2 = iδpγ , h3 = (γ δp + iμ), where γ = σ+τ

2 =
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λ
2 , δp is the difference between the probabilities and equals
(p+ − p−).

To proceed with the calculation of the probability propaga-
tor, we express the exponential of Eq. (12) in compact form
as

eiη(t ′ ) = ei
∑∞

l=1 αl (1−cos (ω(2l−1)t ′ ))e−γ t ′ 1

2
[eνt ′

(1 + ĥ.�σ )

+e−νt ′
(1 − ĥ.�σ )], (14)

where αl = 4AT
2(2l−1)2π2 , ω = 2π

T , l is an integer, and ν =√
h2

1 + h2
2 + h2

3. Here, we have exploited the identity satisfied

by Pauli matrices: ei(�a�σ ) = (I cos(|a|) + i(â.�σ ) sin(|a|)).
Expressing the square wave in terms of its Fourier series

components, Eq. (14) can be written as

eiη(t ′ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2 e(iAt ′−iAnT )e−γ t ′

[eνt ′
(1 + ĥ.�σ )+

e−νt ′
(1 − ĥ.�σ )],

(2nπ � ωt ′ � (2n + 1)π );
1
2 e−iAt ′+iA(n+1)T e−γ t ′

[eνt ′
(1 + ĥ.σ )+

e−νt ′
(1 − ĥ.�σ )],

((2n + 1)π < ωt ′ � 2(n + 1)π ).

(15)

After detailed calculations (see Appendix A), we obtain an
expression for the probability propagator:

Pn(t ) =
(

1

2π

)2 ∫ π

−π

dk
∫ π

−π

dk′e−i(k−k′ )neig0(t )

×(I cos (|H|) + i(Ĥ.�σ ) sin (|H|)), (16)

where we have defined Hx = g1(t ), Hy = g2(t ) =
iδpg1(t ), Hz = g3(t ) = δpg1(t ) + β(t ) and g0(t ), g1(t ), g2(t )
and g3(t ) are defined in Appendix A. The final expression
for average probability can be obtained by calculating
P̃n(t ) = ∑

ab pa〈b|Pn(t )|a〉. This requires an average
of various Pauli matrices with respect to the available

stochastic states |+〉 = [
1
0] and |−〉 = [

0
1]. In order to study

the dynamics of the system, we use two observables:
probability propagator to explore the single-particle dynamics
and entanglement entropy to explore the features of a
noninteracting many-fermion quantum system. This results
in 〈σx〉 = 1, 〈σy〉 = −iδp, 〈σz〉 = δp, and 〈I〉 = 1. With this
simplification, we get the final expression of the probability
propagator as

P̃n(t ) =
(

1

2π

)2 ∫ π

−π

dk
∫ π

−π

dk′e−i(k−k′ )neig0(t ) ×
(

cos (|H|) + i
g1(t )

|H| sin (|H|) + i sin (|H|)δpβ(t )

|H|
)

. (17)

Hence, we manage to obtain an exact expression for the prob-
ability propagator valid for both ac and dc electric fields in the
presence of a telegraph noise.

To explore the effect of noisy drive in the (noninteracting)
many-body state, we have also calculated von-Neumann en-
tanglement entropy (C1) between two halves of the chain. For
the dynamical evolution, we take the initial state |�in〉 where
all the particles are localized to the left side of the chain,

|�in〉 = c†
1c†

2....c
†
N/2|0〉, (18)

where c†
i is the creation operator at site i. To study the dy-

namics of entanglement entropy, we form a time-dependent
correlation matrix [40,41] as

Cmn(t ) = 〈�in(t )|c†
mcn|�in(t )〉

= 〈�in(0)|c†
m(t )cn(t )|�in(0)〉, (19)

which can be simplified to

C(t ) = U †(t )C(0)U (t ), (20)

where Ujk (t ) = ∑
n D∗

jn exp(−iεnt )Dnk and the matrix D di-
agonalizes the final Hamiltonian. The detailed calculation
to obtain entanglement entropy from the correlation matrix
is given in Appendix C. Diagonalizing the time-dependent
correlation matrix and invoking Eq. (C3), we can study the
dynamics of entanglement entropy.

IV. THE DRIVEN CLEAN SYSTEM

Having obtained the exact expression for the probability
propagator, we now proceed to discuss different forms of
the electric field, and the various phenomena associated with
them. We first consider the case where the noise is absent
(μ = 0) and the system is driven by a time-periodic square
wave pulse. In this limit ν → γ and β → 0, and Eq. (17)
becomes

P̃n(t ) =
(

1

2π

)2 ∫ π

−π

dk
∫ π

−π

dk′e−i(k−k′ )neig0(t )eig1(t ), (21)

where g0(t ) and g1(t ) are defined in the Appendix [Eqs. (A10)
and (A11)]. For the case of a pure noise-free square wave drive
[Eq. (2)], we have (as shown in the Appendix):

lim
μ→0

(g0(t ) + g1(t )) = �

2A

{
(t − τ )

π/ω
(sin (k + πA/ω)

− sin k) + (sin (k + Aτ ) − sin k)−
(t − τ )ω

π
(sin (k′ + πA/ω) − sin k′)

−(sin (k′ + Aτ ) − sin k′)
}
, (22)

where t = mT + τ, (0 < τ < T/2), and m is a positive
integer. In the limit ω → 0, we have a static field, and it is evi-
dent that only the second and fourth terms in Eq. (22) survive,
and yield the familiar Bloch oscillations. For nonzero ω, we
observe that Eq. (22) becomes a periodic function with period
2π
A if the ratio A

ω
is tuned to an even integer. This periodicity

corresponds to dynamical localization at these specific ratios
of the amplitude and frequency as reported previously [23,42].
On the other hand, going away from these special points, for
A/ω = odd integer, we have

lim
μ→0

(g0(t ) + g1(t )) =
{

�ζ

A
(sin (−C + k))

−�ζ

A
(sin (−C + k′))

}
, (23)

where ζ =
√

(t−τ )2

π2/ω2 + sin2 Aτ , cosC = (t−τ )
ζπ/ω

, sin C = sin Aτ
ζ

.
This gives a closed-form expression for the probability
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propagator:

P̃n(t ) = (J0(�ζ/A))2, (24)

which suggests a decaying behavior in time and hence signi-
fies the delocalization of an initially localized wave packet.

Another interesting case arises when the electric field has
both ac and dc parts. Numerical and semiclassical studies

[26,30] on such combined ac and dc electric fields have
revealed several interesting phenomena such as coherent
destruction of Wannier-Stark localization, dynamical local-
ization, and super-Bloch oscillations. Here, we discuss these
phenomena in the backdrop of our exact result for the proba-
bility propagator. When the system is subjected to a square
wave drive with amplitude A and frequency ω along with
a uniform dc field ε, i.e., F (t ) = F (t ) + ε, Eq. (22) gets
modified to

lim
μ→0

(g0(t ) + g1(t )) = lim
μ→0

�

4

[
(z − z′)

{(
1 − e−(−iε−iA)π/ω

(−iε − iA)
+ (1 − e−(−iε+iA)π/ω )e−(−iε+iA)π/ωeiA.2π/ω

(−iε + iA)

)
(

1 − e−(γ−ν−iε)2mπ/ω

1 − e−(γ−ν−iε)2π/ω

)
+ eiε 2mπ

ω (1 − e−(−iε−iA)(τ ) )

(−iε − iA)

}
+ c.c.

]
, (25)

where z = eik, z′ = eik′
, which in turn leads to

lim
μ→0

(g0(t ) + g1(t )) = �

2

{
(t − τ )

(A + ε) 2π
ω

[(sin (k + π (A + ε)/ω) − sin k) − (sin (k′ + π (A + ε)/ω) − sin k′)]

+ (t − τ )

(A − ε) 2π
ω

[(
sin (k + π (A + ε)/ω) − sin

(
k + 2επ

ω

))
− (sin (k′ + π (A + ε)/ω)−

sin

(
k′ + 2επ

ω

))]
+ 1

(A + ε)

[
sin

(
k + (A + ε)τ + 2mεπ

ω

)
− sin

(
k + 2mεπ

ω

)]

− 1

(A + ε)

[
sin

(
k′ + (A + ε)τ + 2mεπ

ω

)
− sin

(
k′ + 2mεπ

ω

)]}
. (26)

Equation (26) suggests that certain special ratios of the
static field with the frequency of the square wave drive may
yield interesting dynamical phenomena. For A/ω = 2n, we
see periodic behavior if the static field is tuned at ε/ω =
2n′, (n �= n′). This corresponds to dynamical localization as
shown in Figs. 1(a) and 1(d), where the initially localized
wave packet returns to its initial state after a driving period
and both the probability and the entanglement entropy os-
cillate in time. If the static field is resonantly tuned with
ε/ω = 2n′, but the ratio A/ω is set to be something other
than an even integer, the driving leads to band formation [30]
and destroys the localization set up by the static field. This
coherent destruction of Wannier Stark localization is shown in

Figs. 1(b) and 1(e) where the probability decays in time and
the entropy shows an unbounded growth despite the presence
of the static field. Similarly, if the static field is resonantly
tuned at ε/ω = 2n′ + 1, (n �= n′), dynamical localization can
again be observed if A/ω = 2n + 1 is also an odd integer.
However, while maintaining the resonance condition, if the
static field is not tuned in this precise manner, we once again
observe coherent destruction of Wannier-Stark localization.

Finally, when the static electric field is slightly detuned
from the resonance condition such that ε = (n′ + δ)ω, the
phase factor in Eq. (26) acquires an extra term δωt and it
becomes

lim
μ→0

(g0(t ) + g1(t )) = �

2

[
1

(A + ε) sin(δπ )
{sin (k′ + (m − 1)δπ ) − sin (k + (m − 1)δπ )} sin(mδπ ) + 1

(A − ε) sin(δπ )

{sin (k′ + δπ + mδπ ) − sin (k + δπ + mδπ )} sin(mδπ ) + 2A

(A2 − ε2) sin(δπ )

{
sin

(
k + Aπ

ω
+ n′π + mδπ

)
− sin

(
k′ + Aπ

ω
+ n′π + mδπ

)}
sin (mπδ) + 2

(A + ε)

{sin (k + (n′ + δ)ωt + Aτ ) − sin (k + mδωT ) − sin (k′ + (n′ + δ)ωt + Aτ ) + sin (k′ + mδωT )}
]
.

(27)
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FIG. 1. (a)–(c) Return probability for AC+DC driven system. (a) Dynamical localization for resonantly tuned DC drive (ε = n′ω, with
n′ even). (b) Coherent destruction of Wannier-Stark localization at values away from the dynamical localization conditions. (c) Super-Bloch
oscillations at slightly detuned DC drive (ε = (n′ + δ)ω). (d)–(f) Entanglement entropy for AC+DC driven system. (d) Periodicity signifies
dynamical localization for resonantly tuned DC drive (ε = n′ω). (e) Unbounded growth signifies delocalization at values away from dynamical
localization conditions. (f) Periodic oscillations correspond to super-Bloch oscillations. The other parameters are L = 200, � = 2.0.

The system exhibits oscillatory behavior similar to Bloch
oscillations. Analogous to the case of the static field driven
system, these oscillations are termed super-Bloch oscillations
and the frequency of these oscillations is directly proportional
to δω. This phenomenon has been shown in Figs. 1(c) and 1(f)
where return probability and entanglement entropy exhibit
periodic behaviour with the frequency given by the offset.

V. EFFECT OF STOCHASTIC NOISE

In this section, we will focus on how the presence of
time-dependent fluctuations affect the dynamical localization
in the system. We present an analytical expression for the
probability propagator and also test its validity with the aid of
an exact numerical approach. To simulate the telegraph noise
and the dynamical protocol, we follow Bhakuni et al. [35] and
average the observables over many noise trajectories. We will
restrict ourselves to the case of zero static field and discuss
the effects of the inclusion of a noisy field. We consider two
different cases: one where the two levels of the noise are
equiprobable (δp = 0) and the other where one level is more
probable (δp �= 0). While the expression for the probability
propagator is general, we will restrict ourselves to the rapid
relaxation regime, in order to obtain approximate expressions
that are effective and simple. In this limit γ 
 μ, A and
g1(t )2 
 β(t )2. With these approximations, we can expand
|H| as

|H| =
√

g1(t )2 + β(t )2 + 2δpg1(t )β(t )

≈ g1(t )

(
1 + β(t )2

2g1(t )2 + δpβ(t )

g1(t )

)
, (28)

and the expression which appears in the integrand of Eq. (17)
can be approximated as

eig0 (t )

(
cos (|H|) + i

sin(|H|)
|H| [g1(t ) + δpβ(t )]

)

≈ exp(i(g0(t ) + |H|))

≈ exp

(
ig0(t ) + ig1(t ) + iδpβ(t ) + i

β2(t )

2g1(t )

)
. (29)

First, we consider the case of zero bias (δp = 0) with zero
external drive. In this limit ν =

√
γ 2 − μ2 ≈ (γ − μ2

2γ
). When

the field is zero (A = 0), Eq. (29) is modified to Eq. (B8) (see
Appendix), which in the long-time limit, further simplifies to

eig0(t )+ig1(t )ei β2 (t )
2g1(t ) ≈ ei

�eff
4 t (cos k−cos k′ ), (30)

where �eff = �(1 + 1
2 ( μ

γ
)2 (sin k−sin k′ )2

(cos k−cos k′ )2 ). This expression
shows that in the zero field limit, the dynamics is governed by
a renormalized hopping parameter �eff for rapidly fluctuating
noise, thus recovering an earlier result [35].

Now, we consider the square wave driven system (A �= 0).

In this case, we can ignore ei β2 (t )
2g1(t ) and Eq. (29) is approximated

to Eq. (B12). In the rapid relaxation limit, for A/ω = 2n,

Eq. (B12) further simplifies to

g0(t ) + g1(t ) ≈ −�e− μ2

2γ
t

2A
[e

μ2τ

2γ (sin k − sin k′)

− (sin (k + Aτ ) − sin (k′ + Aτ ))]. (31)

It is clear from Eq. (31) that g0(t ) + g1(t ) will exhibit
periodic behavior (with period 2π

A ) only for small values of
noise (μ << γ ), whereas for large values of noise and in the
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FIG. 2. Data for fluctuating square wave driven system. (a) The periodic behavior of return probability at dynamical localization point.
(b) Decaying behavior of probability at points away from dynamical localization. (c) Periodic behavior of entanglement entropy at dynamical
localization point and (d) unbounded growth of entanglement entropy at points away from dynamical localization conditions. We present data
for the zero bias case (δp = 0.0) in the rapid relaxation regime (σ = 100, τ = 100) with hopping strength � = 2.0. We have averaged over
200 realizations of disorder for a system of size L = 200.

long time limit, the periodic oscillations damp out exponen-
tially. The dynamics of return probability and entanglement
entropy are plotted in Fig. 2. At the dynamical localiza-
tion point, we see the oscillatory nature of the probability
propagator [Fig. 2(a)] and the entropy [Fig. 2(c)]. However,
these oscillations are bound to decay on much longer time
scales. Similarly, when the parameters are tuned away from

the dynamical localization point, we see a decaying behavior
of probability and an unbounded growth of the entanglement
entropy as depicted in Figs. 2(b) and 2(d), respectively.

We next consider the case where one level of the telegraph
noise is more probable than the other, i.e., δp �= 0. In this
case, we can approximate ν as ν =

√
γ 2 − μ2 + 2iμγ δp ≈

(γ − μ2

2γ
+ iμδp). For A/ω = 2n, with this approximation and

further simplifications [via Eq. (B15)] we arrive at

g0(t ) + g1(t ) + δpβ(t ) ≈ −�e− μ2

2γ
t

2(μδp + A)

[
e

μ2

2γ
τ {sin(k + μδp(t − τ )) − sin(k′ + μδp(t − τ ))}

− {sin (k + μδpt + Aτ ) − sin (k′ + μδpt + Aτ )}]. (32)

The above expression resembles Eq. (26) with the static
field ε replaced by an effective field μδp. Thus we expect
phenomena similar to dynamical localization and coherent
destruction of Wannier-Stark localization to be induced by the
noisy field. When the ratio of the amplitude to the frequency
is tuned to be an odd integer (A/ω = (2n + 1)), the noisy field
induces dynamical localization. Figure 3 shows the probabil-
ity and the entanglement entropy, for this scenario both in
the absence and presence of noise. The clean limit, as seen
from Figs. 3(a) and 3(b), results in delocalization behavior.
On the other hand, we see that a carefully tuned noise induces
dynamical localization which is signaled by the probability
and the entropy showing oscillatory behavior [Figs. 3(c) and
3(d)]. This signifies the emergence of a new kind of dynamical
localization that is induced by a noisy field. As the strength of
the noise is increased, the system loses coherence resulting in
a transition to delocalization. It is worth pointing out that in
Figs. 3(c) and 3(d), a tendency for the oscillations to decay
is also visible, although these effects may become important
only when very long time scales are involved.

Contrastingly, the noisy field can also lead to a complete
destruction of dynamical localization when the ratio of the
amplitude to the frequency is tuned to be an even integer
(A/ω = (2n)). As shown in Fig. 4 in the absence of the
noise, the parameters of the drive lead to dynamical localiza-
tion where the probability and the entropy oscillate in time
[Figs. 4(a) and 4(b)]. However, in the presence of an appro-
priately tuned noisy field, dynamical localization is destroyed
and delocalization behavior is observed as shown in Figs. 4(c)
and 4(d) where the probability and the entropy exhibit de-

caying behavior and unbounded growth, respectively. These
interesting results are reminiscent of the case of a periodically
driven system together with a static field in the clean limit as
discussed in the previous section. However, in this scenario,

FIG. 3. Return probability and entanglement entropy in the ab-
sence and the presence of noise when the ratio of the amplitude
and the frequency is fixed to be an odd integer (we set A/ω = 3).
Plots (a) and (b) show decaying behavior of return probability and
unbounded growth of entanglement entropy, respectively, in the ab-
sence of noise. A suitable noise can help engineer “noise-induced”
dynamical localization as shown by the oscillatory behavior of return
probability and entanglement entropy, respectively, in (c) and (d).
The other parameters are L = 200, � = 4.0. The data are averaged
over 100 realizations of disorder.
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FIG. 4. Plots (a) and (b) show oscillatory behavior of return
probability and entanglement entropy corresponding to dynamical
localization for a clean system with the tuning (A/ω = 2n). When
a suitably tuned noise is included delocalization behavior can be
induced as signaled by the decaying nature of the probability and un-
bounded growth of entanglement entropy in (c) and (d), respectively.
We have averaged over 145 realizations of disorder for a system of
size L = 200. The hopping strength is set to � = 2.0.

the effects are induced by the noisy field which on average
works as a static field.

VI. SUMMARY AND CONCLUSION

To summarize, we study the dynamics under a noisy elec-
tric field and examine how the phenomenon of dynamical
localization in the clean limit gets affected by the noisy field.
We obtain an exact expression for the probability propagator
for a generalized field including a static part, a time-periodic
part, and a noisy part modeled by telegraph noise. In the clean
limit, we discuss the phenomena of dynamical localization,
coherent destruction of Wannier-Stark localization, and super-

Bloch oscillations with the help of the obtained probability
propagator.

In the presence of noise, we show that the dynamical
localization survives for small noise strength for some time
and damps out in the long time limit, while a larger value
of the noisy field brings decoherence to the system causing
the delocalization of the particle. When the two levels of
the noise are not equi-probable, we observe two interesting
effects. In one case, with a proper tuning of the ratio of the
amplitude and the driving frequency, dynamical localization
can be destroyed incoherently, while with a different tuning
of the ratio of the amplitude and the driving frequency, we see
the emergence of dynamical localization induced by the noisy
field. Thus with a suitable tuning of the noise parameters,
we are able to go from a dynamically localized phase to a
delocalized one and vice-versa.

It is known that the clean limit of an interacting driven
model can exhibit exciting phenomena such as drive induced
many-body localization [30,43] and coherent destruction of
Stark-many-body localization [30,44]. Thus, it would be inter-
esting to investigate the interplay of many-body interactions,
drive, and noise to check if further noise-induced effects can
be engineered. Another possibility for exploration would be
to consider other forms of noise, which have been studied
recently [36].
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APPENDIX A: CALCULATION OF PROBABILITY PROPAGATOR

Beginning with the expression for the probability propagator [Eq. (11)],

Pn(t ) =
(

1

2π

)2 ∫ π

−π

dk
∫ π

−π

dk′e−i(k−k′ )n × e−i
∫ t

0 dt ′[Ṽ+k (t ′ )−Ṽ+k′ (t ′ )],

we will show how to obtain Eq. (16). To calculate the integral that appears in the exponential of the integrand of Eq. (11), it is
helpful to recall Eq. (9):

e−i
∫ t

0 dt ′[V +
k (t ′ )−V +

k′ (t ′ )] = e
−i�

4

∫ t
0 dt ′[{ei(k+η(t ′ ))+c.c.}−{ei(k′+η(t ′ ))+c.c.}], (A1)

where

eiη(t ′ ) =
{

1
2 e(iAt ′−iAnT )[e(ν−γ )t ′

(1 + ĥ.�σ ) + e−(ν+γ )t ′
(1 − ĥ.�σ )]; (2nπ � ωt ′ � (2n + 1)π ; n = 0, 1, 2..)

1
2 e−iAt ′+iA(n+1)T [e(ν−γ )t ′

(1 + ĥ.σ ) + e−(ν+γ )t ′
(1 − ĥ.�σ )]; ((2n + 1)π < ωt ′ � 2(n + 1)π ).

(A2)

Next, to simplify Eq. (A1), we consider the following possibilities for a finite time t :
(1) t = mT + τ ,
(2) t = mT + T

2 + τ ,
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where 0 < τ < T
2 and m is a nonzero positive integer. Now, we present here our calculation for t = mT + τ and later will

generalize it for a general time t . We have∫ mt+τ

0
dt ′eiη(t ′ ) = 1

2
[{ f1(ν) + f1(−ν)} + (

ĥ.�σ
){ f1(ν) − f1(−ν)}], (A3)

where

f1(ν) =
{(

1 − e−(γ−ν−iA)T/2

(γ − ν − iA)
+ (1 − e−(γ−ν+iA)T/2)e−(γ−ν+iA)T/2eiAT

(γ − ν + iA)

)(
1 − e−(γ−ν)mT

1 − e−(γ−ν)T

)

+ e−(γ−ν)mT

(γ − ν − iA)

(
1 − e−(γ−ν−iA)(t−mT ))}, (A4)

and

f1(−ν) =
{(

1 − e−(γ+ν−iA)T/2

(γ + ν − iA)
+ (1 − e−(γ+ν+iA)T/2)e−(γ+ν+iA)T/2eiAT

(γ + ν + iA)

)(
1 − e−(γ+ν)mT

1 − e−(γ+ν)T

)

+ e−(γ+ν)mT

(γ + ν − iA)

(
1 − e−(γ+ν−iA)(t−mT ))}. (A5)

Using Eq. (A3) the exponential in the left-hand side of Eq. (A1) can be expressed as

−i
∫ mt+τ

0
dt ′[V +

k (t ′) − V +
k′ (t ′)] = i�

8
[(z − z′){ f1(ν) + f1(−ν)} + (z − z′)(ĥ.�σ ){ f1(ν) − f1(−ν)} + c.c.], (A6)

where z = eik, z′ = eik′
. To generalize, we can write the above Eq. (A6) as

−i
∫ t

0
dt ′[V +

k (t ′) − V +
k′ (t ′)] = i�

8

[
(z − z′){ f2(ν) + f2(−ν)} + (z − z′)

(
ĥ.�σ

){ f2(ν) − f2(−ν)} + c.c.
]
, (A7)

where the general time t can be accommodated with the aid of Heaviside step functions:

f2(ν) =
{(

1 − e−(γ−ν−iA)T/2

(γ − ν − iA)
+ (1 − e−(γ−ν+iA)T/2)e−(γ−ν+iA)T/2eiAT

(γ − ν + iA)

)(
1 − e−(γ−ν)mT

1 − e−(γ−ν)T

)

+ e−(γ−ν)mT

(γ − ν − iA)
(1 − e−(γ−ν−iA)τ ) + e−(γ−ν)mT e−(γ−ν−iA)T/2

(γ − ν + iA)

(
1 − e−(γ−ν+iA)(t−mT − T

2 )H(t−mT − T
2 ))}, (A8)

f2(−ν) =
{(

1 − e−(γ+ν−iA)T/2

(γ + ν − iA)
+ (1 − e−(γ+ν+iA)T/2)e−(γ+ν+iA)T/2eiAT

(γ + ν + iA)

)(
1 − e−(γ+ν)mT

1 − e−(γ+ν)T

)

+ e−(γ+ν)mT

(γ + ν − iA)
(1 − e−(γ+ν−iA)τ ) + e−(γ+ν)mT e−(γ+ν−iA)T/2

(γ + ν + iA)

(
1 − e−(γ+ν+iA)(t−mT − T

2 )H(t−mT − T
2 ))}.

Here τ = {t − mT, (t − mT ) < T
2

T
2 , (t − mT ) � T

2
, and the Heaviside step function is defined as H(x) = {0, x < 0

1, x � 0. The exponential of Eq. (A7) can
now be written in compact form as

e−i
∫ t

0 dt ′[V +
k (t ′ )−V +

k′ (t ′ )] = eig0(t )ei(H.�σ )

= eig0(t )(I cos(|H|) + i
(
Ĥ.�σ

)
sin (|H|)), (A9)

where we have used the identity ei(�a�σ ) = (I cos |a| + i(â.�σ ) sin(|a|)), and defined Hx = g1(t ), Hy = g2(t ) = iδpg1(t ), Hz =
g3(t ) = δpg1(t ) + β(t ), and |H| =

√
g2

1(t ) + g2
2(t ) + g2

3(t ). The functions g0(t ), g1(t ), and β(t ) are given by

g0(t ) = �

8
[(z − z′){ f2(ν) + f2(−ν)} + c.c.], (A10)

g1(t ) = �γ

8

[
(z − z′)

ν
{ f2(ν) − f2(−ν)} + c.c.

]
, (A11)

β(t ) = i�μ

8
[(z − z′){ f2(ν) − f2(−ν)} − c.c.]. (A12)

Hence, we arrive at the expression for the probability propagator given in Eq. (16):

Pn(t ) =
(

1

2π

)2 ∫ π

−π

dk
∫ π

−π

dk′e−i(k−k′ )neig0 (t ) × (
I cos (|H|) + i

(
Ĥ.�σ

)
sin (|H|)). (A13)
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APPENDIX B: CALCULATION OF PROBABILITY PROPAGATOR FOR RAPID RELAXATION REGIME

Here, we discuss the rapid relaxation regime in which γ 
 μ, A. In this limit �2(t ) 
 β2(t ), hence we can approximate |H|
as

|H| =
√

g2
1(t ) + β2(t ) + 2δpg1(t )β(t ) ≈ g1(t )

(
1 + β2(t )

2g2
1(t )

+ δpβ(t )

g1(t )

)
. (B1)

This implies the following simplification to the intergand of Eq. (17):

eig0(t )

(
cos (|H|) + i

sin(|H|)
|H|

[
g1(t ) + δpβ(t )

])
≈ exp(i(g0(t ) + |H|))

≈ exp

(
ig0(t ) + ig1(t ) + iδpβ(t ) + i

β2(t )

2g1(t )

)
. (B2)

Now, we consider two different cases of two-level telegraph noise based on the probability associated with both the levels in
the following subsections.

1. Zero bias case (δp = 0)

In this subsection, we will consider the case when both the levels of noise are equally probable, i.e., the case of zero bias
(δp = 0). In this limit, ν =

√
γ 2 − μ2 + 2iμγ δp ≈ (γ − μ2

2γ
). First, we consider the absence of square wave drive (A = 0), and

approximate Eqs. (A10), (A11), and (A12) for t = mT + τ :

lim
δp→0,A→0

g0(t ) ≈ �

4

⎡
⎢⎢⎣(z − z′)

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝1 − e

−
(

μ2

2γ

)
T/2(

μ2

2γ

) +

(
1 − e

−
(

μ2

2γ

)
T/2

)
e
−
(

μ2

2γ

)
T/2

(
μ2

2γ

)
⎞
⎟⎟⎠

⎛
⎝1 − e

−
(

μ2

2γ

)
mT

1 − e
−
(

μ2

2γ

)
T

⎞
⎠ + e

−
(

μ2

2γ

)
mT(

μ2

2γ

) (
1 − e

−
(

μ2

2γ

)
(t−mT )

)

+
(

1 − e−(2γ )T/2

(2γ )
+ (1 − e−(2γ )T/2)e−(2γ )T/2

(2γ )

)(
1 − e−(2γ )mT

1 − e−(2γ )T

)

+e−(2γ )mT

(2γ )

(
1 − e−(2γ )(t−mT ))

⎫⎪⎪⎬
⎪⎪⎭ + c.c.

⎤
⎥⎥⎦

≈ �

8γ

{
2γ t + (

1 − e−2γ t
)}

(cos(k) − cos(k′)), (B3)

lim
δp→0,A→0

g1(t ) ≈ �

4

⎡
⎢⎢⎣(z − z′)

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝1 − e

−
(

μ2

2γ

)
T/2(

μ2

2γ

) +

(
1 − e

−
(

μ2

2γ

)
T/2

)
e
−
(

μ2

2γ

)
T/2

(
μ2

2γ

)
⎞
⎟⎟⎠

⎛
⎝1 − e

−
(

μ2

2γ

)
mT

1 − e
−
(

μ2

2γ

)
T

⎞
⎠ + e

−
(

μ2

2γ

)
mT(

μ2

2γ

) (
1 − e

−
(

μ2

2γ

)
(t−mT )

)

−
(

1 − e−(2γ )T/2

(2γ )
+ (1 − e−(2γ )T/2)e−(2γ )T/2

(2γ )

)(
1 − e−(2γ )mT

1 − e−(2γ )T

)

−e−(2γ )mT

(2γ )

(
1 − e−(2γ )(t−mT ))

⎫⎪⎪⎬
⎪⎪⎭ + c.c.

⎤
⎥⎥⎦

≈ �

8γ

{
2γ t − (

1 − e−2γ t
)}

(cos(k) − cos(k′)), (B4)
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lim
δp→0,A→0

β(t ) ≈ iμ�

8γ

⎡
⎢⎢⎣(z − z′)

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝1 − e

(
− μ2

2γ

)
T/2(

μ2

2γ

) +

(
1 − e

−
(

μ2

2γ

)
T/2

)
e
−
(

μ2

2γ

)
T/2

(
μ2

2γ

)
⎞
⎟⎟⎠

⎛
⎝1 − e

−
(

μ2

2γ

)
mT

1 − e
−
(

μ2

2γ

)
T

⎞
⎠ + e

−
(

μ2

2γ

)
mT(

μ2

2γ

) (
1 − e

−
(

μ2

2γ

)
(t−mT )

)

−
(

1 − e−(2γ )T/2

(2γ )
+ (1 − e−(2γ )T/2)e−(2γ )T/2

(2γ )

)(
1 − e−(2γ )mT

1 − e−(2γ )T

)

−e−(2γ )mT

(2γ )

(
1 − e−(2γ )(t−mT ))

⎫⎪⎪⎬
⎪⎪⎭ − c.c.

⎤
⎥⎥⎦

≈ −μ�

8γ 2
{2γ t − (1 − e−2γ t )}(sin k − sin k′). (B5)

Addition of Eqs. (B3) and (B4) gives

lim
δp→0,A→0

(g0(t ) + g1(t )) ≈ �

4
t (cos k − cos k′), (B6)

and from Eqs. (B4) and (B5), we get

lim
δp→0,A→0

iβ2(t )

2g1(t )
≈ iμ2�

16γ 3

(2γ t − [1 − e−2γ t ])(sin k − sin k′)2

(cos k − cos k′)
. (B7)

Hence, the right-hand side of Eq. (B2) can be expressed as

eig0 (t )+ig1(t )ei β2 (t )
2g1(t ) ≈ ei �

4 t (cos k−cos k′ )e
i μ2�

16γ 3
(2γ t−[1−e−2γ t ])(sin k−sin k′ )2

(cos k−cos k′ ) . (B8)

In the long time limit, Eq. (B8) is further approximated to Eq. (30):

eig0(t )+ig1(t )ei β2 (t )
2g1 (t ) ≈ ei

�eff
4 t (cos k−cos k′ ), (B9)

where �eff = �(1 + 1
2 ( μ

γ
)2 (sin k−sin k′ )2

(cos k−cos k′ )2 ) is a renormalized hopping parameter. Now, we consider an externally driven system

(A �= 0). In the rapid-relaxation limit, we can ignore ei β2 (t )
2g1(t ) and Eq. (B2) can be approximated as

eig0 (t )

(
cos (|H|) + i

sin(|H|)
|H| [g1(t ) + δpβ(t )]

)
≈ exp (ig0(t ) + ig1(t )). (B10)

The quantity whose exponent is taken in Eq. (B10) may be expressed as

lim
δp→0,A�=0

(g0(t ) + g1(t )) ≈ �

4

⎡
⎢⎢⎣(z − z′)

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝1 − e

−
(

μ2

2γ
−iA

)
T/2

−iA
+

(
1 − e

−
(

μ2

2γ
+iA

)
T/2

)
e
−
(

μ2

2γ
−iA

)
T/2

iA

⎞
⎟⎟⎠

⎛
⎝1 − e

−
(

μ2

2γ

)
mT

1 − e
−
(

μ2

2γ

)
T

⎞
⎠ + e− μ2

2γ
mT

−iA

(
1 − e

−
(

μ2

2γ
−iA

)
(t−mT )

)⎫⎪⎪⎬
⎪⎪⎭ + c.c.

⎤
⎥⎥⎦ (B11)

= −�

4

[
(t − τ )

A 2π
ω

(2 sin k − 4 sin (k + Aπ/ω)e− μ2

2γ
T/2 + 2e− μ2

2γ
T sin k)

+ 1

A

(
2e− μ2

2γ
mT sin k − 2e− μ2

2γ
t sin (k + Aτ )

)]

+ �

4

[
(t − τ )

A 2π
ω

(
2 sin k′ − 4 sin (k′ + Aπ/ω)e− μ2

2γ
T/2 + 2e− μ2

2γ
T sin k′

)

+ 1

A
(2e− μ2

2γ
mT sin k′ − 2e− μ2

2γ
t sin (k′ + Aτ ))

]
. (B12)
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When A
ω

= even integer, sin(k + Aπ/ω) = sin(k) and in the rapid relaxation limit, we can set e− μ2

2γ
T to unity. Thus Eq. (B12)

leads to Eq. (31) which shows that the system will exhibit dynamical localized behavior at A/ω = 2n only for small values of
noise whereas for large values of noise and in the long time limit, the system lies in the delocalized phase. In the zero noise limit,
this expression becomes equal to our result for the square wave driven system [Eq. (22)].

2. Nonzero bias case (δp �= 0)

In this subsection, we consider the case when the two levels of noise are not equiprobable, i.e., δp �= 0. From the definition
of ν, ν =

√
γ 2 − μ2 + 2iμγ δp ≈ (γ − μ2

2γ
+ iμδp). In the rapid relaxation limit, Eq. (B2) is approximated as

eig0(t )

(
cos (|H|) + i

sin(|H|)
|H| [g1(t ) + δpβ(t )]

)
≈ exp (ig0(t ) + ig1(t ) + iδpβ(t )). (B13)

The expression that appears in Eq. (B13) may be simplified as

g0(t ) + g1(t ) + δpβ(t ) = �

4

[
(z − z′)

{(
1 − e−(γ−ν−iA)T/2

(γ − ν − iA)
+ (1 − e−(γ−ν+iA)T/2)e−(γ−ν+iA)T/2eiAT

(γ − ν + iA)

)
(

1 − e−(γ−ν)mT

1 − e−(γ−ν)T

)
+ e−(γ−ν)mT

(γ − ν − iA)

(
1 − e−(γ−ν−iA)(t−mT ))} + c.c.

]

= �

4

⎡
⎢⎢⎣(z − z′)

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝1 − e

−
(

μ2

2γ
−iμδp−iA

)
T/2(

μ2

2γ
− iμδp − iA

) +

(
1 − e

−
(

μ2

2γ
−iμδp+iA

)
T/2

)
e
−
(

μ2

2γ
−iμδp−iA

)
T/2

(
μ2

2γ
− iμδp + iA

)
⎞
⎟⎟⎠

⎛
⎝1 − e

−
(

μ2

2γ
−iμδp

)
mT

1 − e
−
(

μ2

2γ
−iμδp

)
T

⎞
⎠ + e

−
(

μ2

2γ
−iμδp

)
mT(

μ2

2γ
− iμδp − iA

)(1 − e
−
(

μ2

2γ
−iμδp−iA

)
(t−mT )

)⎫⎪⎪⎬
⎪⎪⎭ + c.c.

⎤
⎥⎥⎦. (B14)

We can ignore μ2

2γ
in the denominators, and Eq. (B14) with the help of further approximations can be simplified as

g0(t ) + g1(t ) + δpβ(t ) = �

4

⎧⎨
⎩−2(t − τ ) sin k

(μδp + A) 2π
ω

+ 2
(t − τ )e− μ2

2γ
π
ω

(μδp + A) 2π
ω

sin

(
k + (μδp + A)

2π

ω

)

− (t − τ )

(μδp − A) 2π
ω

[
2e− μ2

2γ
T/2 sin

(
k + (μδp + A)

T

2

)
− 2e− μ2

2γ
T sin (k + μδpT )

]

− 1

μδp + A

(
2e− μ2

2γ
mT sin (k + μδpmT ) − 2e− μ2

2γ
t sin (k + μδpt + A(t − mT ))

)⎫⎬
⎭

− �

4

⎧⎨
⎩ −2mT sin k′

(μδp + A) 2π
ω

+ 2
mTe− μ2

2γ
T/2

(μδp + A) 2π
ω

sin
(

k′ + (μδp + A)
T

2

)
− mT

(μδp − A) 2π
ω[

2e− μ2

2γ
T/2 sin

(
k′ + (μδp + A)

T

2

)
− 2e− μ2

2γ
T sin (k′ + μδpT )

]
− 1

μδp + A

(
2e− μ2

2γ
mT sin (k′ + μδpmT ) − 2e− μ2

2γ
t sin (k′ + μδpt + A(t − mT ))

)⎫⎬
⎭. (B15)

For small values of noise μ, if the square wave drive is tuned at the dynamical localization point A/ω = 2n, Equation (B15)
takes the form of a periodic function [Eq. (32)] which signifies dynamical localization.

If we tune the square wave drive such that A/ω = (2n + 1), it results in the following simplification of Eq. (B15):

g0(t ) + g1(t ) + δpβ(t ) = �

4

⎧⎨
⎩−2(t − τ ) sin k

(μδp + A) 2π
ω

+ 2
(t − τ )e− μ2

2γ
π
ω

(μδp + A) 2π
ω

sin

(
k + (μδp)

2π

ω

)

− (t − τ )

(μδp − A) 2π
ω

[
−2e− μ2

2γ
T/2 sin

(
k + (μδp)

T

2

)
− 2e− μ2

2γ
T sin (k + μδpT )

]
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− 1

μδp + A

(
2e− μ2

2γ
mT sin (k + μδpmT ) − 2e− μ2

2γ
t sin (k + μδpt + A(t − mT ))

)⎫⎬
⎭

− �

4

⎧⎨
⎩−2(t − τ ) sin k′

(μδp + A) 2π
ω

+ 2
(t − τ )e− μ2

2γ
T/2

(μδp + A) 2π
ω

sin
(

k′ + (μδp)
T

2

)
− (t − τ )

(μδp − A) 2π
ω[

−2e− μ2

2γ
T/2 sin

(
k′ + (μδp)

T

2

)
− 2e− μ2

2γ
T sin (k′ + μδpT )

]

− 1

μδp + A

(
2e− μ2

2γ
mT sin (k′ + μδpmT ) − 2e− μ2

2γ
t sin (k′ + μδpt + A(t − mT ))

)⎫⎬
⎭. (B16)

For small values of noise μ, Eq. (B16) will have the same form as Eq. (32).

APPENDIX C: ENTANGLEMENT ENTROPY

To quantify the amount of correlations in the system, a commonly used quantifier is the entanglement entropy which can be
calculated as follows. Let ρ be the density matrix of the full system consisting of two subsystems A and B; the von-Neumann
entropy of the subsystem A is given by

SA = −TrB(ρ log2 ρ). (C1)

When the overall state density matrix ρ is pure, SA is also the entanglement entropy between A and B.
In general, the calculation of the entanglement entropy in a many-body setting is restricted by the system size as the Hilbert

space dimension grows exponentially. However, for noninteracting systems, this can be bypassed using a clever approach that
involves only the diagonalization of a (much smaller) correlation matrix [40,41], thereby allowing the exploration of large system
sizes. The correlation matrix is defined as

Cmn = 〈c†
mcn〉 =

∑
αεA,B

φα (m)φα (n)nα, (C2)

where the φα (m) are the single-particle eigenstates of the Hamiltonian and nα the corresponding occupation numbers. The von
Neumann entropy is then calculated for the subsystem A, from the eigenvalues ζm of the subsystem correlation matrix as

SA = −
∑

m

[ζm log ζm + (1 − ζm) log (1 − ζm)]. (C3)

The above result holds for the dynamics of entanglement entropy even where the eigenvalues of the subsystem correlation matrix
become time dependent.
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