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First-principles scattering with Büttiker probes: The role of self-energies
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Understanding electronic transport properties is important for designing devices for applications. Many studies
rely on the semiclassical Boltzmann approach within the relaxation time approximation. This method delivers
a graphic physical picture of the scattering process, but in some cases it lacks full quantum-mechanical effects.
Here, we use a non-equilibrium Green’s function Korringa-Kohn-Rostoker (KKR) method with phase-breaking
scattering via virtual Büttiker terminals as a fully quantum mechanical approach to transport phenomena. With
this, we assess the validity of the relation of the self-energy � to the scattering time τ , often used in literature
in the case of constant relaxation time approximation. We argue that the scattering time does not affect the
thermopower in the Boltzmann approach and thus should take no effect either on the thermopower calculated via
the Keldysh approach. We find a nearly linear relation for the transmission function TS (EF , �) of free electrons
and Cu with respect to 1

�
. However, we find that this is not the case for Pd. We attribute this to neighboring

states contributing due to the additional broadening via the self-energy �. These findings suggest that a simple
identification of scattering time and self-energy is not sufficient. Finally, we discuss the benefits and limits of the
application of the virtual terminal approach.
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I. INTRODUCTION

In the past years, electronic devices have become signifi-
cantly smaller. Further shrinking the sizes leads to quantum
mechanical effects that dominate the transport properties
[1–4]. There are several approaches from classical to fully
quantum mechanical to characterize transport quantities. Scat-
tering can be accounted for in each of these approaches and
of course, the type of scattering has huge influences on the
transport properties. While there are full quantum mechanical
formalisms like the Kubo formalism [5–9] or the steady-state
Keldysh [10–12] formalism, often semiclassical approaches
are used to describe transport properties. The physical picture
in these semiclassical approaches, mainly the Boltzmann for-
malism [13–17], is quite intricate since it enables an intuitive
understanding in terms of scattering processes. One of the
principal quantities for understanding this scattering picture
is the scattering or relaxation time τ , which gives the mean
time between two scattering events.

Often, first-principle methods rely on the averaging over
many configurations of lattice distortions or impurities to
obtain semiclassical like features [18,19]. However, room
temperature like features can also be established by introduc-
ing a dephasing mechanism by means of Büttiker probes (or
virtual terminals) [20,21]. In our purely quantum-mechanical
Keldysh approach including dephasing virtual terminals, it
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is not the scattering time, which is the primary determining
quantity, but a broadening of the states given by the negative
imaginary part � of the complex self-energy �, which is often
directly related to the scattering time in angle-resolved pho-
toemission spectroscopy (ARPES) experiments [22,23]. In
such scenarios the scattering time is often identified with the
lifetime of the state, τscat = τlife = h̄

2�
[24]. For ARPES ex-

periments it was discussed that the single-particle lifetime can
be related to the self-energy in this way, but that this single-
particle lifetime differs from the lifetime of an excited photo-
electron population [25]. The discrepancies were supported by
experimental findings [26–28]. Hence, a simple identification
of scattering time and self-energy seems nontrivial. However,
even in a single-particle description, this simple relationship
between lifetime and self-energy might fail.

In this paper, we test the relation of the scattering time and
the scattering self-energy in a single-particle description but
for real materials. We give an example where such a direct
identification is questionable, even for simple, pure metals.
This is shown by comparing the theory of the Boltzmann ap-
proach with results from a Keldysh non-equilibrium Green’s
function approach [11,29] in the framework of a Korringa-
Kohn-Rostoker (KKR) [30] density functional theory (DFT),
in which we use virtual terminals (also known as Büttiker
probes) to describe incoherent elastic scattering [10]. We dis-
cuss the limit of applicability of virtual terminals by compar-
ing the results of the KKR implementation with a simple finite
differences method (FDM) for the case of free electrons [29].
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II. THEORY

In order to evaluate transport properties, the following mo-
ments Ln are used [31]:

Ln = 2

h

∫
dE

∫
d�k‖ (E − μ)n

(
−∂ f (E , μ, θ )

∂E

)
T (E , �k‖),

(1)

where h is Planck’s constant, E is the energy, μ is the chemical
potential, θ the temperature, f (E , μ, θ ) is the Fermi-Dirac
distribution, and T (E , �k‖) the �k‖ = (kx, ky) dependent trans-
mission function. Normally, these moments are written as
tensors. Here, since we are looking at cubic systems only, we
restrict ourselves to the Ln = Ln,zz component of the full ten-
sor Ln. From these moments, the conductivity σ , thermopower
S, and heat conductivity of the electrons κe can be calculated
as [32]

σ = e2L0, (2)

S = 1

eθ

L1

L0
, (3)

and

κe = 1

θ

(
L2 − L2

1

L0

)
, (4)

where e is the electron charge.

A. Keldysh formalism

In the Keldysh formalism, the general transmission func-
tion T (E ) = Teff (E ; �) is an effective transmission function,
which results from contributions of different origins. The sys-
tem is divided into three parts, left, center, and right, where
the left and right sides serve as semi-infinite leads and the
center region serves as scattering region. Certain scattering
events can be realized in the Keldysh formalism by placing
virtual terminals, which are also known as Büttiker probes
[33], in the scattering region. The virtual terminals absorb
and reemit electrons with different phases, thus simulating a
phase-breaking scattering event [29,33]. Further details of the
implementation are documented in our previous paper [10].
The necessary transmission functions are calculated for every
possible terminal configuration via a coherent approach at
each in-plane �k‖ point as

TXY (E , �k‖) = Tr[�Y (E , �k‖)G(E , �k‖)�X (E , �k‖)G†(E , �k‖)],

(5)

where X,Y ∈ S ∧ {L, R} are virtual terminals or the con-
tacting left (L) and right (R) terminals. S is the set of all
virtual terminals in the scattering region. The matrix �α =
i(�̄α (E )Iα − �̄∗

α (E )Iα ) = −2Im�̄αIα = 2�αIα is the broad-
ening function due to self-energy �α at site α. The matrix Iα

is 1 only for one site index α and 0 elsewhere. For α ∈ S,
�α is the broadening due to scattering. However, �L and
�R describe the contact to the semi-infinite leads and are
solely given by the lead material. The partial transmissions
TXY (E , �k‖) are integrated over the in-plane Brillouin zone to
obtain TXY (E ). From this �k‖ integrated partial transmissions

between the terminals, the resulting effective transmission
function Teff through the whole system can be calculated as

Teff (E ) = TLR(E ) +
∑
α∈S

TLα (E )TαR(E )

Sα (E )

+
α �=β∑

α,β∈S

TLα (E )Tαβ (E )TβR(E )

Sα (E )Sβ (E )
+ . . . . (6)

Here, Sα = TLα (E ) + TαR(E ) + ∑β �=α

β∈S Tαβ (E ), α ∈ S is the
renormalization sum of the probability measure. Note that all
TXY (E ) also depend on all �α (α ∈ S), because the Green’s
function G(E , �k‖) depends on all �α (α ∈ S). Thus, TXY (E )
will change even when a �α with α �= X,Y will change. In
the following we assume that �α ≡ � ∀α ∈ S. Consequently,
we will write the effective transmission as a function of E and
�, that is Teff(E ; �).

One has to be careful since, in the Keldysh formalism, the
resistance arises not only from scattering but also from the
system’s contacts to the leads. This contact resistance Rc is
due to the contact of an ideal lead to a scattering region, where
only a limited number of transport modes per area exist and
contribute to the transport of an electron. The scattering part of
the resistance RS is due to scattering alone. While RS naturally
depends on the length of the system and on �, Rc does not. Rc

solely depends on the type of the contact. Since the two types
of resistances form a series circuit and since R ∝ T −1, the full
transmission can be split up as

1

Teff(E , �)
= 1

Tc(E )
+ 1

TS (E , �)
. (7)

Here, the contact transmission Tc(E ) is the transmission of
a system without virtual terminals, and TS (E ; �) is the con-
tribution due to scattering. Tc is a transmission function that
contributes either 0 or 1 at each �k point for each band and
thus is a measure for the number of transport modes. The
contribution due to scattering TS is a probability measure
to what extent an electron can traverse the scattering region
without being scattered. Thus it is not bounded between 0 and
1. TS , therefore, can rise to infinity, if no scattering occurs, that
is TS → ∞ if τ → ∞, as it takes infinitely long to scatter.
In the Keldysh formalism, the additional contact resistance
ensures that the effective transmission function does not rise
to infinity.

As depicted schematically in Fig. 1, the influence of the
contact resistance is the main contribution for small scattering
self-energies � (large 1/�). The contact resistance limits
the transmission function to a constant value. The scatter-
ing contribution is rising to infinity as one would expect for
decreasing scattering. Increasing the scattering self-energy
(reducing 1/�), TS (E ; �) and Teff(E ; �) start to overlap and
this leads to a decreasing contribution of the contact resistance
in the reciprocal addition of Eq. (7). Thus in the limit of a
very long scattering region or strong scattering, the behavior
is of only Ohmic nature and the contact resistance does not
contribute significantly. We use the term contact resistance
for the resistance, which is due to the contact of semi-infinite
leads that serve as an electronic reservoir in equilibrium to
a scattering region. Here, we consider no contact resistance
from surface roughness, etc., like it would be the case in
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FIG. 1. Schematic depiction of the contributing transmission
functions: contact transmission Tc(EF ) (dashed, black), contributions
due to scattering TS (EF , �) (blue), and resulting effective transmis-
sion Teff (EF , �) (red) via Eq. (7).

experiments. Unless stated otherwise, we consider only the
contribution due to scattering TS (E ; �) in the following as this
is the quantity making contact with the Boltzmann approach.

B. Boltzmann formalism

The Boltzmann transmission function contains contri-
butions due to scattering only and no contribution from
the contact resistance. The transmission function in the
Boltzmann approach corresponds to T (E , �k) = TS (E , �k; τ ) =
v2

z (�k)τ�kδ(E − ε(�k)), where vz is the group velocity in trans-
port direction, τ�k the �k dependent scattering time, δ(E − ε(�k))
is the Dirac delta distribution, and ε(�k) is the electronic energy
dispersion.

In the case of free electrons, mapping this transmission
function onto the �k‖ plane, which in accordance to Keldysh
is equivalent to integrating the kz components, one arrives at
TS (E , �k‖; τ ) = 2

√
2τ

h̄
√

m

√
E − (h̄2/(2m))(k2

x + k2
y ). Here, we con-

sider the isotropic relaxation time approximation, where τ is
independent of �k [34–38]. Thus, the moments Ln after Eq. (1)
are proportional to τ and therefore S is independent of τ .
That is ∂S

∂τ
= 0, as seen by Eq. (3). Therefore, scattering has

no effect on the thermopower in the Boltzmann approach.
Consequently, the thermopower can be used as a theoretical
test system of the relation between � and τ . Furthermore, if
there is a direct relation such as τ ∝ 1/�, the thermopower
should be independent of a �k‖-independent self-energy within
the Keldysh formalism. In other words, as long as the relation
� ∝ 1/τ holds, the transmission function TS (E ; �) within the
Keldysh approach should linearly depend on 1/�, because in
the Boltzmann approach the transmission function TS (E ; τ ) is
proportional to the relaxation time.

C. Finite differences method

To compare the results obtained with our KKR-Keldysh
formalism, we use a three-dimensional finite differences
method (FDM) for the system of free electrons. Thereby,
we can exclude possible numerical shortcomings in our
implementation and more importantly, we can check the

applicability of the virtual terminals in KKR, as we are limited
to one virtual terminal at each atom at maximum. In contrast,
in FDM the number of virtual terminals is unbound.

For one dimension, the finite differences method (FDM)
is described in Ref. [29]. We expand on this description to
describe free electrons in three dimensions in an, in principle,
exact manner. The Schrödinger equation for free electrons
can be separated for each spatial dimension. The Hamiltonian
is discretized in transport direction and Fourier transformed
in the in-plane direction. The Fourier transformation yields
corrections for the in-plane directions converting the three-
dimensional problem to an effective one dimensional problem
via an effective energy in z direction (transport direction), that
is Ez = E − h̄2

2m (k2
x + k2

y ). The Greens function is calculated
for the effective one-dimensional problem at the effective
energy for each in-plane �k‖ point in the circle described by
h̄2

2m (k2
x + k2

y ) � E and integrated over all �k points. The trans-
mission out of this range is zero. Further details calculating
the transmission can be found in Ref. [10].

III. COMPUTATIONAL DETAILS

For evaluation, we consider three different systems. The
first system are free electrons serving as a simple model
system. The transport parameters of the free electrons are
calculated with the DFT-KKR-Keldysh formalism and com-
pared to FDM-Keldysh formalism. As a second system we
consider Cu within KKR, because the Fermi surface is very
similar to that of free electrons. Finally, as a third system
we consider Pd with a rather complex Fermi surface also in
KKR.

The potential for the transport calculation in case of free
electrons (fe) is a constant potential set to 0. The potentials
for Cu and Pd are self-consistently calculated as bulk sys-
tems and then used in the transport geometry. Each system
is calculated as fcc lattice, where the transport direction is the
[001] direction. For the lattice constants we use afe = aCu =
6.8311736aB, aPd = 7.3524aB. Unless stated otherwise, each
system has an effective length of d = 25alat , which means that
50 virtual terminals are placed inside the scattering region.
Within the KKR method, the transport calculations are done
with 400 × 400 �k‖ points, max = 3, and an energy broad-
ening of 0.054 meV to ensure convergence of TS (E ; �) to
be better than 1%. In FDM we use 2000 lattice points and
400 × 400 �k‖ points for the free electrons to ensure a conver-
gence of TS (E ; �) better than 1%

IV. RESULTS AND DISCUSSION

A. KKR results

First in Fig. 2, we compare the thermopower of three
different systems with increasing complexity of the Fermi
surface, namely free electrons, copper (Cu), and palladium
(Pd). We assume a �k independent scattering time τ and thus
use a �k independent self-energy � for the Keldysh formal-
ism with virtual terminals. In this simple case of a constant
scattering time approximation, the thermopower generally
should show no dependence on τ following the direct lin-
ear scaling of the moments L0 and L1 with respect to τ
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FIG. 2. Thermopower S(θ ) as function of temperature θ for (a) free electrons, (b) Cu, and (c) Pd at different � calculated with KKR. Note
that in (a) and (b) the blue colored lines overlap.

when considering the Boltzmann theory. If the identification
τ ∝ 1/� is true, it should also give an independence of
the thermopower on � calculated within the KKR-Keldysh
formalism.

1. KKR Thermopower

For free electrons, the thermopower, as a function of
temperature θ at an arbitrarily chosen value of EF = E1 =
0.75 Ry, shows exactly this behavior, at least for � roughly
below 8 × 10−2 Ry [see Fig. 2(a)]. For higher values of �, it
starts to deviate (shown in red).

For Cu, shown in Fig. 2(b), the behavior of the ther-
mopower is qualitatively the same as for free electrons.
However, the deviation from the expected behavior is already
stronger at smaller self-energies � compared to free electrons.
For Pd, shown in Fig. 2(c), the thermopower shows a distinct
temperature dependence for each self-energy, which clearly
deviates from the expectation within the relaxation time ap-
proximation. This result suggests that a simple identification
of τ ∝ 1/� is not suitable. To get a better understanding we
compare the transmission function for these systems in terms
of the self-energy. After the comparison of the transmission
function, we also check the free electrons against the FDM
and discuss the limits of the model in Sec. IV C.

2. KKR Transmission function

In Fig. 3(a) we show the �k‖ integrated, energy-dependent
transmission function TS (E ; �) for different scattering self-
energies � at the Fermi energy for free electrons. At EF =
E1 = 0.75 Ry we find a good linear behavior, especially for
high values of 1/�, i.e., in the low-scattering regime. This
result suggests that for free electrons, the identification of
τ with the energy broadening self-energy � via τ = h̄

2�
is

correct at least for small � up to around 10−1 Ry. But even
for free electrons TS (E ; �) shows deviations from the linear
behavior for small values of 1/�, i.e., in the case of strong
scattering.

This deviation from the linear behavior for large � directly
relates to the deviation of the thermopower in Fig. 2(a). We
attribute the deviation in TS (E ; �) to an insufficient discretiza-

tion of the scattering events. This will be discussed further in
Sec. IV C by means of the FDM.

The same behavior of TS (EF ; �) can be observed for
Cu in Fig. 3(b). Here, compared to TS (EF ; �) of free elec-
trons, the deviation from the linear behavior starts at smaller
self-energies already. Again, this deviation is in accordance
with the deviation of the thermopower of Cu discussed
before.

When considering Pd in Fig. 3(c). with a more complicated
electronic structure and complex Fermi surface, the linear fit-
ting of TS (EF , �) in Fig. 3(c) becomes untenable suggesting,
that the relationship τ ∝ 1/� does not hold at all. Again, the
complete deviation from the linear behavior is in accordance
with the distinct behavior of the thermopower for each self-
energy.

So far, we have used the constant scattering time approxi-
mation to assess the validity of the identification of � = h̄

2τ
.

For free electrons and Cu, this identification holds true if �

is small enough, but it is clearly not valid in the case of Pd.
The fact that even for simple pure metals in combination with
the simple approximation of a constant scattering time [20] the
identification of the single-particle scattering time τ and self-
energy � fails, suggests that for systems with a more complex
topology of the Fermi surface and a �k-dependent scattering
time τ , the identification of � and τ becomes even more
difficult. The main ingredient to the KKR-Keldysh approach
is the retarded Green’s function defined in the upper half of the
complex plane in the limit of real energies. At the real energy
axis it possesses poles at the eigenenergies of the eigenstates
and each eigenstate is represented by a δ-distribution on the
real energy axis. Adding an imaginary part to the real energy
causes these states to broaden into a Lorentzian shape. If we
consider, as it is the case throughout this paper here, a purely
imaginary self-energy of the same value at each atomic site,
the real energy and the imaginary self-energy can be seen
as a new complex energy, which causes the broadening of
the states. This broadening of states, however, causes con-
tributions from neighboring states (neighbors with respect to
energy) to an existing state at one particular energy due to the
overlap. Also for the transmission at one particular energy, the
broadening can cause contributions from neighboring elec-
tronic states.
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FIG. 3. TS (EF , �) vs 1/� for (a) free electrons, (b) Cu, and (c) Pd in KKR with linear fits.

In the Boltzmann theory, the transport properties at one
particular energy are determined solely by the band structure
properties of the considered state, and no additional broaden-
ing of states is considered. This may cause inaccuracies when
translating one quantity into the other and vice versa. Conse-
quently, we attribute the deviations from the linear behavior
of Pd to effects caused by the energy broadening.

B. FDM results

In order to test the numerical implementation of the KKR
method, we compare it to the thermopower calculated via the
FDM method in Fig. 4. We see a similar trend for the deviation
of thermopower, namely a deviation of the thermopower for
high self-energies. We will explain this deviation for high self-
energies in Sec. IV C.

In the Boltzmann approach, considering free electrons,
the �k-integrated TS (E ; τ ) can be shown to be proportional
to τE3/2. The proportionality to E3/2 holds true to some
extent for the Keldysh version of TS (E ; �). For comparison,
TS (E ; �) for free electrons is shown in Fig. 5 calculated with
FDM and KKR. The transmission functions between the two
methods match quite well. In Fig. 6 the �k‖ integrated trans-
mission TS (EF ; �) is shown for the FDM method for different
scattering self-energies �. Comparing Fig. 6 with Fig. 3(a) we
find for both methods, KKR and FDM, a good linear behavior,

FIG. 4. Thermopower S(θ ) as a function of temperature θ for
free electrons calculated with FDM at different �.

especially for high values of 1/�, i.e., less scattering events.
The deviation from the linear behavior appears at smaller
self-energies for a lower energy of E0 = 0.01 Ry. While both
methods give results that deviate from linear behavior in the
strong scattering regime, the precise form is different [cf.
Figs. 2(a) and 3(a)]. We discuss this in Sec. IV C. The different
characteristic of the deviating thermopower in Figs. 2(a) and
4 are a direct consequence of different deviations of TS (E ; �)
in Figs. 3(a) and 6 in the strong scattering regime.

In the strong scattering regime, both methods overestimate
TS (E ; �) relative to the linear fit. We attribute this to low-
energy contributions at the edge of the broadened �k-dependent
transmission. Such a transmission is shown in Fig. 7. In
Fig. 7(a) the contact transmission is shown for the first Bril-
louin zone. The values of Tc(EF , �k‖) are restricted to 1 inside
the circle defined by the Fermi energy and 0 outside this circle.
The overlapping occurs due to back folding to the Brillouin
zone. In Fig. 7(b), the scattering part of the transmission
function TS(EF , �k‖) is shown. The smearing due to scattering
at the edges is visible. In Fig. 8, TS (E2; �) at E2 = 0.25 Ry is
shown for different integration radii in �k‖ space. TS (E2; �) is
normalized to the result for � = 10−4 Ry, as the overall area
changes for each curve.

FIG. 5. Scattering contribution to the transmission TS (E , �) for
different self-energies � for free electrons in KKR (blue) and FDM
(red).
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FIG. 6. TS (Ei, �), i = 1, 2, as function of 1/� for free electrons
in FDM with linear fits at E0 = 0.01 Ry and E1 = 0.75 Ry.

At the � point, the transmission function shows linear
behavior. Integrating only 10% of the radius determined by√

E , the behavior stays mostly linear. Integration up to 90%
or more shows the deviation from the linear behavior. We
attribute this deviation to edge parts of the transmission, where
the effective energy for transport in z direction becomes very
small such that the discretization of scattering events through
the virtual terminals is not sufficient. We elaborate more on
this topic in the next section.

C. Limits of the model

Since there are apparent deviations of TS (E ; �) [see
Figs. 3(a) and 6] from the linear behavior, we investigate this
problem in terms of the number and placement of virtual ter-
minals. For this we use the FDM model since it provides more
freedom to test the placement of virtual terminals compared
to the KKR method. In contrast to the continuous FDM or
Boltzmann theory, within the KKR framework, the highest
possible number of virtual terminals that can be placed in
the scattering region is the number of atoms in the cell as the
virtual terminals are placed at the atomic positions.

In the FDM model, the space in z direction is discretized.
The corresponding discretization parameter a = dz/(n − 1)

FIG. 8. Normalized transmission function TS (E2; �)/TS

(E2; 10−4 Ry) of free electrons calculated with FDM at
E2 = 0.25 Ry. TS (E2, �) shows linear behavior at the � point
(blue). Integrating up to 80%, 90%, and 100% (warm colors) of
the radius of the broadened transmission circle �k‖ space shows
overestimations from the expected linear behavior.

can be chosen arbitrarily small in principle and must be cho-
sen reasonably small to achieve convergence for the effective
transmission. On each of these n discretized lattice points, it
is possible to place a virtual terminal.

Figure 9 shows �TS/TS for E0 = 0.01 Ry and E1 =
0.75 Ry (blue, red), respectively, for different values of �.
Starting from 2000 lattice points, a virtual terminal is located
at every lattice point. To test the discretization of the scatter-
ing events, we reduce the number of virtual terminals. The
placement is uniform such that a virtual terminal is added
to every ith lattice point. To achieve the same total amount
of scattering, the self-energy �i of the ith individual virtual
terminal is scaled so that the sum

∑
i∈S �i stays constant. The

actual number of virtual terminals is shown on the x axis.
With this test, it is possible to show that for a certain

number of virtual terminals at a certain self-energy �, the
obtained result for TS (Ei; �) deviates significantly from the
value of TS (Ei; �) when it is discretized to the maximum
at 2000 lattice points. The deviation increases as the num-
ber of virtual terminals decreases, going beyond 1% for less

FIG. 7. �k‖-dependent transmission function of free electrons calculated with KKR. (a) Contact transmission function and (b) scattering
part of transmission TS(EF , �k‖, �) for � = 3 × 10−2 Ry.
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FIG. 9. Relative deviation of TS (Ei, �) vs number of virtual ter-
minals for free electrons. As the number of virtual terminals inside
the constant scattering region decreases, the distance between the vir-
tual terminals increases. The single �i has to be scaled accordingly,
to meet the condition

∑
i∈S �i = const.

than about 10 terminals for E = 0.01 Ry. We attribute this to
multiple-scattering effects with a very high number of scatter-
ing events that cannot be accounted for due to the lack of the
necessary number of virtual terminals. Thus, the discretization
to describe all scattering events is insufficient.

For larger � or smaller E this starts to happen for a higher
number of virtual terminals, i.e., a finer discretization, as the
number of scattering events, that should occur is antipro-
portional to the mean free path λ = vτ = √

2E/m h̄/(2�).
Transferring this result to the KKR method implies that at
very high self-energies, the discretization of the scattering
events is not sufficient anymore. Thus, interatomic positions
for virtual terminals would have to be utilized to overcome
this deficiency.

To test whether this effect is related to the actual distance
of virtual terminals, we randomly placed 20 virtual terminals
in the transport cell. Figure 10 shows �TS/TS for different ran-
dom distributions of virtual terminals. For larger self-energies,
some distributions show larger deviations. The results suggest
that virtual terminals can actually be placed randomly but
yield the same result within 1% deviation as long as the

FIG. 10. Relative deviation of TS (Ei, �) for free electrons vs 20
different distributions of a constant number of 20 virtual terminals,
which are placed randomly over the scattering region.

FIG. 11. TS (EF , �) vs 1/� for free electrons for different dis-
cretizations of the scattering potential barrier. The actually used
self-energy �′ has to be scaled to meet the “effective” self-energy
�.

self-energy is small enough for the scattering events to be
accounted for. This means that the effective strength of the
scattering region is not determined by the region covered
with virtual terminals but only by the overall strength of self-
energies

∑
i∈S �i. The distance between the virtual terminals

is not crucial since the transmission between two terminals
Tαβ is calculated coherently. With these restrictions in mind,
a description of a macroscopic experimental thin film should
be possible. The practical route is to calculate a microscopic,
downsized version of the thin film. In order to account for the
same scattering strength, the self-energies have to be scaled
according to the length of the scattering region. Here it is
crucial to introduce a sufficient number of virtual terminals
to account for all necessary multiple scattering events.

Finally, let us explain the observed deviation of TS (EF , �)
for large self-energies in the KKR approach. In Fig. 11,
TS (EF , �) for the KKR method, where a virtual terminal is
attributed to each atomic position is compared to the FDM
method with a changing number of virtual terminals. The
FDM method for 2000 virtual terminals is considered as the
exact converged result. Depending on the number of virtual
terminals, TS (EF ; �) over- or underestimates the correct result
in the strong scattering regime. Additionally, since the KKR
uses different approximations than the FDM, e.g., atomic
sphere potentials and expansion of functions in spherical har-
monics with  cutoffs, deviations are expected to occur, while
not necessarily with the same numerical value.

V. CONCLUSION

We calculated the thermopower S(θ ) and the transmission
function TS (E ; �) for free electrons, Cu, and Pd with scat-
tering events realized by virtual terminals. The thermopower
S(θ ) for the free electrons and Cu shows no dependence on
the self-energy �, if it is below a specific value of �. This
is directly related to the linear scaling of TS (E ; �) with 1/�

in that regime for the two systems. For free electrons, we
can explain the deviations from the linear behavior in terms
of insufficient discretization of scattering events. Further, we
show that the distance between virtual terminals plays no
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role, as long as enough scattering events are considered. For
Pd, however, we find a nonlinear behavior in TS (E ; �) even
for small self-energies � and a distinct behavior of the ther-
mopower S(θ ) for each self-energy �. This result suggests
that τ may not be easily identified with h̄/(2�) for more
complex Fermi surfaces. We conclude that even in the simple
constant relaxation time approximation with �k-independent
τ the identification of the scattering time with the lifetime
associated with �k-independent � is not true in general. For the
case of a �k-dependent τ or the energy-dependent self-energy
function �(E ) obtained from rigorous many-body treatment,
this identification would become even more problematic. We
have shown possible errors in the KKR approach when using
virtual terminals to describe scattering, namely using too large
self-energies, and low-energy contributions at the edge of the
Fermi surface. These errors however, are very small when
considering practical self-energies for Cu and Pd. For Cu,
values for � ranging from 7 × 10−4 − 3.7 × 10−3 Ry were
calculated [39] in good agreement with the referenced ex-
periment therein. For Pd, values ranging from 3.7 × 10−4 −
1.1 × 10−2 Ry were calculated depending on temperature and

surface state [40,41]. Considering the limits of the virtual
terminal approach, it should be possible to calculate macro-
scopic thin films, which opens up the way to describe real
experimental structures. As we have shown in an earlier paper
[42] that it is possible to calculate the spin accumulation in
clean systems within the Keldysh formalism, extending it to
scattering via virtual terminals could make it possible to also
calculate the spin diffusion length for such systems or to
consider additional contributions to the accumulation.

ACKNOWLEDGMENTS

A.F., M.C., and C.H. acknowledge computational re-
sources provided by the HPC Core Facility and the HRZ of
the Justus-Liebig-University Giessen. Further, they would like
to thank M. Giar and P. Risius of HPC-Hessen, funded by the
State Ministry of Higher Education, Research and the Arts, for
technical support. M.G. thanks the visiting professorship pro-
gram of the Centre for Dynamics and Topology at Johannes
Gutenberg-University Mainz.

[1] S. Datta and M. J. McLennan, Rep. Prog. Phys. 53, 1003 (1990).
[2] T. J. Thornton, Rep. Prog. Phys. 58, 311 (1995).
[3] M. P. Das and F. Green, J. Phys.: Condens. Matter 21, 101001

(2009).
[4] L. L. Sohn, L. P. Kouwenhoven, and G. Schön (eds.), Meso-

scopic Electron Transport (Springer Netherlands, Dordrecht,
1997).

[5] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[6] T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia,

and A. H. Castro Neto, Phys. Rev. B 90, 075434 (2014).
[7] S. Lowitzer, M. Gradhand, D. Ködderitzsch, D. V. Fedorov, I.

Mertig, and H. Ebert, Phys. Rev. Lett. 106, 056601 (2011).
[8] G. Y. Guo, Y. Yao, and Q. Niu, Phys. Rev. Lett. 94, 226601

(2005).
[9] Y. Yao and Z. Fang, Phys. Rev. Lett. 95, 156601 (2005).

[10] C. E. Mahr, M. Czerner, and C. Heiliger, Phys. Rev. B 96,
165121 (2017).

[11] C. Heiliger, M. Czerner, B. Y. Yavorsky, I. Mertig, and M. D.
Stiles, J. Appl. Phys. 103, 07A709 (2008).

[12] C. Franz, M. Czerner, and C. Heiliger, J. Phys.: Condens.
Matter 25, 425301 (2013).

[13] I. Mertig, Rep. Prog. Phys. 62, 237 (1999).
[14] W. Li, Phys. Rev. B 92, 075405 (2015).
[15] J. M. Ziman, Principles of the Theory of Solids, 2nd ed. (Cam-

bridge University Press, Cambridge, 1972).
[16] C. Herschbach, M. Gradhand, D. V. Fedorov, and I. Mertig,

Phys. Rev. B 85, 195133 (2012).
[17] G. Géranton, B. Zimmermann, N. H. Long, P. Mavropoulos,

S. Blügel, F. Freimuth, and Y. Mokrousov, Phys. Rev. B 93,
224420 (2016).

[18] J. K. Glasbrenner, B. S. Pujari, and K. D. Belashchenko, Phys.
Rev. B 89, 174408 (2014).

[19] A. A. Starikov, Y. Liu, Z. Yuan, and P. J. Kelly, Phys. Rev. B
97, 214415 (2018).

[20] R. Golizadeh-Mojarad and S. Datta, Phys. Rev. B 75,
081301(R) (2007).

[21] C.-L. Chen, C.-R. Chang, and B. K. Nikolić, Phys. Rev. B 85,
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